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DYNAMIC CORRELATION IN A CONVERGENCE MODEL OF
INTEREST RATES∗

BEÁTA STEHLÍKOVÁ† AND ZUZANA BUČKOVÁ‡

Abstract. Short rate models are formulated in terms of stochastic differential equations govern-
ing the instantaneous interest rate, so called short rate. The bond prices, as well as other derivatives,
are then given as a solution to a parabolic partial differential equation with a terminal condition equal
to the payoff of the derivative. Convergence models are used to model a situation where a country is
going to enter a monetary union and its short rate is affected by the short rate in the monetary union.
In addition, Wiener processes which model random shocks in the behaviours of the short rates can be
correlated. In this paper we consider a dynamic correlation (i.e., the correlation is a given function
of time) in a convergence model with volatilities proportional to powers of the respective short rates.
Firstly, we consider a special case with constant volatilities which is analytically tractable. Based on
observations made in this case, we propose an approximate analytical solution for the bond prices in
the general model and derive order of its accuracy.
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1. Introduction. Short rate models of interest rates are formulated in terms of
a stochastic differential equation (one factors models) or a system of them (multifactor
models) which govern the behaviour of the instantaneous interest rate, so called short
rate. The derivatives of the short rate, i.e. financial securities, which depend on
the short rate are then priced by a parabolic partial differential equation, whose
terminal condition is the payoff of the derivative. A simple interest rate derivative is
a discount bond, which pays a unit of currency at the specified time, called maturity
of the bond. Bond prices are used only in the construction of yield curve and are
necessary in discounting any future cash flows. Therefore it is important to be able
to compute bond prices in various short rate models which has been proposed. The
reader can find an overview of short rate models in [1] or [6].

In this paper we deal with convergence models of interest rates. These models
capture the situation when a country is going to join a monetary union and its do-
mestic short rate is affected by the short rate in the monetary union. Furthermore,
the Wiener processes which model random fluctuations and shocks can be correlated
which adds another form of relation between the interest rates in the given country
and the monetary union.

A dynamic correlation in financial markets has been studied example in [8] (the
correlation of Wiener processes refers to the stochastic differential equations for a
stock price and an exchange rate) and [9] (the stochastic differential equations describe
stock price and volatility; the model generalizes the Heston model). It is meaningful
also in the context of convergence models of interest rates. In the pioneering paper
suggesting a convergence model of interest rates [4], the estimated correlation is higher
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202 B. STEHLÍKOVÁ AND Z. BUČKOVÁ

when more recent data were used (i.e., data closer to entering the monetary union).
This suggests that the correlation is not constant, but it changes in time, and we try
to model it by a dynamic correlation approach. Furthermore, we extend the model
from [4] by considering more general volatilities based on [2] and [11]. Except for
special cases, a closed-form solution for the bond pricing partial differential equations
are not available and we approximate them using analytical approximation formulae,
for which we derive their order of accuracy.

The paper is organized as follows: In Section 2 we introduce convergence models
and incorporate a dynamic correlation into them. In Section 3 we consider a so called
Vasicek-type model and simplify the expression for the bond price by a formula which
simplifies the computation; in contrast to the exact solution, it does not require an
integration and is written in a closed form. Firstly we consider a particular choice of
the correlation function when we are able to compute also the exact solution explicitly
and we use it for a numerical experiment. Afterwards, we derive the order of accuracy
in the general case. In Section 4 we propose an approximation formula for the bond
price in the model with general form of volatilities. Finally, we conclude the paper
with remarks in Section 5.

2. Convergence models of interest rates. The first convergence model of
interest rates based on short rates has been suggested by Corzo and Schwartz in [4],
where the domestic short rate rd and the European short rate re evolve according to
the following stochastic differential equations:

drd = (a+ b(re − rd))dt+ σddw1,(2.1)

dre = c(d− re)dt+ σedw2,(2.2)

where b, c, σd, σe > 0 and a, d ∈ R are constants. Here, w1, w2 are Wiener processes
and the correlation between their increments dw1 and dw2 is a constant ρ ∈ (−1, 1).
The European short rate is modelled by a mean-revering process with a long term
limit d and speed of convergence given by c. The domestic short rate reverts to the
European short rate with a speed determined by b and a possible minor divergence
a. The volatilities σd and σe are constant. Furthermore, the so called market prices
of risk λd and λe considered in [4] are constant. Here, as well as in all subsequent
computations, the unit of time is a year. We remark that although that the model has
been proposed to model entering the eurozone, it makes sense also to model interest
rates in a country which are affected by interest rates in an another country in a
similar way.

This model uses the classical Vasicek [10] one-factor model for the European
interest rate which has a closed form solution for the bond price. The price P (rd, re, τ)
of a domestic bond with maturity at time T (which is a parameter here) has the form

P (rd, re, τ) = eA(τ)−D(τ)rd−E(τ)re ,(2.3)

where the functions A(τ), D(τ), E(τ) are solutions to a system of ordinary differential
equations and can be expressed in a closed form, see [4]. A modification, where the
European short rate follows the model by Cox, Ingersoll and Ross (CIR hereafer) [5]
has been outlined in [4] and a generalization, nesting both previous case, based on
the model [2] (CKLS hereafter), has been studied in [11]. In this case, the system of
stochastic differential equation in the risk-neutral measure can be written as

drd = (a1 + a2rd + a3re)dt+ σdr
γd
d dwd,(2.4)

dre = (b1 + b2re)dt+ σer
γe
e dwe,(2.5)
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with a constant correlation cor(dwd, dwe) = ρ. We note that the Vasicek-type model
corresponds to γd = γe = 0 and CIR-type model corresponds to γd = γe = 1/2. The
partial differential equation for the domestic bond price P = P (τ, rd, re) reads as

−∂P
∂τ

+ (a1 + a2rd + a3re)
∂P

∂rd
+ (b1 + b2re)

∂P

∂re
+

1

2
σ2
dr

2γd
d

∂2P

∂r2d

+
1

2
σ2
er

2γe
e

∂2P

∂r2e
+ ρσdr

γd
d σer

γe
e

∂2P

∂rd∂re
− rdP = 0(2.6)

for rd, re > 0 and time remaining to maturity τ ∈ (0, T ) with terminal condition
P (rd, re, 0) = 1 for all rd, re > 0. With an exception of the Vasicek-type model and
the CIR-type model with zero correlation, the solution does not have a separable form
of the form (2.3). In [11], an approximation formula was proposed, for which the error
of the logarithms of the bond price has the order O(τ4) as τ → 0+.

In this paper we incorporate a dynamic correlation into the CKLS type model,
i.e, the correlation between the Wiener process increments dwd and dwe in (2.4) and
(2.5) is a function ρ(t), a deterministic function of time. In this case, the constant ρ
in (2.6) changes to ρ(T − τ), i.e., the partial differential equation for the bond price
becomes

−∂P
∂τ

+ (a1 + a2rd + a3re)
∂P

∂rd
+ (b1 + b2re)

∂P

∂re
+

1

2
σ2
dr

2γd
d

∂2P

∂r2d

+
1

2
σ2
er

2γe
e

∂2P

∂r2e
+ ρ(T − τ)σdr

γd
d σer

γe
e

∂2P

∂rd∂re
− rdP = 0(2.7)

for rd, re > 0 and time remaining to maturity τ ∈ (0, T ) with terminal condition
P (rd, re, 0) = 1 for all rd, re > 0. We note that in the Vasicek-case the range for rd, re
is the whole R.

3. Dynamic correlation in Vasicek-type convergence models of interest
rates. In this case, the european bond price Pe(re, t, T ) with maturity T at time t
when the European short rate equals re, is given by classical Vasicek formula (see
[10]). The price Pd(rd, re, t, T ) of a domestic bond with maturity at time T (which is
a parameter here) is a solution to the partial differential equation

∂Pd
∂t

+ (a1 + a2rd + a3re)
∂Pd
∂rd

+ (b1 + b2re)
∂Pd
∂re

+
1

2
σ2
d

∂2Pd
∂r2d

+
1

2
σ2
e

∂2Pd
∂r2e

+ρσdσe
∂2Pd
∂rd∂re

− rdPd = 0

for rd, re ∈ R and t ∈ (0, T ) with terminal condition P (rd, re, T, T ) for all rd, re ∈ R.
After the substitution τ = T − t, i.e. considering time remaining to maturity of the
bond, has the form

Pd(rd, re, τ) = A(τ)e−D(τ)rd−E(τ)re

where the functions A(τ), D(τ), E(τ) are solutions to a system of ordinary differential
equations (cf. [4] in a different parametrization for a constant ρ)

Ḋ(τ) = 1 + a2D(τ)(3.1)

Ė(τ) = a3D(τ) + b2E(τ)(3.2)

Ȧ(τ) = −a1D(τ)− b1E(τ) +
1

2
σ2
dD

2(τ) +
1

2
σ2
eE

2(τ)

+ρ(T − τ)σdσeD(τ)E(τ)(3.3)
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with initial conditions A(0) = 1, D(0) = 0, E(0) = 0. In the generic case a2 6=
b2, a2, b2 6= 0 the expicit solution is given by

D(τ) =
−1 + ea2τ

a2
(3.4)

E(τ) =
a3(a2 − a2eb2τ + b2(−1 + ea2τ ))

a2(a2 − b2)b2
(3.5)

A(τ) =

∫ τ

0

−a1D(s)− b2E(s) +
1

2
σ2
dD

2(s) +
1

2
σ2
eE

2(s)

+ρ(T − s)σdσeD(s)E(s)ds(3.6)

We note that if ρ is a constant function (the original model from [4]), also the expres-
sion for A(τ) can be written explicitly, but we leave it in the integral form for the
sake of brevity.

Depending on the choice of the function ρ(t), we may or may not be able to
express the integral in (3.6) in a closed form. Therefore, we propose an analytical
approximation formula for its computation. Although a single computation of the
integral (3.6) may not be too time consuming, in a calibration procedure it has to be
computed for all combinations of parameters considered in the process. Therefore, a
simplified computation is valuable. Also, this approximation formula will be a base
for the approximation proposed in a general CKLS type model without a separable
solution in the form (2.3). We derive the order of approximation for the logarithm of
the bond price. The first advantage is that it enables us to estimate the relative error
in the bond price and the second that we immediately obtain the order of accuracy
for the interest rates, since they are given by − logP/(T − t) where t is the current
time, T is time of maturity and P is the corresponding bond price.

The main idea of the approximation lies in substituting the term ρ(T − s) in the
integal with ρ(t∗), where t∗ is a value independent of the integrating variable s. In
that case, we are able to compute the integral in the closed form in the same way
as in the original convergence Vasicek model. We remark that this is equivalent to
considering the classical model with constant correlation equal to ρ(t∗).

3.1. Approximation in a simple example of the correlation function.
We consider a simple example of the correlation function ρ(t), for which we wil be
able to compute also the exact solution (which will be used subsequently in numerical
experiments) and its Taylor expansion (in order to asses the order of accuracy of our
proposed approximation). We take

ρ(t) = 1− c1e−c2t(3.7)

with parameters c1 ∈ (0, 1), c2 > 0.
We note that this choice of the correlation implies monotonically increasing correla-
tion which converges to 1 (which would be a perfect correlation) exponentially fast.
However, at this point we remark that also other choices of the correlation function
might be meaningful. Figure 3.1 shows the function from (3.7) as well as two other
ones. One of them has a similar exponential trend, but with added oscillations which
might reflect the oscillatory character of convergence of the domestic economy to that
of eurozone. The last choice of the correlation modifies (3.7) in an another way, it
keeps its monotonicity, but the convergence is slower, no longer exponential.
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Fig. 3.1. Three examples of a correlation function: ρ(t) = 1 − 0.5e−0.5t (solid line), ρ(t) =
1 − 0.25e−0.5t(2 − sin(t)2) (dashed line) and ρ(t) = (0.5 + t)/(1 + t) (dotted lines).

If we denote by P ex(rd, re, τ) the exact solution Pd and by P ap the approximation
based on ρ(t∗), we get

logP ex − logP ap =

∫ τ

0

ρ(T − s)σdσeD(s)E(s)ds−
∫ τ

0

ρ(t∗)σdσeD(s)E(s)ds.

Computation of the expantions of the integrals yields

logP ex − logP ap =
1

8
a3c1σdσee

−c2T−c2t∗(ec2T − ec2t
∗
)τ4 +O(τ5).

We see that in order to achieve the highest possible order of accuracy, we should take
t∗ to be equal to T . In such as case, by computing the next term in the expansion,
we get

logP ex − logP ap = − 1

10
e−c2Ta3c1c2σDσeτ

5 +O(τ6).

For the numerical experiments, we take the values of the parameters from [4].
In the original formulation (2.1) and (2.2) they are equal to a = 0.1877, b = 6.0639,
σd = 0.0457, c = 0.1869, d = 0.0346, σe = 0.0198, λe = −0.655, λd = 3.315, which
transforms into a1 = 0.0362, a2 = −6.0639, a3 = 6.0639, b1 = 0.0194, b2 = −0.1869.
However, we change the constant correlation to a dynamic one. We take ρ(t) =
1− (1−ρ0)e−0.2t where ρ0 = 0.20 is the value estimated by [4]. It means that at time
t = 0, the dynamic correlation equals to ρ0 and then it increases. The value c2 = 0.2
is chosen for illustration purposes. We take the short rate rd and re equal to values
for which both drifts in (2.1) and (2.2) are zero (so it can be seen as a real probability
measure equilibrium): re = 0.0346 and rd = 0.0656. For illustration, we take the time
t to be equal to 2. The quantity which we compare for the exact and approximate
solution are the interest rates, because they comparison is straightforward from an
interpretation point of view.

In Table 3.1, we consider shorter maturities up to one quarter (we recall that the
unit of time is a year), since the approximation formula is derived for τ → 0+. We
see a very good agreement between the exact interest rates and their approximations.
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Table 3.1
Comparison of the exact and approximate interest rates in the Vasicek-type convergence model

with dynamic correlation, shorter maturities up to a quarter

maturity exact interest rate approximation difference
0.250 0.0539969783 0.0539968916 -8.673 ×10−8

0.225 0.0546750248 0.0546749627 -6.210 ×10−8

0.200 0.0554303128 0.0554302704 -4.240 ×10−8

0.175 0.0562714980 0.0562714707 -2.724 ×10−8

0.150 0.0572082972 0.0572082810 -1.615 ×10−8

0.125 0.0582516256 0.0582516171 -8.573 ×10−9

0.100 0.0594137533 0.0594137494 -3.875 ×10−9

0.075 0.0607084817 0.0607084804 -1.356 ×10−9

0.050 0.0621513453 0.0621513450 -2.970 ×10−10

0.025 0.0637598388 0.0637598388 -2.063 ×10−11

Although the error estimate is for small maturities, the approximation itself is
very good also for larger maturities. Again, we take the time equal to t = 2 and
plot the exact term structure and its approximation in Figure 3.2. Numerically, we
compare the interest rates in Table 3.2

Furthermore, from the form of the solution it follows that the difference does not
depend of the levels of rd and re (these affect only the exact interest rate and its
approximation), but only on the maturity of the bond T and the current time t.

Table 3.2
Comparison of the exact and approximate interest rates in the Vasicek-type convergence model

with dynamic correlation, longer maturities up to 10 years

maturity exact interest rate approximation difference
1 0.0490498877 0.0490465502 -3.338 ×10−6

2 0.0522237456 0.0522108289 -1.292 ×10−5

3 0.0561920268 0.0561667345 -2.529 ×10−5

4 0.0599488511 0.0599105192 -3.833 ×10−5

5 0.0633570192 0.0633062432 -5.078 ×10−5

6 0.0664139472 0.0663520099 -6.194 ×10−5

7 0.0691477287 0.0690762311 -7.150 ×10−5

8 0.0715927096 0.0715133399 -7.937 ×10−5

9 0.0737823874 0.0736967824 -8.560 ×10−5

10 0.0757472800 0.0756569476 -9.033 ×10−5

3.2. Appromaxion in the case of a general correlation. We show that by
taking t∗ = T in the case of a general correlation function ρ(t) we get the same order
of accuracy as in the particular case from the previous subsection. In particular:

logP ex − logP ap = − 1

10
a3σDσeρ

′(T )τ5 +O(τ6).

We start with the expression

logP ex − logP ap =

∫ τ

0

ρ(T − s)σdσeD(s)E(s)ds− ρ(T )

∫ τ

0

σdσeD(s)E(s)ds.
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Fig. 3.2. A graphical comparison of the exact and approximate interest rates in the Vasicek-type
convergence model with dynamic correlation, longer maturities up to 10 years

The functions D and E are known in the closed form, their product D(s)E(s) is of
order O(s3) as s→ 0 and its Taylor expansion is given by D(s)E(s) = 1

2a3s
3 +O(τ4)

Similarly, we write the expansion of the term ρ(T − s) around s = 0: ρ(T − s) =
ρ(T )− ρ′(T )s+O(s2) Substituting these series yields

logP ex − logP ap = −σdσe
∫ τ

0

1

2
a3ρ
′(T )s4 +O(s5)ds = − 1

10
σdσea3ρ

′(T )τ5 +O(τ6),

which we wanted to prove.

4. Dynamic correlation in CKLS-type convergence models of interest
rates. Firstly we remark that in the case of the CKLS-type convergence model, even
the European interest rate is not known in a closed form, but an approximation is
needed. Possible approximations in a closed form can be found in [3], [7]. To price
the domestic bond, we need to solve the partial differential equation (2.7). In our
proposal of an approximation formula, we use the idea from [7] and [11] where (for a
one-factor CKLS model and CKLS-type convergence model with constant correlation
respectively), the Vasicek bond price was taken and its constant maturities were
replaced by instantaneous maturities from the considered model. In our case, we take
a Vasicek-type convergence model as the base and after substituting volatilities we
replace the constant correlation by ρ(T ), where ρ(t) is the dynamic correlation in our
model and T is the maturity of the bond. This yields to the approximation formula
in the separated form

P ap(rd, re, τ) = eA(rd,re,τ)−D(τ)rd−E(τ)re ,(4.1)

where the functions D and E are given by (3.4) and (3.5) respectively; and

A(rd, re, τ) =

∫ τ

0

−a1D(s)− b2E(s) +
1

2
σ2
dr

2γd
d D2(s) +

1

2
σ2
er

2γe
e E2(s)

+ρ(T )σdσer
γd
d r

γe
e D(s)E(s)ds(4.2)

In what follows, we derive the order of the difference logP ap − logP ex, where P ex is
the exact solution of the equation (2.7).
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Firstly, we define fex = logP ex and fap = logP ap. Then, the function fex

satisfies

−∂f
ex

∂τ
+ (a1 + a2rd + a3re)

∂fex

∂rd
+ (b1 + b2re)

∂fex

∂re

+
1

2
σ2
dr

2γd
d

[(
∂fex

∂rd

)2

+
∂2fex

∂r2s

]
+

1

2
σ2
dr

2γe
e

[(
∂fex

∂re

)2

+
∂2fex

∂r2s

]

+ρ(T − τ)σdr
γd
d σer

γe
e

(
∂fex

∂re

∂fex

∂re
+

∂2fex

∂rd∂re

)
− rd = 0.(4.3)

If we substitute the function fap into the left-hand side of (4.3), we obtain a nontrivial
right-hand side which we denote by h(rd, re, τ). Since the function fap is given in a
closed form, we are able to compute its expansion directly. We have

h(rd, re, τ) = k3(rd, re)τ
3 + k4(rd, re)τ

4 +O(τ5),(4.4)

where

k3 =
1

6
σ2
dγdr

2γd−2
d

(
2a1rd + 2a2r

2
d + 2a3rdre − r2γdd + 2γdr

2γd
d σ2

d

)
,(4.5)

k4 =
1

48
r−2e r−2+2γd

d σd

[
12a22γdr

2+γd
d r2eσd − 16γdr

1+3γd
d r2eσ

3
d

+6a3b1γer
2
dr

1+γe
e ρ(T )σe + 6a3b2γer

2
dr

2+γe
e ρ(T )σe +

6a23γdrdr
3+γe
e ρ(T )σe − 3a3γdr

2γd
d r2+γee ρ(T )σ2

dσe

+3a3γ
2
dr

2γd
d r2+γee ρ(T )σ2

dσe + 6a3γdγer
1+γd
d r1+2γe

e ρ2(T )σdσ
2
e

−3a3γer
2
dr

3γe
e ρ(T )σ3

e + 3a3γ
2
er

2
Dr

3γe
e ρ(T )σ3

e

+6a1γdrdr
2
e (2a2r

γd
d σd + a3r

γe
e ρ(T )σe)

+6a2γdr
2
e

(
(−1 + 2γd)r

3γd
d σ3

d + a3rd(2r
2γd
D reσd + rdr

γe
e ρ(T )σ)

)]
−1

2
ρ′(T )a3σdr

γd
d σer

γe
e .(4.6)

Now we define the function g(rd, re, τ) = fap − fex; it follows that

−∂g
∂τ

+ (a1 + a2re + a3re)
∂g

∂rd
+ (b1 + b2re)

∂g

∂re

σ2
dr

2γd
d

2

[(
∂g

∂rd

)2

+
∂2g

∂r2d

]
+
σ2
er

2γe
d

2

[(
∂g

∂rd

)2

+
∂2g

∂r2e

]

+ρ(T − τ)σdr
γd
d σer

γe
e

(
∂g

∂rd

∂g

∂re
+

∂2g

∂rd∂re

)
= h(rd, re, τ) +

σ2
dr

2γd
d

2

[(
∂fex

∂rd

)2

+
∂fex

∂rd

∂fap

∂rd

]
+
σ2
er

2γe
e

2

[(
∂fex

∂re

)2

+
∂fex

∂re

∂fap

∂re

]

+ρ(T )σdr
γd
d σer

γe
e

(
2
∂fex

∂rd

∂fex

∂re
− ∂fap

∂rd

∂fex

∂re
− ∂fex

∂rd

∂fap

∂re

)
.(4.7)

We write the function g in the serie form g(rd, re, τ) =
∑∞
k=ω ck(rd, re)τ

k. Firstly
we note that for τ = 0, both the exact and the approximative price is equal to 1, and
therefore fex(rd, re, 0) = 0 and fap(rd, re, 0) = 0. It means that ω > 0 and the lowest
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order term on the left hand side of (4.7) is cωωτ
ω−1. Therefore we need to find the

order of its right hand side.
Since fex(rD, re, 0) = 0, we have fex = O(τ) and also ∂fex

∂rd
,∂f

ex

∂re
are O(τ). Using

the formula for the approximate solution we get that ∂fap

∂rd
, ∂f

ap

∂re
are O(τ2). Together

with information that h = O(τ3) we see that the right hand side of the equation (4.7)
is at least of order τ2 (it can have a higher order if the terms at τ2 cancel). It follows
that ω − 1 ≥ 2, i.e. ω ≥ 3. Therefore we have fap − fex = O(τ3) and we can make a

better estimate of ∂fex

∂re
:

∂fex

∂re
=
∂fap

∂re
+O(τ3) = O(τ2) +O(τ3) = O(τ2)

Now, we make estimates of the terms on the right hand side of (4.7):(
∂fex

∂rd

)2

− ∂fex

∂rd

∂fap

∂rd
=
∂fex

∂rd

(
∂fex

∂rd
− ∂fap

∂rd

)
= O(τ)×O(τ3) = O(τ4),(4.8)

similarly(
∂fex

∂re

)2

− ∂fex

∂re

∂fap

∂re
=
∂fex

∂re

(
∂fex

∂re
− ∂fap

∂re

)
= O(τ2)×O(τ3) = O(τ5)(4.9)

a finally

2
∂fex

∂rd

∂fex

∂re
− ∂fap

∂rd

∂fex

∂re
− ∂fex

∂rd

∂fap

∂re

=
∂fex

∂rd

(
∂fex

∂re
− ∂fap

∂re

)
+
∂fex

∂re

(
∂fex

∂rd
− ∂fap

∂rd

)
O(τ)×O(τ3) +O(τ2)×O(τ3) = O(τ4).(4.10)

Since h = O(τ3), it now follows that the right hand side of the equation (4.7) is
O(τ3) and the coefficient at τ3 in its expansion comes only from the function h, i.e.,
it equals k3(rd, re).

It implies that ω = 4
and −4c4(rd, re) = k3(rd, re) and hence c4(rd, re) = − 1

4k3(rd, re).
Therefore, the accuracy of the proposed approximation formula is given by

logP ap(rd, re, τ)− logP ex(rd, re, τ) = c4(rd, re)τ
4 +O(τ5),(4.11)

where

c4 = − 1

24
σ2
dγdr

2γd−2
d

(
2a1rd + 2a2r

2
d + 2a3rdre − r2γdd σ2

d + 2γdr
2γd
d σ2

d

)
.

We can see that the lower order term of the error does not include the correlation
function. In particular, it is the same as in the case of the constant approximation,
when we approximate only volatilities, as has been done in ([11]. Therefore, when
using it in the case of a dynamic correlation, the lower order term of the error comes
from approximating nonconstant volatilities, and not from approximating the dynamic
correlation. We can see the effect of the correlation when we compute the O(τ5) term
in the expansion of logP ap(rd, re, τ)− logP ex(rd, re, τ).
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In order to do this, we use the estimate fap − fex = O(τ4) to obtain a more
precise estimates (4.8) and (4.10), which are now both O(τ5). Together with (4.9)
we can see that also the only O(τ4) term on the right hand side of the equation (4.7)
comes from the function h and therefore it equals k5. It follows that

−5c5 + (a1 + a2r3 + adre)
∂c4
∂rd

+ (b1 + b2re)
∂c4
∂re

+
σdr

2γd
d

2

∂2c4
∂r2d

+
σer

2γe
e

2

∂2c4
∂r2e

+ ρ(T )σdr
γd
d σer

γe
e

∂2c4
∂rd∂re

= k4,

from which we can express the coefficient c5 from the expansion

logP ap(rd, re, τ)− logP ex(rd, re, τ) = c4(rd, re)τ
4 + c5(rd, re)τ

5 +O(τ6)

and note that it (unlike the leading term c4) depends on the correlation function
throught the terms ρ(T ) and ρ′(T ).

5. Conclusions. We introduced a dynamic correlation, already considered in
other financial application formulated in terms of stochastic differential equations,
into convergence models of interest rates. Firstly, we studied a Vasicek-type model,
when the computation of the bond price involves a computation of an integral. We
simplified this computation by an analytical approximation formula in a closed form.
Moreover, this approximation served as an inspiration for the approximate analytical
formula for the domestic bond prices in the CKLS-type model where no simple-form
solution is available. We derived order of accuracy of the approximation formulae,
including the discussion about the error terms, which do and which do not depend on
the correlation function. Future work include using these formulae to fit the model
to the real data, and determine (among other things) the form of the correlation ρ(t)
which seems to be consistent with bond prices and interest rates observed on the
market.
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