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ON ROBUSTNESS OF FLUX RECONSTRUCTIONS -
DISCONTINUOUS GALERKIN METHOD

MILOSLAV VLASÁK∗

Abstract. We deal with the numerical solution of the Poisson equation. The equation is dis-
cretized with the aid of the incomplete interior penalty discontinuous Galerkin method. Guaranteed
a posteriori upper bound based on the flux reconstruction can be derived. The main aim of this

paper is to show that the robustness of a certain simple reconstruction depends at most on p
1
2 in

one dimension, where p is the discretization polynomial degree. The theoretical results are verified
by numerical experiments.
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1. Introduction. A posteriori error estimates are important and practical tools
in numerical mathematics. They serve two main purposes in numerical discretization
of PDEs: to provide the information about the discretization error for the current
choice of discretization parameters and to provide the localization of the sources
of high errors for upcoming possible adaptive procedures. For the survey of main
a posteriori techniques for PDE discretizations see e.g. [2], [5], [9], [15], [17] and
references cited therein.

Since higher order methods and hp-adaptive techniques start to be more and
more popular, the question of robustness with respect to the discretization polynomial
degree becomes very important. On the other hand and in contrast to the number
of existing results devoted to the robustness with respect to the mesh-size, there are
not many theoretical results devoted to the robustness with respect to the polynomial
degree. A posteriori error techniques based on the local Neumann problem for hp-
adaptive discretizations are discussed e.g. in [1] and [3]. For the analysis of the
polynomial dependence of the technique based on the local residual estimators see
e.g. [12]. It shall be pointed out that the efficiency of individual estimators proved
in [12] behaves as p, where p is the underlying polynomial degree used in the finite
element method (FEM) discretization.

Important class of approaches for deriving guaranteed a posteriori upper bounds
is based on the hypercircle theorem, see [14]. The extension of these ideas to non-
conforming discretizations can be found in e.g. [16]. The quality of the resulting
error estimate depends heavily on the choice of the flux reconstruction. Among many
approaches for flux reconstructions, the local mixed finite element technique is very
popular, since it enables to reconstruct the fluxes based on local relatively cheap prob-
lems and since the resulting reconstruction is completely polynomially robust, i.e. the
resulting estimators are efficient independently of the polynomial degree. The core of
the proof of the polynomial robustness can be found in [7]. The extension of these
ideas to wide class of discretization methods can be found in [11].
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The Poisson equation discretized by the incomplete interior penalty discontinuous
Galerkin method (IIPG) is assumed in this paper. Moreover, even more simple and
cheaper reconstruction following the ideas from [10] and [16] that can be easily evalu-
ated directly, i.e. without the necessity to solve any local problems, is assumed in this
paper. The main aim of this paper is to show its practical usefulness by presenting
that the resulting local estimators efficiency depends on the polynomial degree as p

1
2

for one-dimensional problems.

2. Continuous problem. Let Ω ⊂ Rd be a bounded polyhedral domain with
a Lipschitz continuous boundary ∂Ω. We use standard notation for Lebesque and
Sobolev spaces. Moreover, we denote H(div,Ω) = {v ∈ L2(Ω)d : div v ∈ L2(Ω)}. Let
us consider the following boundary value problem: find u : Ω→ R such that

−∆u = f in Ω, (2.1)

u = 0 in ∂Ω,

where f ∈ L2(Ω).

Let us denote by (. , .) and ‖.‖ L2-scalar product and norm, respectively.

Definition 2.1. We say that the function u ∈ H1
0 (Ω) is the exact weak solution

of problem (2.1), if

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (2.2)

The existence and uniqueness of the weak solution follows from Lax-Milgram
lemma. Since f ∈ L2(Ω), it is possible to show that ∇u ∈ H(div,Ω).

3. Discrete problem.

3.1. Notation. We consider a space partition Th consisting of a finite number
of closed, d-dimensional simplices with mutually disjoint interiors and covering Ω,
i.e., Ω = ∪K∈ThK. We assume conforming properties of the mesh, i.e., neighbouring
elements share an entire edge or face. In the rest of the paper we speak only about
edges, but we mean edges or faces depending on the dimension d. We denote the
vertices of the mesh by a and edges by e and we denote the set of edges as Fh. We
set hK = diam(K) and h = maxKhK . We assume shape regularity of elements, i.e.,
hK/ρK ≤ CS for all K ∈ Th, where ρK is the radius of the largest d-dimensional ball
inscribed into K and constant CS does not depend on Th for h ∈ (0, h0). Moreover,
we assume the local quasi-uniformity of the mesh, i.e., hK ≤ CGhK′ for neigbouring
elements K and K ′, where constant CG does not depend on Th for h ∈ (0, h0) again.
For each edge e, let n = ne denote a unit normal vector to e with arbitrary but
fixed direction for the inner edges and with outer direction on ∂Ω. Moreover, for each
K ∈ Th, nK is the unit outer normal vector to K. In order to simplify the notation, we
set (. , .)M and ‖.‖M the local L2(M)-scalar products and norms, respectively, where
M ⊂ Ω is either some union of elements K ∈ Th or edges e ∈ Fh, e.g. M = K or
M = ∂K.

We define broken Sobolev space

Hs(Ω, Th) = {v ∈ L2(Ω) : v|K ∈ Hs(K),K ∈ Th}. (3.1)

For v ∈ H1(Ω, Th) we need to define one-sided values, jumps and mean values on the
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inner edge e ∈ Fh, e 6⊂ ∂Ω

vL(x) = lim
ε→0+

v(x− εn), x ∈ e, (3.2)

vR(x) = lim
ε→0+

v(x+ εn), x ∈ e,

〈v〉(x) =
vL + vR

2
, x ∈ e,

[v] (x) = vL − vR, x ∈ e.

On boundary edge e ∈ Fh, e ⊂ ∂Ω

vL(x) = 〈v〉(x) = [v](x) = lim
ε→0+

v(x− εn), x ∈ e. (3.3)

3.2. IIPG discretization. For u ∈ H2(Ω, Th), v ∈ H1(Ω, Th) we set the dis-
crete form corresponding to IIPG formulation

Ah(u, v) =
∑
K∈Th

(∇u,∇v)K −
∑
e∈Fh

(〈∇u〉 · n, [v])e +
∑
e∈Fh

(α[u], [v])e, (3.4)

where the penalty parameter α is defined by

α =
CW
h̄e

, (3.5)

where h̄e is some intermediate value between hK and hK′ for neighbouring elements
K,K ′ ∈ Th sharing edge e ∈ Fh. The detailed derivation of the form (3.4) can be
found in [8].

For v ∈ H1(Ω, Th), let us define mesh-dependent norm

|||v|||2 =
∑
K∈Th

‖∇v‖2K +
∑
e∈Fh

‖α1/2v‖2e. (3.6)

Now, we define the space of discontinuous piecewise polynomial functions

Vh = {v ∈ L2(Ω) : v|K ∈ Pp(K),K ∈ Th}, (3.7)

where the space Pp(K) denotes the space of polynomials up to the degree p ≥ 1.
Moreover, let us define space

V = H1
0 (Ω) + Vh = {v + vh : v ∈ H1

0 (Ω), vh ∈ Vh}. (3.8)

The space V provides the minimal extension of the space H1
0 (Ω) and Vh. Since the

exact solution u of problem (2.2) satisfies u ∈ H1
0 (Ω) and ∇u ∈ H(div,Ω), the form

Ah(., .) is consistent in u, i.e.

Ah(u, v) = (f, v) ∀v ∈ V. (3.9)

Lemma 3.1. Let the shape-regularity and the local quasi-uniformity of the mesh
be satisfied. Let

CW ≥ CGCM (1 + CI), (3.10)
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where CG is the constant from local quasi-uniformity, CM is the constant from trace
inequality, see e.g. [8, Lemma 2.19], and CI is the constant from inverse inequality.
Then Ah is positive definite on Vh, i.e.

Ah(vh, vh) ≥ 1

2
|||vh|||2, vh ∈ Vh. (3.11)

Proof. The proof can be found in [8].

We assume in the following text that the constant CW is chosen large enough to
satisfy (3.10).

Now we are able to define IIPG solution of problem (2.2).

Definition 3.2. We say that the function uh ∈ Vh is the approximate solution
of (2.2), if

Ah(uh, vh) = (f, vh) ∀vh ∈ Vh. (3.12)

Assuming CW satisfies (3.10), we can apply Lemma 3.1 and then the existence and
uniqueness of the approximate solution follows again from the Lax-Milgram lemma.

3.3. Mixed formulation and numerical fluxes. Since DG formulations are
more natural for first order problems, it is suitable to reformulate the original problem
(2.1) into the first order system

∇u− σ = 0 (3.13)

−divσ = f.

Following the idea from [4] we can integrate (3.13) over each individual element
K ∈ Th, apply Green’s theorem and replace values of u and σ by the so-called numer-
ical fluxes û and σ̂

(∇u,w)K + (û− u, nK · w)∂K − (σ,w)K = 0, w ∈ L2(K)d (3.14)

(σ,∇v)K − (σ̂, v)∂K = (f, v)K , v ∈ H1(K).

When we eliminate the term (σ,∇v)K from both equations and sum the equation
over all elements K ∈ Th we arive to∑

K∈Th

(∇u,∇v)K − (σ̂, v)∂K + (û− u, nK · ∇v)∂K = (f, v) v ∈ H1(Ω, Th)(3.15)

The numerical fluxes corresponding to the IIPG discretization are

û|e = 〈u〉+
1

2
[u]n · nK , e ∈ Fh, e 6⊂ ∂Ω (3.16)

û|e = [u]n · nK , e ∈ Fh, e ⊂ ∂Ω

σ̂|e = 〈∇u〉 − α[u]n, e ∈ Fh.

Then (3.15) is equivalent to consistency equation (3.9).

4. A posteriori error estimate.
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4.1. Error measure. The natural choice for the error measure for conforming
methods is the dual norm of the residual. The definition of a similar suitable error
measure is more delicate task for non-conforming methods, since the spaces, norms
and formulations may differ for the original continuous problem and for the discrete
problem.

Here, we employ the consistency of the form Ah(., .) that provides common for-
mulation for both problems and define the dual norm of residual with respect to this
(extended) formulation, cf. (3.9).

The next difficulty arises from the choice of the dual space and the choice of the
corresponding norm. The most natural way how to interpret the residual containing
Ah(., .) is to consider the residual as an element of dual space V ∗ to V , since the space
V serves as the test function space in (3.9) as well as in (3.12). But this choice could
not be used directly with the norm ‖∇.‖ on the space V , since V contains Vh and Vh
contains non-zero piece-wise constant functions that annihilate on ‖∇.‖, i.e. ‖∇.‖ is
just semi-norm on V . But the consistency (3.9) and discrete formulation (3.12) imply
the Galerkin orthogonality

Ah(u− uh, vh) = 0, ∀vh ∈ Vh. (4.1)

This leads to the idea to employ space V/Vh, i.e. the space V factorized by Vh, instead
of V . It is possible to define ‖∇.‖ as a norm on V/Vh.

Now, we can define the error measure

Err(uh) = ‖Res(uh)‖(V/Vh)∗ , (4.2)

where

‖Res(uh)‖(V/Vh)∗ = sup
v∈V/Vh

Ah(u− uh, v)

‖∇v‖
= sup
v∈V/Vh

(f, v)−Ah(uh, v)

‖∇v‖
.

Let us define s ∈ H1
0 (Ω) as H1

0 (Ω)-orthogonal projection of the approximate
solution uh, i.e.

(∇s,∇v) =
∑
K∈Th

(∇uh,∇v)K , ∀v ∈ H1
0 (Ω). (4.3)

Then it is possible to show that

Err(uh) = ‖∇u−∇s‖. (4.4)

4.2. Flux reconstruction. We define the reconstruction σh element-wise sim-
ilarly as in [10]. We seek σh|K ∈ RTNp(K), where RTNp(K) = xPp(K) + Pp(K)d is
Raviart-Thomas-Nedelec space, see e.g. [6], such that

σh|e = 〈∇u〉 − α[u]n ∀e ∈ Fh, (4.5)

(σh, wh)K = (∇uh, wh)K ∀wh ∈ Pp−1(K)d.

These conditions represent natural degrees of freedom for RTNp(K) space, see [6,
Proposition 2.3.4].

The reconstruction σh defined by (4.5) satisfies following important property

(f + divσh, vh) = 0 ∀vh ∈ Vh.

The proof can be done in the same way as in [10].
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4.3. Upper bound. Let us denote partial estimators

ηR,K = CPhK‖f + divσh‖K , (4.6)

ηF,K = ‖σh −∇uh‖K ,
where CP is the constant from Poincare inequality

‖v − (v, 1)K‖K ≤ CPhK‖∇v‖K , ∀v ∈ H1(K), (4.7)

see [13].
Now, we are able to present the upper a posteriori error estimate.
Theorem 4.1. Let uh ∈ Vh be the approximate solution obtained by (3.12) and

σh be the reconstruction obtained from uh by (4.5). Then

Err(uh)2 ≤ η2 =
∑
K∈Th

(ηR,K + ηF,K)2. (4.8)

The Proof of Theorem 4.1 follows the same idea as the proof in [10], where the main
idea follows the hyper-circle method. For the overview of a posteriori error estimates
based on the hyper-circle method see e.g. [17]. The complete proof is rather long and
technical. Therefore the proof is skipped here.

4.4. Lower bound. We limit ourselves to d = 1 in this section. It is possible
to see that the error estimator ηR,K converges one degree faster than ηF,K for piece-
wise smooth f and therefore this term is much smaller in many practical situations
and a posteriori error estimate (4.8) is usually dominated by ηF,K . The aim of this
section is to present that the local individual estimator ηF,K obtained with the aid of
reconstruction (4.5) is locally efficient and how this efficiency depends on the poly-
nomial degree p. For the purpose of the efficiency analysis we suppose a traditional
assumption that f ∈ Vh. Otherwise, classical oscillation term appears additionally in
the efficiency results.

We will use following notation in this section. We will denote by . the inequality
up to some generic constant that is independent of solutions u and uh, local mesh sizes
hK and polynomial degree p. We will denote by ωK a patch consisting of elements
sharing at least a vertex with element K. Moreover, we define local version of the
error measure Err(uh)

ErrωK
(uh) = sup

v∈V/Vh
supp(v)⊂ωK

(f, v)−Ah(uh, v)

‖v′‖
,

where v′ denotes the derivative of v.
Now we are ready to present the local efficiency result.
Theorem 4.2. Let f ∈ Vh. Let uh ∈ Vh be the approximate solution obtained by

(3.12) and let σh be the reconstruction obtained from uh by (4.5). Then

ηF,K . p
1
2 ErrωK

(uh). (4.9)

The proof of Theorem 4.2 is very long and very technical. Therefore the proof is
skipped here and will be published in forthcoming papers.

Global efficiency estimate is a direct consequence of Theorem 4.2.
Theorem 4.3. Let f ∈ Vh. Let uh ∈ Vh be the approximate solution obtained by

(3.12) and let σh be the reconstruction obtained from uh by (4.5). Then

η2 =
∑
K∈Th

(ηR,K + ηF,K)2 . pErr(uh)2. (4.10)
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5. Numerical experiments. Let us show that the estimate from Theorem 4.1
is reliable and efficient for d = 1.

5.1. Problem setting and error measure. The computation of the individual
a posteriori error estimators can be made directly according to (4.6). On the other
hand, the computation of the error measures Err(uh) or ErrωK

(uh) is difficult even if
the exact solution is known, since these error measures are defined as suprema over
infinite dimensional spaces. Following (4.4) we approximate these error measures by
computing these suprema over finite-dimensional FEM space V +

h ⊂ H1
0 (Ω) with four

times denser mesh than the mesh for Vh and polynomial degree p + 2 instead of p.
We construct spaces V +

h,M as subspaces of V +
h containing functions with supports

restricted to M ⊂ Ω. We compute the approximation of the Riesz representative of
residual z ∈ V +

h satisfying

(∇z,∇vh) = 〈Res(uh), vh〉 = (f, vh)−Ah(uh, vh) ∀vh ∈ V +
h . (5.1)

Then Err(uh) ≈ Err+h (uh) = ‖∇z‖. The localized versions ErrM (uh) are approxi-
mated analogically with the aid of V +

h,M instead of V +
h .

Let us denote global estimators

η2R =
∑
K∈Th

η2R,K , η2F =
∑
K∈Th

η2F,K , (5.2)

approximate effectivity indices

Eff =
η

Err+h (uh)
, EffR =

ηR

Err+h (uh)
, EffF =

ηF

Err+h (uh)
(5.3)

and its local counterparts for element K ∈ Th

EffR,K =
ηR,K

Err+h,ωK
(uh)

, EffF,K =
ηF,K

Err+h,ωK
(uh)

. (5.4)

We restrict ourselves to d = 1, Ω = (0, 1) and f = ex.

5.2. Global efficiency. We test the error estimate (4.8) with respect to the
mesh refinement. The polynomial degree is set as p = 3. We assume a sequence of
successively refined equidistant meshes started with h = 1/10 and halved in each step.

1/h Err+h (uh) η Eff ηR EffR ηF EffF
10 5.5844− 6 5.6271− 6 1.01 1.1269− 9 0.00 5.6260− 6 1.01
20 7.0084− 7 7.0362− 7 1.00 3.5235− 11 0.00 7.0358− 7 1.00
40 8.7782− 8 8.7959− 7 1.00 1.1020− 12 0.00 8.7958− 8 1.00
80 1.0984− 8 1.0995− 8 1.00 9.4526− 14 0.00 1.0995− 8 1.00
160 1.3737− 9 1.3745− 9 1.00 1.7090− 13 0.00 1.3744− 9 1.00
320 1.7206− 10 1.7206− 10 1.00 3.2426− 13 0.00 1.7180− 10 1.00

Table 5.1
Global h-performance, p = 3

We also test the error estimate (4.8) with respect to the changing polynomial
degree p. We assume equidistant mesh with h = 1/10 and p = 1, . . . , 7.
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p Err+h (uh) η Eff ηR EffR ηF EffF
1 5.0865− 2 5.1600− 2 1.01 2.1169− 5 0.00 5.1578− 2 1.01
2 6.1459− 4 6.6591− 4 1.08 1.7890− 7 0.00 6.6573− 4 1.08
3 5.5844− 6 5.6271− 6 1.01 1.1269− 9 0.00 5.6260− 6 1.01
4 3.2762− 8 3.5444− 8 1.08 5.6630− 12 0.00 3.5439− 8 1.08
5 1.7734− 10 1.7813− 10 1.00 6.4088− 14 0.00 1.7808− 10 1.00
6 8.0068− 13 8.7070− 13 1.09 1.4471− 13 0.18 7.4584− 13 0.93

Table 5.2
Global p-performance, h = 1/10

We can see from Table 5.1 that the effectivity indices are tending to one for
decreasing h. We observe from Table 5.2 that two regimes for odd and even polynomial
degrees appear. For both regimes the effectivity indices stagnate with increasing p.
Moreover, we can see that ηR converges faster to zero than other terms as expected,
since this term is equivalent to L2(Ω) orthogonal projection error of function f , cf.
(4.6).

5.3. Local efficiency. We test the robustness of efficiency estimates (4.9) with
respect to decreasing h. The polynomial degree is set as p = 3. We assume a sequence
of successively refined equidistant meshes started with h = 1/10 and halved in each
step. For each mesh we take element K = [0.4, 0.4 + h] and we investigate local
efficiency on this element.

1/h Err+h,ωK
(uh) ηR,K EffR,K ηF,K EffF,K

10 2.7482− 6 3.1326− 10 0.00 1.5624− 6 0.57
20 2.3299− 7 6.7506− 12 0.00 1.3467− 7 0.58
40 2.0327− 8 1.4741− 13 0.00 1.1755− 8 0.58
80 1.7886− 9 1.8961− 14 0.00 1.0325− 9 0.58
160 1.5761− 10 2.5994− 14 0.00 9.0973− 11 0.58
320 1.3898− 11 1.1566− 14 0.00 8.0288− 12 0.58

Table 5.3
Local h-performance, p = 3, K = [0.4, 0.4 + h]

We also test the robustness of efficiency estimates (4.9) with respect to the chang-
ing polynomial degree p. We assume equidistant mesh with h = 1/10 and p = 1, . . . , 7.
Similarly as in the previous tests, we take K = [0.4, 0.5] and we investigate local effi-
ciency on this element.

We can see that the effectivity indices in Table 5.3 are uniformly bounded for
decreasing h. We can observe again in Table 5.4 two regimes for odd and even poly-
nomial degrees, but the effectivity indices stagnate with increasing p. Again, the term
ηR,K converges faster to zero than other terms as expected.
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