
Proceedings of ALGORITMY 2020
pp. 191–200

NUMERICAL SOLUTION OF THE 1D VISCOUS BURGERS’ AND
TRAFFIC FLOW EQUATIONS BY THE

INFLOW-IMPLICIT/OUTFLOW-EXPLICIT FINITE VOLUME
METHOD ∗

GERGŐ IBOLYA AND KAROL MIKULA†

Abstract. In this article we solve numerically the one-dimensional viscous Burgers’ equation
by the inflow-implicit/outflow-explicit method. The method is based on finite volume space dis-
cretization and a semi-implicit discretization in time. Inflows to the cells are treated implicitly and
outflows explicitly. Comparisons of numerical solutions with the exact ones are presented. As a
physical interpretation of the Burgers’ equation we chose a simple continuum traffic flow model.
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1. Introduction. Let us consider the one dimensional viscous Burgers’ equation

ut + uux = σuxx(1.1)

where σ ≥ 0 is the diffusion coefficient (or kinematic viscosity in a fluid dynamics
context). It captures some key features of the equations of fluid dynamics: nonlinear
advection, arising from the advective acceleration term in the conservation of linear
momentum equation, and viscosity [1]. Another interesting interpretation of the equa-
tion (1.1) arises from simple traffic flow models, as discussed later. The equation can
be solved analytically by transforming it to the linear heat equation, known as the
Cole-Hopf transformation [2, 9]. This fact allows us to compare numerical solutions
with the exact solution. By studying the behaviour of its numerical solutions, we can
predict the performance of a particular numerical scheme on the more complicated
equations of fluid dynamics.

In this paper we apply the inflow-implicit/outflow-explicit (IIOE) scheme to the
nonlinear advection term of equation (1.1). The method is based on finite volume
space discretization and a semi-implicit discretization in time. Inflows to the cells
are treated implicitly and outflows are treated explicitly. We could explain this idea
intuitively that we know what is flowing out from a cell at a given time but leave
the method to resolve a system of equations determined by the inflows to obtain the
solution values at the new time step. The IIOE scheme is formally second order
accurate in space and time for 1D advection problems with variable velocity [5].
Combining with the Crank-Nicolson scheme for the diffusion term, we get a new
numerical scheme for the nonlinear advection-diffusion problem (1.1) considered in
this article.

1.1. Traffic flow. In order to show how the viscous Burgers’ equation (1.1)
appears in modelling the flow of cars on a one-lane highway, we begin with the con-
servation law in differential form

∗This work was supported by grants APVV-19-0460, VEGA 1/0709/19 and VEGA 1/0436/20.
†Department of Mathematics, Faculty of Civil Engineering, Slovak University of Technology,

Radlinskeho 11, 81368 Bratislava, Slovakia (gergo.ibolya@stuba.sk, karol.mikula@stuba.sk).

191
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ρt + fx = 0,(1.2)

where ρ is the density and f = f(ρ) is the flux of cars. In our case equation (1.2)
represents the conservation of cars. An interesting question is how the flux is related
to the density. It is reasonable to expect that a driver in a traffic slows down if the
cars are getting closer to each other. In other words, the speed of a car decreases
as the density increases. This model was first suggested by Lighthill, Whitham [7]
and Richards [8]. One simple example is if we assume that the speed is a linearly
decreasing function of the density. This assumption leads to a nonlinear flux function

f(ρ) = ρVmax (1− ρ) , 0 ≤ ρ ≤ 1

where Vmax is the speed on an empty road. The density is measured in units of cars
per car length, for simplicity assuming that every car has the same length. Then
ρ = 1 and ρ = 0 represents bumper to bumper traffic and empty road respectively. A
way to improve this model, as stated in [7, 9], is to assume that the flux also depends
on the density gradient. If the traffic is getting denser more rapidly the drivers are
reducing their speed more. Applying this yields a modified flux function

f(ρ, ρx) = ρVmax (1− ρ)− σρx,(1.3)

where σ is a positive constant. Substituting (1.3) to (1.2) and putting the term with
a minus sign on the right-hand side we get

ρt + u(ρ)ρx = σρxx,(1.4)

where we denoted

u(ρ) = Vmax (1− 2ρ) .(1.5)

Multiplying both sides by u′(ρ) we obtain

u′(ρ)ρt + u′(ρ)u(ρ)ρx = u′(ρ)σρxx,

which can be rewritten as

ut + uux = σuxx − σu′′(ρ)ρ2x.

Since u′′(ρ) = 0 we end up with the viscous Burgers’ equation (1.1). By solving (1.1)
and using the relationship (1.5) we easily obtain a relation for the density

ρ(u) =
1

2

(
1− u

Vmax

)
.(1.6)

The model discussed above is a simple continuum model of the traffic. Obviously
it isn’t the most accurate mathematical description of the interactions between cars.
However, despite its deficiencies, it gives us valuable insight into how cars are behaving
in a traffic. For further discussions of how the Burgers’ equation appears in traffic
flow models see [9].
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2. Numerical scheme. For reader convenience we present here the derivation
of the IIOE scheme [3, 4, 5] for the equation

ut + vux = 0,(2.1)

where v = v(x). We rewrite (2.1) in the equivalent form

ut + (vu)x − uvx = 0,(2.2)

and integrating over a grid cell pi with cell center xi, length h, left border xi− 1
2
, right

border xi+ 1
2

yields ∫
pi

ut dx+

∫
pi

(vu)x dx−
∫
pi

uvx dx = 0

Let us denote vi = v(xi), vi− 1
2

= v(xi− 1
2
), vi+ 1

2
= v(xi+ 1

2
). Let us denote by

uni a constant value of the solution inside the i-th finite volume cell at time step n
computed by the numerical scheme. We use a constant representation of the solution
inside a cell pi denoted by ūi and constant representative values at the cell interfaces
denoted by ūi− 1

2
, ūi+ 1

2
respectively. Using the Newton-Leibniz formula we obtain∫

pi

ut dx+ vi+ 1
2
ūi+ 1

2
− vi− 1

2
ūi− 1

2
− ūi(vi+ 1

2
− vi− 1

2
) = 0.

By rearranging terms we get∫
pi

ut dx+ vi− 1
2
(ūi − ūi− 1

2
) + (−vi+ 1

2
)(ūi − ūi+ 1

2
) = 0.

vi− 1
2
> 0 represents inflow from the left cell interface, while (−vi+ 1

2
) > 0 represents

inflow from the right cell interface. Otherwise they represent outflows. Thus we define

aini− 1
2

= max(vi− 1
2
, 0), aouti− 1

2
= min(vi− 1

2
, 0),

aini+ 1
2

= max(−vi+ 1
2
, 0), aouti+ 1

2
= min(−vi+ 1

2
, 0).

We use a simple forward finite difference approximation for the time derivative
un
i −u

n−1
i

τ , where τ is a uniform time step, take inflow implicitly, outflow explicitly
and use the straightforward reconstructions ūni = uni , ūn

i− 1
2

= 1
2 (uni + uni−1), ūn

i+ 1
2

=
1
2 (uni + uni+1), we obtain the basic one-dimensional IIOE scheme for variable velocity:

uni +
τ

2h
aini− 1

2

(
uni − uni−1

)
+

τ

2h
aini+ 1

2

(
uni − uni+1

)
=(2.3)

un−1i − τ

2h

(
aouti− 1

2

(
un−1i − un−1i−1

)
+ aouti+ 1

2

(
un−1i − un−1i+1

))
.

For the advective part of (1.1) we use the same derivation as for the 1D variable
velocity case but considering the time dependent velocities in the k-th iteration

vn,k
i− 1

2

= (un,k−1i + un,k−1i−1 )/2, vn,k
i+ 1

2

= (un,k−1i + un,k−1i+1 )/2, k = 1, 2, 3, ....

and un,0i = un−1i . When solving the traffic flow problem (1.4), instead of uni we
calculate ρni . Using the same reconstructions as for uni , cancelling common factors,
the time dependent velocities according to (1.5) in the k-th iteration become

vn,k
i− 1

2

= Vmax

(
1 + (ρn,k−1i + ρn,k−1i−1 )

)
, vn,k

i+ 1
2

= Vmax

(
1 + (ρn,k−1i + ρn,k−1i+1 )

)
.
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In both cases we consider the time dependent splitting to inflows and outflows

ain,n,k
i− 1

2

= max(vn,k
i− 1

2

, 0), aout,n
i− 1

2

= min(vn,1
i− 1

2

, 0),

ain,n,k
i+ 1

2

= max(−vn,k
i+ 1

2

, 0), aout,n
i+ 1

2

= min(−vn,1
i+ 1

2

, 0).

In order to keep second order accuracy of the IIOE scheme, the diffusion part is treated
by the Crank-Nicolson approach, and we end up with the following (nonlinear) system

uni +
τ

2h

(
ain,n,k
i− 1

2

+
σ

h

) (
uni − uni−1

)
+

τ

2h

(
ain,n,k
i+ 1

2

+
σ

h

) (
uni − uni+1

)
=(2.4)

un−1i − τ

2h

((
aout,n−1
i− 1

2

+
σ

h

) (
un−1i − un−1i−1

)
+
(
aout,n−1
i+ 1

2

+
σ

h

) (
un−1i − un−1i+1

))
.

This system is solved iteratively updating ain,n,k
i− 1

2

and ain,n,k
i+ 1

2

using subsequent values

of the iterative solution, starting iterations by un−1. In every iteration, we calculate
the residuum defined as

||A(un,k)un,k −Bun−1||
N

,

where A(un,k) and B are coefficient matrices obtained by writing the nonlinear system
(2.4) using matrix notation and N is the number of unknowns. While solving the
Burgers’ equation (1.1), the calculation is stopped when the residuum in solving the
nonlinear system (2.4) drops below 10−6. To achieve the desired accuracy while
solving the traffic flow problem (1.4), we stop the calculation when the residuum
drops below 10−7. It means that we have to solve few times (usually from 3 to 6) a
tridiagonal system in every time step of the IIOE scheme in case of nonlinear advection
problems. The tridiagonal system is solved using the Thomas’ algorithm.

3. Numerical experiments. In order to test the numerical scheme (2.4), we
chose 4 representative solutions of the Burgers’ equation (3.6): the traveling-wave so-
lution, the rarefaction-wave solution, the triangular-wave solution and a trigonometric
solution. The traveling-wave solution was first used to test the numerical scheme (2.4)
in [3]. Comparisons of the numerical solutions obtained by the IIOE scheme (2.4) with
the other three exact solutions are presented here for the first time. These solutions
were obtained using the Cole-Hopf transformation, for details see [2]. We present a
traveling and rarefaction-wave solution also in the context of traffic flow.

3.1. Traveling wave. First we test the numerical scheme (2.4) on the exact
traveling-wave solution

u(x, t) = ur +
1

2
(ul − ur)

(
1− tanh

(
(ul − ur)(x− st)

4σ

))
,(3.1)

where ul > ur, s = (ul + ur)/2. First we solve the problem (1.1) by the scheme (2.4)
on space interval (-0.5, 0.5) and in time interval (0, 0.48) with σ = 0.01. In this test
example we chose a time step τ = 4h. It means that for h = 0.01(n = 100) we use a
time step τ = 0.04. Then one can refine the time step and grid size in order to check
that the scheme is second order accurate, cf. Table 3.1. The visual comparisons of
the numerical and exact solutions for n = 100 are presented in Figure 3.1.

If we calculate the inflow coefficients using the values of the solution from the
previous time step (number of nonlinear iterations = 1), we get EOC = 1, as it is
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documented in Table 3.2. In Figure 3.2 we can observe that the propagation speed of
the numerical solution differs from the exact speed. By refining the grid, the speed
gets closer to the exact one.

In the second case we decreased the viscosity ten times and use σ = 0.001. In
Table 3.3 we show errors and EOC for refined and coarsened grids and time step.
One can again see that EOC=2 also in this example when refining the grid. The
lower convergence rate in the beginning is caused by oscillations when the grid size is
not sufficiently fine, but as we can see from Figure 3.3 these oscillations are ”stable”,
they do not increase in time and by refining the spatial resolution they are removed
completely as documented in Figure 3.4.

As discussed earlier, by making certain assumptions about the flux function, we
can transform the solution (3.1) to obtain a solution for the density of the cars in the
traffic flow problem (1.4). In the context of traffic flow, a traveling wave is formed
as cars are stopping one after the other at the red light. We show this on a simple
model example, where the traffic light turns red at position 0.0 and the cars coming
from the left are successively stopping behind the car before them. The density of
the incoming traffic was chosen to be 0.1, which means that there is one car per 10
times car length. Where the cars are staying, the density is 1, which means bumper
to bumper traffic. The exact solution for the density was obtained as follows: we
start by choosing ρl = 0.1 and ρr = 1, the correspondig values ul = 0.8 and ur = −1
were calculated according to (1.5). Then using the relationship (1.6) we obtain the
solution for the density. The traffic flow problem (1.4) was solved numerically using
the IIOE scheme (2.4). The errors are documented in Table 3.4. The solution for the
red light problem using σ = 0.01, Vmax = 1 is presented in Figure 3.5.

Table 3.1
Report on the L2 errors of IIOE method for the traveling-wave solution (3.1) of the viscous

Burgers’ equation (1.1) with σ = 0.01.

n h τ NTS L2(I, L2) EOC

100 0.01 0.04 12 5.0 10−3

200 0.005 0.02 24 1.22 10−3 2.03
400 0.0025 0.01 48 3.03 10−4 2.01
800 0.00125 0.005 96 7.74 10−5 1.97
1600 0.000625 0.025 192 1.90 10−5 2.02
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Fig. 3.1. Comparing the IIOE scheme with the exact traveling-wave solution (3.1) in time
t = 0.24 (left) and t = 0.48 (right), with σ = 0.01, n = 100, τ = 4h
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Table 3.2
Report on the L2 errors of IIOE method for the traveling-wave solution (3.1) of the viscous

Burgers’ equation (1.1) with σ = 0.01, number of nonlinear iterations = 1.

n h τ NTS L2(I, L2) EOC

100 0.01 0.04 12 4.41 10−2

200 0.005 0.02 24 2.32 10−2 0.93
400 0.0025 0.01 48 1.18 10−2 0.97
800 0.00125 0.005 96 5.96 10−3 0.99
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Fig. 3.2. Comparing the IIOE scheme with the exact traveling-wave solution (3.1) in time
t = 0.48, with σ = 0.01, n = 100(left), n = 400(right), τ = 4h, number of nonlinear iterations = 1.
We can see that after refining the grid, the propagation speed of the numerical solution is getting
closer to the exact speed.

Table 3.3
Report on the L2 errors of IIOE method for the traveling-wave solution (3.1) of the viscous

Burgers’ equation (1.1) with σ = 0.001.

n h τ NTS L2(I, L2) EOC

250 0.004 0.016 30 2.01 10−2

500 0.002 0.08 60 6.84 10−3 1.55
1000 0.001 0.04 120 1.79 10−3 1.94
2000 0.0005 0.02 240 4.55 10−4 1.97
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Fig. 3.3. Comparing the IIOE scheme with the exact traveling-wave solution (3.1) in time
t = 0.24 (left) and t = 0.48 (right), with σ = 0.001, n = 500, τ = 4h. We can observe small
nonincreasingly propagating oscillations.

3.2. Rarefaction wave. Our next example is the exact rarefaction wave solu-
tion

u(x, t) = ul +
ur − ul

1 + e(ur−rl)(x−st)/2σerfc
(
x−ult
2
√
σt

)/
erfc

(
urt−x
2
√
σt

) ,(3.2)
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Fig. 3.4. Comparing the IIOE scheme with the exact traveling-wave solution (3.1) in time
t = 0.24 (left) and t = 0.48 (right), with σ = 0.001, n = 1000, τ = 4h. On the refined grid the
oscillations are gone.

Table 3.4
Report on the L2 errors of IIOE method for the traffic flow problem (1.4) with σ = 0.01.

n h τ NTS L2(I, L2) EOC

100 0.01 0.04 12 9.82 10−4

200 0.005 0.02 24 2.36 10−4 2.05
400 0.0025 0.01 48 5.94 10−5 1.99
800 0.00125 0.005 96 1.53 10−5 1.96
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Fig. 3.5. Solution for the red light problem. At t = 0 the light turns red at position 0.0 and
the incoming cars from left are stopping one after the other. At time t = 0 the exact solution of
the traffic flow problem (1.4) for the density(right) with σ = 0.01 is plotted. It was obtained by
transforming the traveling-wave solution (3.1) of the Burgers’ equation (1.1)(left) using (1.6). In
our case, ρl = 0.1, ρr = 1. The corresponding values for the traveling-wave solution (3.1) calculated
using (1.5) are ul = 0.8, ur = −1. The results of the numerical solution (red) for the Burgers’
equation (1.1) (left) and the density(right) by the IIOE scheme are shown at time t = 0.48.

where ul < ur, s = (ul + ur)/2. First, equation (1.1) is solved by the scheme (2.4)
on space interval (-0.5, 0.5) and time interval (0.01, 0.41) with σ = 0.01. Since the
exact solution (3.2) is defined for t > 0, we decided to initialize the calculation at time
0.01. The time step τ was chosen to be equal to 4h again. The numerical solution
is visually compared to the exact solution in Figure 3.6. The errors are presented in
Table 3.5.

This solution also has an interesting interpretation in a context of traffic flow.
Imagine that the road is divided into two parts by the traffic light positioned at
0.0. At the beginning the density on the left part equals to 1 and there is an empty
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road on the right. At time t = 0 the light turns green at position 0.0 and cars are
accelerating smoothly, the traffic rarifies. The exact solution for the density in (1.4)
was obtained the same way as in our previous example. First, considering the values
ρl = 1, ρr = 0 we calculate the corresponding values ul = −1, ur = 1 according to
(1.5). Then substituting the exact solution (3.2) to (1.6) we get the density function.
The numerical solution for the density by the IIOE scheme (2.4) is presented for
σ = 0.001, Vmax = 1 in Figure 3.7.

Table 3.5
Report on the L2 errors of IIOE method for the rarefaction-wave solution (3.2) of the viscous

Burgers’ equation (1.1) with σ = 0.01.

n h τ NTS L2(I, L2) EOC

100 0.01 0.04 10 5.48 10−3

200 0.005 0.02 20 1.56 10−3 1.82
400 0.0025 0.01 40 4.01 10−4 1.96
800 0.00125 0.005 80 1.00 10−4 2.00
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Fig. 3.6. Comparing the IIOE scheme with the exact rarefaction-wave solution (3.2) in time
t = 0.17 (left) and t = 0.41 (right), with σ = 0.01, n = 100, τ = 4h
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Fig. 3.7. Solution for the green light problem. At t = 0 the light turns green at position 0.0
and cars are accelerating smoothly from left to right. At time t = 0.01(when the calculation was
initialized) the exact solution of the traffic flow problem (1.4) for the density(right) with σ = 0.01
is plotted. It was obtained by transforming the rarefaction-wave solution (3.2) (left) of the Burgers’
equation (1.1) using (1.6). In this problem, ρl = 1, ρr = 0. The corresponding values for the
rarefaction-wave solution (3.2) calculated using (1.5) are ul = −1, ur = 1. The results of the
numerical solution for the Burgers’ equation (1.1) (left) the density (right) by the IIOE scheme(red)
is shown at time t = 0.37.
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3.3. Triangular wave. Another interesting example is the triangular-wave so-
lution

u(x, t) = 2

√
σ

πt

e−x
2/4σt

coth
(

1
4σ

)
− erf

(
x

2
√
σt

) .(3.3)

In this case the problem (1.1) is solved by the scheme (2.4) on space interval (-0.5,
1.5) and time interval (0.01, 0.51) with σ = 0.01. Again, as in the previous case of
the rarefaction wave solution (3.2), the exact solution (3.3) is defined for t > 0 so the
numerical calculation was initialized at time 0.01. In Table 3.6 we show the errors for
refined grids and time step. When the grid size is not sufficiently fine, we can observe
oscillations at the peak of the wave. These oscillations do not grow unboundedly and
can be removed by refining the grid as it is shown in Figure 3.8.

Table 3.6
Report on the L2 errors of IIOE method for the triangular-wave solution (3.3) of the viscous

Burgers’ equation (1.1) with σ = 0.02.

n h τ NTS L2(I, L2) EOC

100 0.02 0.08 5 3.07 10−1

200 0.01 0.04 10 1.30 10−1 1.24
400 0.005 0.02 20 3.72 10−2 1.81
800 0.0025 0.01 40 9.02 10−3 2.04
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Fig. 3.8. Comparing the IIOE scheme with the exact triangular wave solution (3.3) in time
t = 0.26 (left), t = 0.50 (right) for n = 800 whith σ = 0.02, τ = 4h.

3.4. Trigonometric solution. Our last example is the trigonometric solution

u(x, t) =
2σbπ sinπx

aeσπ2t + b cosπx
,(3.4)

where a and b are constants, a > b. The errors are reported in Table 3.7. A visual
comparison of the numerical results with the exact solution is presented in Figure 3.9.

4. Conclusions. In this article, the numerical solution of the viscous Burgers’
equation (1.1) and the traffic flow problem (1.4) by the IIOE scheme (2.4) was pre-
sented. Numerical experiments were performed on uniform grids and have shown the
second order convergence of the presented IIOE method.
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Table 3.7
Report on the L2 errors of IIOE method for the trigonometric solution (3.4) of the viscous

Burgers’ equation (1.1) with σ = 0.01.

n h τ NTS L2(I, L2) EOC

100 0.02 0.08 15 1.66 10−2

200 0.01 0.04 30 3.18 10−3 2.38
400 0.005 0.02 60 5.30 10−4 2.58
800 0.0025 0.01 120 1.00 10−4 2.41
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Fig. 3.9. Comparing the IIOE scheme with the exact trigonometric solution (3.4) in time
t = 0.08 (left) and t = 0.96 (right) for n = 100, with σ = 0.01, b = 1, a = 1.0025, τ = 4h.
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