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ON THE TIME GROWTH OF THE ERROR OF THE
DISCONTINUOUS GALERKIN METHOD FOR

ADVECTION-REACTION PROBLEMS ∗

VÁCLAV KUČERA†

Abstract. This contribution presents an overview of the results of the paper [6] on the time
growth of the error of the discontinuous Galerkin (DG) method. When estimating quantities of
interest in differential equations, the application of Gronwall’s lemma gives estimates which grow
exponentially in time even for problems where such behavior is unnatural. In the case of a non-
stationary advection-diffusion equation we can circumvent this problem by considering a general
space-time exponential scaling argument. Thus we obtain error estimates for DG which grow expo-
nentially not in time, but in the time particles carried by the flow field spend in the spatial domain.
If this is uniformly bounded, one obtains an error estimate of the form C(hp+1/2), where p is the
degree of polynomials used in the DG method and C is independent of time. We discuss the time
growth of the exact solution and the exponential scaling argument and give an overview of results
from [6] and the tools necessary for the analysis.
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Introduction. We give an overview of the paper [6] dealing with estimates of the
time growth of the error of the discontinuous Galerkin method applied to a nonsta-
tionary advection-reaction equation. To put the results of paper [6] into appropriate
context, in Section 1, we first comment on the role of ellipticity in producing estimates
that are uniform with respect to time – this includes the heat equation and limitations
of attempts to apply similar techniques straightforwardly to advection-reaction prob-
lems. In Section 2, we introduce the continuous problem and in Section 2.1 we give
estimates of the time growth of the solution using streamlines, which gives further
justification to the results of [6]. In Section 3, we introduce exponential scaling, a key
tool used in the analysis. To give further insight into the results of [6], we give an
overview of the main ideas of the proof of Theorem 3.2 from [2]. Finally, in Section
4 we introduce the DG method and give an overview of the results in [6] and their
proofs. We note that the full analysis is rather technical, however the main ideas
upon which the theory is built are rather straightforward.

1. Estimation and ellipticity in differential equations. When dealing with
differential equations, one typically estimates quantities of interest to prove the desired
results, e.g. regularity of the solution, etc. Let us consider the simple heat equation

∂u

∂t
−∆u = 0 (1.1)

in a spatial domain Ω with homogeneous Dirichlet boundary conditions, for simplicity.
The weak formulation reads(∂u(t)

∂t
, v
)

+
(
∇u(t),∇v

)
= 0 (1.2)
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for all v ∈ V = H1
0 (Ω) and all t, where (· , · ) is the standard L2(Ω)-inner product.

Let’s say we wish to estimate the norm of the solution. To this end we test (1.2) with
v := u(t) to obtain

1
2

d
dt‖u(t)‖2 + |u(t)|21 = 0, (1.3)

where ‖· ‖ is the L2(Ω)-norm and |· |1 is the H1
0 (Ω)-seminorm. Neglecting the semi-

norm in (1.3) gives us

d
dt‖u(t)‖2 ≤ 0, (1.4)

i.e. the L2(Ω)-norm of the solution is non-increasing in time.
Compare the consideration above with the advection-reaction problem

∂u

∂t
+ a· ∇u+ cu = 0, (1.5)

where a is a given advection vector field and c is a given reaction coefficient. If we
test the weak form of (1.5) with v := u(t) and apply Green’s theorem in the advection
terms, we obtain

1
2

d
dt‖u(t)‖2 +

∫
Ω

(c− 1
2div a)u2dx+

∫
∂Ω

a·nu2dS = 0. (1.6)

Assuming for simplicity homogeneous Dirichlet boundary conditions on the inlet
boundary and neglecting the terms over the outflow boundary, where a·n > 0, we get

1
2

d
dt‖u(t)‖2 +

∫
Ω

(c− 1
2div a)u2dx ≤ 0. (1.7)

Now we distinguish two cases. First, we consider the case when (c− 1
2div a) ≥ 0. In

this case, similarly to the heat equation, we get (1.4), hence again the L2(Ω)-norm
of the solution is non-increasing in time. On the other hand, if (c− 1

2div a) ≤ 0, the
best we can do is estimate

d
dt‖u(t)‖2 ≤ 2 sup |c− 1

2div a| ‖u‖2. (1.8)

It is natural to apply Gronwall’s lemma to (1.8), which results in the estimate

‖u(t)‖2 ≤ ‖u(0)‖2exp
(
2t sup |c− 1

2div a|
)
, (1.9)

which grows exponentially w.r.t. time. However, as we shall see in the following
section, the distinction based on the sign of c− 1

2div a is completely artificial, as is the
exponential growth of the estimate (1.9). The problem arised due to the crude use of
Gronwall’s lemma, as well as relying on ellipticity of the advection-reaction terms. In
the following section we will present how to circumvent these obstacles in the case of
estimation of the error of the DG method using more refined estimation techniques
based on the so-called exponential scaling trick.

2. Continuous problem. Let Ω ⊂ Rd, d ∈ N be a bounded polygonal (polyhe-
dral) domain with Lipschitz boundary ∂Ω. Let 0 < T ≤ +∞ and let QT = Ω× (0, T )
be the space-time domain. We consider the following nonstationary advection-reaction
equation: We seek u : QT → R such that

∂u

∂t
+ a· ∇u+ cu = 0 in QT , (2.1)
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along with the initial condition u(x, 0) = u0(x) and boundary condition u = uD
on ∂Ω− × (0, T ). Here a : QT → Rd and c : QT → R are the given advective
field and reaction coefficient, respectively. By ∂Ω− we denote the inflow boundary
{x ∈ ∂Ω; a(x, t) · n(x) < 0,∀t ∈ (0, T )}, where n(x) is the unit outer normal to ∂Ω at
x. We assume that c ∈ C([0, T );L∞(Ω))∩L∞(QT ) and a ∈ C([0, T );W 1,∞(Ω)) with
a,∇a uniformly bounded a.e. in QT .

2.1. Time growth of the exact solution. In order to put the results on the
time growth of error of the DG method into perspective, it is useful to first gain
insight into the time growth of the exact solution itself in a more refined manner than
in Section 1. For this purpose, we define pathlines of the flow, i.e. the family of curves
S(t;x0, t0), each originating at (x0, t0), by

S(t0;x0, t0) = x0 ∈ Ω,
dS(t;x0, t0)

dt
= a(S(t;x0, t0), t).

This means that S(·; t0, x0) is the trajectory of a massless particle in the nonstationary
flow field a passing through point x0 at time t0. Equation (2.1) can then be rewritten
along each pathline:

du(S(t;x0, t0), t)

dt
+ (cu)(S(t;x0, t0), t) =

(∂u
∂t

+ a · ∇u+ cu
)

(S(t;x0, t0), t) = 0,

which is an ordinary differential equation with the solution

u(S(t;x0, t0), t) = u(x0, t0) exp
(
−
∫ t

t0

c(S(s;x0, t0), s) ds
)
. (2.2)

For simplicity, if we take c(x, t) ≡ c0 ∈ R, i.e. a constant, this reduces to

u(S(t;x0, t0), t) = u(x0, t0)e−c0(t−t0). (2.3)

From this we can see that along pathlines, the exact solution of (2.1) exponentially
grows (c0 < 0) or decays (c0 > 0) with the rate −c. In the special case of pure
advection (c0 = 0) the function u is constant along each pathline.

In this short note and in the paper [6] we are concerned with the case of uniformly
bounded solutions and errors. One case when this can occur is when the maximal
particle ‘life-time’ T̂ is finite. By this we mean that the maximal time any massless
particle carried by the flow field a spends in Ω, before exiting through the outflow
boundary, is bounded by T̂ < +∞. As such particles follow pathlines of the flow, this
is equivalent to assuming that each pathline is defined only for a finite time bounded
by T̂ before exiting Ω. Therefore in (2.2) and (2.3) we have |t− t0| < T̂ , specifically

|u(S(t;x0, t0), t)| ≤ |u(x0, t0)| exp
(
T̂‖c‖L∞(QT )

)
,

where u(x0, t0) is either the initial condition (x0 ∈ Ω, t0 = 0) or boundary condition
(x0 ∈ ∂Ω−, t0 ≥ 0). Therefore the exact solution u remains uniformly bounded for
all t, although it may exponentially grow along each pathline (c < 0), which exist

only for a bounded time T̂ . We therefore have uniform boundedness of u even on a
potentially infinite time interval (0, T ).

It is reasonable to assume that a ‘good’ numerical method will mimic the described
behavior of the exact solution. Namely that whenever the exact solution remains
uniformly bounded, so will the approximate solution and error of the method. As we
will see, this is the case of the DG method.
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3. Exponential scaling. The main tool in the analysis of [6] is a general form
of the exponential scaling. The simple considerations of Section 1 required the as-
sumption

c− 1
2diva ≥ γ0 > 0 on QT (3.1)

for some constant γ0 > 0 in order to have uniform boundedness of the norm of the
solution w.r.t. time. As we have seen in Section 2.1 this assumption is by no means
necessary in the analysis of the continuous problem.

One possibility how to avoid assumption (3.1) in the analysis of (2.1) is the
exponential scaling ‘trick’. We write u(x, t) = eαtw(x, t) for some α ∈ R. Substituting
into (2.1) gives

eαt
∂w

∂t
+ αeαtw + eαta· ∇w + eαtcw = 0.

Since eαt > 0 we can divide the equation by this common factor, obtaining the new
problem for the unknown function w:

∂w

∂t
+ a· ∇w + (c+ α)w = 0. (3.2)

In this equation we have the new reaction term c + α. The new ellipticity condition
for (3.2) now reads c + α − 1

2diva ≥ γ0 > 0 and it can be satisfied by choosing α
sufficiently large. One can then proceed to use the ellipticity to obtain estimates for
w. The drawback of this approach is that in order to obtain estimates for u, one must
multiply by the exponential factor eαt, the result being an estimate that depends
exponentially on T .

For the stationary version of problem (2.1) the authors of [1] consider general
exponential scaling with respect to space and set u(x) = eµ(x)ũ(x). In our space-time
setting this would correspond to taking

u(x, t) = eµ(x)ũ(x, t). (3.3)

This is a generalized version of the simpler choice µ(x) = µ0·x for some constant
vector µ0 ∈ Rd considered e.g. in [4] and [7].

Substituting (3.3) into (2.1) and dividing by eµ we get a new problem for ũ:

∂ũ

∂t
+ a · ∇ũ+ (a· ∇µ+ c)ũ = 0.

The condition corresponding to (3.1) is now: There exists µ : Ω→ R such that

a· ∇µ+ c− 1
2diva ≥ γ0 > 0 on QT . (3.4)

The question then is when can such a function µ be found satisfying a· ∇µ ≥ a0 > 0
so that this term can be used to dominate the other possibly negative terms of (3.4).
The answer is in the following theorem, cf. [2] and [1].

Theorem 3.1. Let a : Ω → Rd be Lipschitz continuous. Then there exists a
function µ ∈ W 1,∞(Ω) such that a· ∇µ ≥ a0 > 0 if and only if the flow field a
possesses neither closed curves nor stationary points.

Proof. The proof itself is technical, here we only sketch the main arguments.
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First let a· ∇µ ≥ a0 > 0. Then clearly there cannot exist a point x where a(x) = 0.
Assume that a possesses a closed curve β : [0, 1] → Ω parametrized by s ∈ [0, 1], i.e.
β(0) = β(1) and d

dsβ(s) = a(β(s)) for all s. Then we have

0 = µ(β(1))− µ(β(0)) =

∫ 1

0

dµ(β(s))

ds
ds =

∫ 1

0

∇µ(β(s)) · a(β(s)) ds ≥ a0 > 0,

which is a contradiction. Therefore a cannot contain closed curves.
The opposite implication is more technical, hence we only indicate the main ideas.

A function µS is constructed in a neighborhood of each streamline S which satisfies
a· ∇µS > 0 on this neighborhood. This is done via the implicit function theorem on
the neighborhood of each point of S separately and connecting the functions together
on the neighborhood of the whole S. The set of all streamlines along with their
considered neighborhoods form a covering from which a finite subcovering can be
chosen and the local functions µS can then be ‘glued’ together using the related
partition of unity.

3.1. General space-time exponential scaling. If we were to use the non-
stationary version of the spatial exponential scaling (3.3), we would need to assume
the statement of Theorem 3.1 holds for all t, i.e. that a(·, t) possesses neither closed
curves nor stationary points for each t ∈ (0, T ). We view this as restrictive. Therefore
we consider the general form

u(x, t) = eµ(x,t)ũ(x, t), (3.5)

where µ : QT → R is an appropriate function. Substituting (3.5) into (2.1) gives

∂ũ

∂t
+ a · ∇ũ+

(∂µ
∂t

+ a· ∇µ+ c
)
ũ = 0 (3.6)

after dividing by the common positive factor eµ. The condition corresponding to (3.1)
and (3.4) now reads: There exists µ : QT → R such that

∂µ

∂t
+ a· ∇µ+ c− 1

2diva ≥ γ0 > 0 a.e. in QT . (3.7)

We will construct such a function µ in the following paragraph.
Up to now we worked only with the strong form of (2.1). The key step was to

divide the whole equation by eµ. The question is how to perform this operation in
a weak formulation, where all terms are under integral signs. The solution is to take
test functions of the form v(x, t) = e−µ(x,t)v̂(x, t) when using (3.5). Then the factors
eµ and e−µ cancel each other and one thus obtains the weak form of (3.6). This is a
key step in the analysis of [6].

3.2. Construction of the scaling function µ. If c − 1
2diva is negative or

changes sign frequently, we can use the expression µt + a · ∇µ to dominate this term
everywhere. If we choose µ1 such that

∂µ1

∂t
+ a · ∇µ1 = 1 on QT , (3.8)

then by multiplying µ1 by a sufficiently large constant, we can satisfy condition (3.7)
for a chosen γ0 > 0. Along pathlines equation (3.8) reads

dµ1(S(t;x0, t0), t)

dt
=
(∂µ1

∂t
+ a · ∇µ1

)
(S(t;x0, t0), t) = 1,
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therefore

µ1(S(t;x0, t0), t) = t− t0. (3.9)

At the origin of the pathline, we have µ1(S(t0;x0, t0), t0) = 0 and the value of µ1

along this pathline is simply the time elapsed since t0. As we assumed in Section 2.1,
the life-time of particles is bounded by T̂ , hence 0 ≤ µ1(x, t) ≤ T̂ for all (x, t) ∈ QT .
In the analysis we need Lipschitz continuity of µ. This can be obtained under the
assumption that there are no characteristic boundary points on the inlet boundary.
We note that due to its Lipschitz continuity, µ1 is differentiable with respect to x and
t a.e. in QT , which justifies the previous considerations. The proof of the following
theorem is rather technical, cf. [6]. Since µ1 is defined very simply along pathlines,
which are solutions of ordinary differential equations, the proof follows similar ideas
as in the proof of dependence of a solution of an ODE on the initial condition.

Theorem 3.2. Let a ∈ L∞(QT ) be continuous with respect to time and Lipschitz
continuous with respect to space. Let there exist a constant amin > 0 such that

−a(x, t) · n ≥ amin

for all x ∈ ∂Ω−, t ∈ [0, T ). Let the time any particle carried by the flow field a(·, ·)
spends in Ω be uniformly bounded by T̂ . Then µ1 defined by (3.9) on Ω × [0, T ) is

uniformly Lipschitz continuous with respect to x and t and satisfies 0 ≤ µ1 ≤ T̂ .

4. Discontinuous Galerkin method. Now we introduce the DG discretization
of (2.1). Let Th be a triangulation of Ω, i.e. a partition of Ω into closed simplices
with mutually disjoint interiors with hanging nodes allowed. For K ∈ Th let hK =
diam(K), h = maxK∈ThhK . For K ∈ Th we define its inflow boundary by ∂K−(t) =
{x ∈ ∂K; a(x, t)·n(x) < 0} where n(x) is the unit outer normal to ∂K. We will seek
the discrete solution in the space Sh = {vh; vh|K ∈ P p(K),∀K ∈ Th}, where P p(K)
is the space of all polynomials on K of degree at most p ∈ N. Given K ∈ Th and
vh ∈ Sh we define v−h as the trace of vh on ∂K from the side of the element adjacent
to K, or v−h = 0 if the face lies on ∂Ω. Finally on ∂K we define the jump of vh as
[vh] = vh − v−h , where vh is the trace from K.

The DG formulation of (2.1) then reads: We seek uh ∈ C1([0, T );Sh) such that
uh(0) = u0

h ≈ u0 and(∂uh
∂t

, vh

)
+ bh(uh, vh) + ch(uh, vh) = lh(vh), ∀vh ∈ Sh. (4.1)

Here bh, ch and lh are the advection, reaction and right-hand side forms, respectively,
defined for u, v piecewise continuous on Th as follows, [8], [3]:

bh(u, v) =
∑
K∈Th

∫
K

(a· ∇u)v dx−
∑
K∈Th

∫
∂K−

(a·n)[u]v dS,

ch(u, v) =

∫
Ω

cuv dx,

lh(v) = −
∑
K∈Th

∫
∂K−∩∂Ω

(a·n)uDv dx.

4.1. Error estimates. We are interested in estimates of the DG error eh(t) :=
u(t)−uh(t) = η(tn)+ξ(t), where η(t) = u(t)−Πhu(t) and ξ(t) = Πhu(t)−uh(t) ∈ Sh.
Here Πh is the L2(Ω)–projection onto Sh.
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As in Section 3.1, we wish to write ξ = eµξ̃ and test the error equation with
φ = e−µξ̃ = e−2µξ to obtain estimates for ξ̃. However, since φ(t) /∈ Sh this is
not possible. The solution is to test by Πhφ(t) ∈ Sh and estimate the difference
Πhφ(t) − φ(t), cf. [6]. A similar result is proved in the stationary case in [1] if
µ ∈W p+1,∞(Ω). In [6] only the Lipschitz continuity of µ and standard approximation
results are used in the proof of the following lemma.

Lemma 4.1. Let µ be globally bounded and Lipschitz continuous as in Theorem
(3.2). Then there exists C independent of h, t, ξ, ξ̃ such that

‖Πhφ(t)− φ(t)‖L2(K) ≤ ChK max
x∈K

e−µ(x,t)‖ξ̃(t)‖L2(K),

‖Πhφ(t)− φ(t)‖L2(∂K) ≤ Ch
1/2
K max

x∈K
e−µ(x,t)‖ξ̃(t)‖L2(K).

Now we come to the error analysis. Due to the consistency of the DG scheme, the
exact solution u also satisfies (4.1). We subtract the equations for u and uh, set
vh = Πhφ(t) and rearrange the terms to get the error equation(∂ξ

∂t
,Πhφ

)
+ bh(ξ, φ) + bh(ξ,Πhφ− φ) + bh(η,Πhφ)

+ ch(ξ, φ) + ch(ξ,Πhφ− φ) + ch(η,Πhφ) +
(∂η
∂t
,Πhφ

)
= 0.

(4.2)

The terms with φ are those where the factors eµ and e−µ cancel out as in Section 3.1
leading to the new reaction terms as in (3.6). Terms containing Πhφ−φ are estimated
using Lemma 4.1 and η is estimated by standard approximation results. Altogether
we have the following estimates, cf. [6].

Lemma 4.2. Let ξ = eµξ̃, φ = e−µξ̃ and let µ be as in Theorem (3.2). Then(∂ξ
∂t
,Πhφ

)
+ bh(ξ, φ) + ch(ξ, φ) ≥ 1

2

d

dt
‖ξ̃‖2 + γ0‖ξ̃‖2 +

1

2

∑
K∈Th

∥∥[ξ̃]
∥∥2

a,∂K−

where ‖f‖a,∂K− = ‖
√
|a·n|f‖L2(∂K−).

Lemma 4.3. Let ξ, φ and µ be as above. Then∣∣∣bh(ξ,Πhφ− φ) + bh(η,Πhφ) + ch(ξ,Πhφ− φ) + ch(η,Πhφ) +
(∂η
∂t
,Πhφ

)∣∣∣
≤ Ch‖ξ̃‖2 + Ch2p+1

(
|u(t)|2Hp+1 + |ut(t)|2Hp+1

)
+

1

4

∑
K∈Th

∥∥[ξ̃]
∥∥2

a,∂K−
.

Now we come to the main theorem of [6] on the error of the DG scheme (4.1).

Theorem 4.4. Let the assumptions of Theorem 3.2 hold. Let the initial condition
u0
h satisfy ‖u0 − u0

h‖ ≤ Chp+1/2|u0|Hp+1 . Then there exists a constant C depending

on T̂ but independent of h and T such that for h sufficiently small

max
t∈[0,T ]

‖eh(t)‖+
√
γ0‖eh‖L2(QT ) +

(1

2

∫ T

0

∑
K∈Th

∥∥[eh(ϑ)]
∥∥2

a,∂K−
dϑ
)1/2

≤ Chp+1/2
(
|u0|Hp+1 + |u|L2(Hp+1) + |ut|L2(Hp+1)

)
.

(4.3)
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Proof. If we apply Lemmas 4.2 and 4.3 to (4.2), we get

d

dt
‖ξ̃(t)‖2 + 2γ0‖ξ̃(t)‖2 +

1

2

∑
K∈Th

∥∥[ξ̃(t)]
∥∥2

a,∂K−

≤ Ch‖ξ̃(t)‖2 + Ch2p+1
(
|u(t)|2Hp+1 + |ut(t)|2Hp+1

)
.

Now we choose h small enough so that Ch ≤ γ0 and the first right-hand side term
can then be absorbed. We integrate over (0, t), take the maximum over t ∈ [0, T ] and
apply the estimate of the initial condition. Thus we get

max
t∈[0,T ]

‖ξ̃(t)‖2 + γ0

∫ T

0

‖ξ̃(ϑ)‖2 dϑ+
1

2

∫ T

0

∑
K∈Th

∥∥[ξ̃(ϑ)]
∥∥2

a,∂K−
dϑ

≤ Ch2p+1
(
|u0|2Hp+1 + |u|2L2(Hp+1) + |ut|2L2(Hp+1)

)
.

(4.4)

Now we reformulate estimate (4.4) as an estimate of ξ instead of ξ̃. Because ξ̃ = e−µξ,
we can estimate for example

‖ξ̃(t)‖2 ≥ min
QT

e−2µ(x,t)‖ξ(t)‖2 = e−2 maxQT
µ(x,t)‖ξ(t)‖2 ≥ e−2T̂ ‖ξ(t)‖2

and similarly for the other norms in (4.4). If we multiply the resulting estimate by

e2T̂ and take the square root, we get inequality (4.3) for the discrete part ξ̃ of the
error eh. Finally, a similar estimate for η follows from standard approximation results
which gives the estimate for eh = ξ + η.

The interpretation of Theorem 4.4 is the following. If one proceeds in a standard
way, the need to use Gronwall’s lemma arises. This leads to exponential growth
in time. By using the exponential scaling argument we effectively apply Gronwall’s
lemma along pathlines, which exist only for a finite bounded time T̂ , resulting in
bounds uniform in T . This can be interpreted as application of Gronwall in the
Lagrangian framework, not in the Eulerian. For future work, we plan to extend the
analysis the nonlinear convective problems, by combining the presented ideas with
the technique of [9] and [5].
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[5] V. Kučera, On diffusion-uniform error estimates for the DG method applied to singularly
perturbed problems, IMA J. Numer. Anal. 34:2 (2014), 820–861.
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[7] U. Nävert, A finite element method for convection-diffusion problems, Ph.D. thesis, Chalmers
University of Technology, 1982.

[8] W. H. Reed and T. Hill, Triangular mesh methods for the neutron transport equation, Los
Alamos Report LA-UR-73-479 (1973).

[9] Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous
Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal. 42:2 (2004), 641–
666.


