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CALIBRATION OF THE VASICEK MODEL OF INTEREST RATES
USING BICRITERIA OPTIMIZATION∗

TATIANA JAŠURKOVÁ† AND BEÁTA STEHLÍKOVÁ‡

Abstract. The Vasicek model of the interest rates is one of the most frequently used short rate
models to describe the movements of the interest rates. For the model to work properly it has to be
adequately calibrated. Based on different approaches, there are several techniques to calibrate the
Vasicek model. In this paper, we combine two criteria: fitting term structures of the interest rates
and comparison of the estimated short rate with its estimate from the Kalman filter, which takes
probability distributions into account. Doing so, we obtain the risk-neutral parameters as well as
the estimate for the short rate. The proposed algorithm is then applied to the real market data and
we analyze the results.
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1. Introduction. The term structure of the interest rates describes the rela-
tionship between the maturities and the respective interest rates R(t, T ) of a set of
discount bonds and is denoted by P (t, T ) = e−R(t,T )(T−t), where P (t, T ) is the price
of the above-mentioned discount bond.

When modelling the term structure of the interest rates, one of the popular choices
is to use short rate models (other possibilities include LIBOR market models, models
fitting the initial term structure, etc.; we refer the reader to [5], [15] or [19] for a
detailed treatment of interest rate modelling. Short rate models assume that the short
rate rt, i.e., instantaneous interest rate, follows a specific stochastic process defined
by a stochastic differential equation. In these models, the price of the discount bond
is a function of the time, its maturity and the current level of the short rate. After the
specification of so-called market price of risk the bond price then satisfies a parabolic
partial differential equation. In this paper we consider the Vasicek model [23] which
models the short rate by an Ornstein-Uhlenbeck process which results in the normal
distribution. Furthermore, for a specific market price of risk the bond prices are
known in a closed form. There are many different ways for the calibration of this
model. In this paper, we combine two of them, one of which uses the probability
distributions (Kalman filtering) and one which compares real and theoretical term
structures of interest rates.

The paper is organized as follows. In Section 2 we shortly revise the Vasicek model
and state its properties which we need in subsequent calibration. Section 3 provides
a brief overview of calibration methods and describes two of them in a detail, which
will serve as a base of our approach. In Section 4 we explain the basic concepts of
multicriteria optimization problems. Our main contribution is contained in Section
5 where we describe our calibration procedure and in Section 6 where we apply it to
real market data. We end the paper with concluding remarks in Section 7.
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2. Vasicek model of interest rates. Vasicek model [23] belongs to the class of
one-factor short rate models. In particular, the dynamics of the short rate is governed
by the Ornstein-Uhlenbeck process

drt = κ(θ − rt)dt+ σdwt, (2.1)

where κ, θ, σ are model parameters and wt is a Wiener process. Subsequently, short
rate is then normally distributed (cf. [23])

rt+4t | rt ∼ N
(

θ
(
1− e−κ4t

)
+ e−κ4trt,

σ2

2κ

(
1− e−2κ4t

))
. (2.2)

In the Vasicek model market price of risk is typically chosen to be a constant, i.e.,
λ(r, t) = λ. Then, the partial differential equation for the bond price P = P (r, τ),
where τ = T − t is time remaining to maturity of the bond, satisfies the partial
differential equation (cf. again [23])

− ∂P

∂τ
+ (κ(θ − r)− λσ)

∂P

∂r
+
σ2

2

∂2P

∂r2
− rP = 0 (2.3)

with an initial condition P (r, 0) = 1. The solution to this equation can be found in
an explicit form; we write it in the form from [19], since it will be useful in subsequent
computations

P (r, τ) = A(τ)e−B(τ)r, (2.4)

lnA(τ) =

[
1

κ

(
1− e−κτ

)
− τ
](

θ − λσ

κ
− σ2

2κ2

)
− σ2

4κ3
(1− e−κτ )2, (2.5)

B(τ) =
1

κ

(
1− e−κτ

)
. (2.6)

3. Various methods of calibration short rate models. There are many
different approaches to calibrating short rate models. One of them is to consider
probability distribution of the short rate and apply maximum likelihood estimation
or its approximations (see, for example, [1], [20]), generalized method of moments
([10]), etc. Probability distributions, but those of interest rates with other maturities,
are used when applying Kalman filter, such as in [3], [4] and [14], which leads also
to the estimation of the underlying short rate. Fitting term structures of interest
rates was used in [22]; the likelihood function was used only in the second step when
choosing among parameter sets leading to the same fit. In the opposite way, [11] uses
short rate distribution to estimate the real parameters and term structures of interest
rates to estimate the market prices of risk. Papers [8] and [9] consider only fit of the
term structures and hence estimate the risk-neutral parameters, they also estimate
the short rate based on this criterion.

In the following two subsections we review the two approaches which form the
base of our proposed algorithm. Both take the short rate as an unknown quantity
and estimate it from the term structures, but use different ways to achieve this goal.

3.1. Kalman filter. Kalman filter, originally introduced by Rudolph E. Kalman
in 1960 (see [16]), is a recursive algorithm used to filter out the true signal from a
stream of measured data that is affected by a noise. Generally, these observed values
also depend on other latent state variables. In our case, the set of measured data
consists of the observations of bond rates and the state variable is identified with the
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realizations of the short rate. For more information about the Kalman filter we refer
to [7], [18], or [21]. In this subsection the Kalman filter applied on the Vasicek model
is described based on the work done in [4].

In order to use Kalman filtering as a method of estimating the parameters of the
Vasicek model, it is necessary to rewrite the model into the state-space form, which in-
volves the specification of the measurement system and the transition system. Firstly
let consider a time window that consists of n days, further denoted as t1, t2, . . . tn. We
also assume that in each time step ti, i = 1, . . . , n, there are m zero-coupon bonds,
each one with a different length of maturity τ1, τ2, . . . , τm, traded at the market. The
measurement system then consists of the equations for the observed variable, i.e.,
bond rates R(ri, τj). According to the solution of discount bond in the Vasicek model
(2.4)-(2.6) the measurement system has the following form

R(ri, τ1)
R(ri, τ2)

...
R(ri, τm)

 =


− lnA(τ1)

τ1

− lnA(τ2)
τ2
...

− lnA(τm)
τm

+


B(τ1)
τ1

B(τ2)
τ2
...

B(τm)
τm

 [rti]+


v1(ti)
v2(ti)

...
vm(ti)

 (3.1)

or shortly Rti = A + Hrti + v(ti), where v(ti) represents the measurement noise,
which is assumed to be normally distributed with zero mean and covariance matrix
R. When applying Kalman filter on interest rates, measurement noise may account
for the data-entry errors, bid-ask spreads, or non-simultaneous observations. Under
the assumption that the components of the v(ti) are not correlated the covariance
matrix R can be written in the form of positive definite diagonal matrix, i.e., R =
diag(s21, s

2
2, . . . , s

2
m).

On the other hand, the transition system describes the dynamics of the latent
factor, i.e., realizations of the short rate. As in the Vasicek model short rate follows
the stochastic process (2.1), short rate is therefore normally distributed (2.2) and the
transition equation is of the form

rti = θ
(
1− e−κ4t

)
+ e−κ4trti−1

+ ε(ti), or rti = C + Frti−1
+ ε(ti), (3.2)

where 4t = 1/252, as daily observations are considered, and process noise ε(ti) is

normally distributed, i.e., ε(ti) | rti−1
∼ N

(
0, σ2

2κ

(
1− e−2κ4t

))
. Thus the state-

space form of the Vasicek one-factor model is then represented by the equations (3.1)
and (3.2). The Kalman filter applied to this state-space form then makes an educated
guess about the initial value of the unobserved state variable and predicts the value of
the measurement equations. Subsequently, based on the error between the measure-
ment equation prediction and the actual realization, the value of the state variable is
updated and used in order to predict the next state. After recursing through all of
the time steps, a time series for the short rate, or the filtration Fs, is obtained. More
precisely Fti = σ(Rt0 , Rt1 , . . . , Rti), for i = 1, . . . , n, stands for the filtration of the
short rate based on the first i days observations of the interest rate of m zero-coupon
yields. In our case, the Kalman filter proceeds as follows:
Step 1. The unconditional mean and variance of the state variable are taken as the
initial values of the state variable and the measure of the certainty of this guess, i.e.,

E[rt1 ] = E[rt | F0] = θ, V ar[rt1 ] = V ar[rt1 | F0] =
σ2

2κ
.
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Step 2. The value of the measurement system, i.e., the rates Rti , are forecasted as

E[Rti | Fti−1
] = A+HE[rti | Fti−1

], V ar[Rti | Fti−1
] = HV ar[rti | Fti−1

]HT +R.

Step 3. To improve the estimation of the state variable, filter compares the estimation
and the realized value of the output variable, which generates a vector of prediction
errors ζti = Rti − E[Rti | Fti−1 ]. This step also includes the update of the state
variable and its conditional variance given by the following formulae

E[rti | Fti ] = E[rti | Fti−1
] +Ktiζti , V ar[rti | Fti ] = (I −KtiH)V ar[Rti | Fti−1

],

where Kti = V ar[rti | Fti−1 ]HTV ar[Rti | Fti−1 ]−1 is Kalman gain matrix.
Step 4. The last step consists of predicting the values of the state variable

E[rti+1
| Fti+1

] = C + FE[rti | Fti ], V ar[rti+1
| Fti ] = FV ar[rti | Fti ]FT +Q,

which are then used as initial guesses for the state variable and its variance in the
next iteration.

In this manner the estimation of the short rate is obtained. In each iteration
also the prediction errors ζti as well as the covariance matrix of prediction errors
V ar[Rti | Fti−1 ] are generated. Therefore, under the assumption that the vectors of
prediction errors are normally distributed, the likelihood function may be constructed
as

L(κ, θ, σ, λ) =

n∏
i=1

1

(2π)
m
2 | V ar[Rti | Fti−1 ] | 12

e−
1
2 ζ

T
ti
V ar[Rti

|Fti−1
]−1ζti , (3.3)

To address the original problem of estimation of the Vasicek model parameters, the
likelihood function (3.3) is then maximized according to the stated parameters κ, θ,
σ and λ.

3.2. Fitting term structure of interest rates. In this subsection we briefly
review the calibration approach from [8]. The procedure takes the observed yield
curves Rij , where i refers to days and j refers to maturities, whose values we denote
by τj . The optimal values of the parameters, as well as the evolution of the short
rate, are obtained by minimizing the objective function

F =
∑
i,j

wij(R(ri, τj)−Rij)2 =
∑
i,j

wij
τ2j

(logP (ri, τj) +Rijτj)
2

(3.4)

with P and R being the bond prices and interest rates from the Vasicek model re-
spectively, computed from (2.4)-(2.6) and wij being the weights.

However, it has to be noted that the bond prices in the Vasicek model (and there-
fore also interest rates which we are interested in) depend only on three independent
parameters. Note that θ and λ enter the PDE (2.3) as well as the solution (2.4)-(2.6)
only through the term κθ− λσ. Consequently, it is possible to find a solution for the
discount bond price that relies only on three parameters, i.e., σ2 and new parameters
α = κθ − λσ and β = −κ Parameters α, β are so-called risk-neutral parameters and
they correspond to the parameters of the Vasicek model under the risk-neutral mea-
sure. It is an easy calculation to verify that using these risk-neutral parameters, the
logarithm of the bond price given by (2.4)-(2.6), can be written as

lnP (r, τ) = c0(β, τ)r + c1(β, τ)α+ c2(β, τ)σ2, (3.5)
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where functions ci(β, τ) for i = 1, 2, 3 are given by formulae

c0 =
1− eβτ

β
, c1 =

1

β

(
1− eβτ

β
+ τ

)
, c2 =

1

2β2

(
1− eβτ

β
+ τ +

(1− eβτ )2

2β

)
.

(3.6)
It follows that for a fixed β, the objective function (3.4) is a quadratic function of the
parameters α, σ2 and the values of the short rate ri.

4. Basic concepts of solving multicriteria optimization problem. In what
follows we revise the most common approaches to transforming multicriteria optimiza-
tion problems. The main three approaches are taken from [13] and supplemented by
their generalizations and other methods from [2]. We refer the reader to these survey
papers [13], [2] and the book [12] for more details on the topic.

We consider the optimization problem in the minimization form

minimizex∈RnF (x) = (F1(x), F2(x), . . . , Fk(x))T (4.1)

subject to constraints

gj(x) ≤ 0 for j = 1, 2, . . . ,m1; hl(x) = 0 for l = 1, 2, . . . ,m2. (4.2)

Furthermore, we denote by X the set

X = {x ∈ Rn : gj(x) ≤ 0 (j = 1, 2, . . . ,m1);hl(x) = 0 (l = 1, 2, . . . ,m2)} (4.3)

The most straightforward scalarization of the multicriteria problem (4.1) is the weighted
sum method, when we minimize the weighted sum of the original objectives, i.e.,

minimizex∈X

k∑
i=1

λiFi(x), (4.4)

where λ is a selected nonnegative vector. Recall that the set X is given by (4.3), i.e.,
all of the original constraints are satisfied. This can be generalized by considering a
so-called partial weighting (see [17], [2]), which we will use in our calibration, when
the objective functions are firstly grouped into sets with similar characteristics and
each group is used to form a new objective function. Another popular method lies
in keeping only one of the objectives and turning the remaining ones into constraints
using a vector ε ∈ Rk−1. If, without a loss of generality, we keep the first objective
F1, the new optimization problem reads as

minimizex∈XF1(x) subject to Fi ≤ εi (i = 2, . . . , k) (4.5)

The last approach, which we mention here in more detail, is based on creating a
certain ”ideal point” y ∈ Rk and trying to find a feasible solution which that F (x)
is as close as possible (measured by a weighted `k distance) to this ideal point. If
the nonnegative weighting vector is denoted by λ, we are solving the optimization
problem

minimizex∈X

(
k∑
i=1

λi(Fi(x)− yi)q
) 1

q

. (4.6)
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Note that the weighted sum approach (4.4) is a special case, when q = 1 a the ideal
point y is zero vector. Finally, we note that there are other methods for solving mul-
ticriteria optimization problems, such as lexicographic method, goal programming
methods, physical programming etc. We refer the reader to already cited references
[12] , [13], [2] for a discussion on what does ”minimization” of a vector in (4.1) mean,
definitions of (week) Pareto optimality, proper Pareto optimality, efficiency, domi-
nance and related concepts, their relations and necessary and sufficient conditions.
Here we only note a simple property, which we will use in our application: If the
vector λ in (4.4) is strictly positive and x̂ minimizes the objective function, then there
is no other feasible x such that Fi(x) < Fi(x̂) for all indices i, i.e., there is no other
feasible point which improves all the criteria considered.

5. Proposed bicriteria calibration of the Vasicek model. The main idea
of our calibration is combining two criteria: minimizing squared errors in fitting term
structures of interest years while giving different weights to different maturities and
taking into account the probabilistic distribution of the short rate. The latter can
be measured in different ways, for example evaluating the likelihood function, but we
choose the Euclidean distance between the estimated short rate and the short rate
obtained from the Kalman filter. The reasons are twofold. Firstly, in this way both
criteria are measured in the same units and therefore they can be easily combined.
Secondly, we obtain a quadratic optimization problem with a nonnegativity constraint
on one of the variables, which is easy to solve.

Let us firstly denote the observed term structures of interest rates by Rij where
i = 1, . . . , n corresponds to days and j = 1, . . . ,m corresponds to maturities which we
denote by τj . Furthermore, we denote the interest rate computed from the Vasicek
model computed for the short rate r and maturity τ by R(r, τ) and the corresponding
bond price by P (r, τ). Following the approach from subsection 3.2 we define average
(per one day) squared error of fitted interest rates with maturity τj as

fj =
1

n

n∑
i=1

(R(ri, τj)−Rij)2 =
1

n

n∑
i=1

1

τ2j
(logP (ri, τj) +Rijτj)

2
. (5.1)

Now, we define the function F1 by weighting the functions fj with normalized weights
as

F1 =

m∑
j=1

wjfj =
1

n

n∑
i=1

m∑
j=1

wj
τ2j

(logP (ri, τj) +Rijτj)
2
, where

m∑
j=1

wj = 1 (5.2)

As explained above, our second criterion is given by

F2 =
1

n

n∑
i=1

(
ri − rKFi

)2
, (5.3)

where rKF is the estimate of the short rate obtained by Kalman filter. Finally,
combining (5.2) and (5.3) using weights µ ∈ (0, 1) and 1 − µ respectively, we obtain
the objective function

F = µF1 + (1−µ)F2 =
µ

n

n∑
i=1

m∑
j=1

wj
τ2j

(logP (ri, τj) +Rijτj)
2

+
1− µ
n

n∑
i=1

(
ri − rKFi

)2
,

(5.4)
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which is minimized with respect to parameters α, β, σ2 > 0 and the vector of the short
rate values (r1, . . . , rn)T . In this way, we transform the multicriteria minimization of
the vector (f1, . . . , fm, F2)T to a two-dimensional problem (F1, F2)T by grouping and
weighting term structure data, and finally a one-dimensional problem. Moreover,
from the form of the bond price P given by (2.4)-(2.6) it follows that for a fixed β, the
function (5.4) is quadratic in the remaining variables. Therefore, we firstly compute
the optimal value of the objective function (5.4) for a given β and subsequently we
select the optimal β (and the corresponding values of the remaining parameters).

As we only consider non-negative values for the σ2, the problem of minimizing
the objective function can be solved as a quadratic programming problem with linear

constraints. Firstly, let us choose wj =
τ2
j∑
j τ

2
j

. Using the equation (3.5), the first

component F1 of F may be expanded to the form

1

n
∑
j τ

2
j

n∑
i=1

m∑
j=1

(lnP (ri, τj) + τjRij)
2

=

1

n
∑
j τ

2
j

n∑
i=1

m∑
j=1

(
c0(β, τj)rt + c1(β, τj)α+ c2(β, τj)σ

2 + τjRij
)2

=

1

n
∑
j τ

2
j

n∑
i=1

m∑
j=1

[
c20(β, τj)r

2
i + c21(β, τj)α

2 + c22(β, τj)σ
4 + 2c0(β, τj)c1(β, τj)riα

+ 2c0(β, τj)c2(β, τj)riσ
2 + 2c1(β, τj)c2(β, τj)ασ

2 + 2c0(β, τj)τjRijri

+2c1(β, τj)τjRijα+ 2c2(β, τj)τjRijσ
2 + τ2j R

2
ij

]
(5.5)

Hence, this first component of the objective function (5.4) may be rewritten to the
matrix form 1

n
∑

j τ
2
j

(
xTAx+ bTx+ e

)
, where x = (r1, r2, . . . , rn, α, σ

2)T is a vector

of the uknown parameters and

A =



∑m
j=1 c

2
0 0 . . . 0

∑m
j=1 c0c1

∑m
j=1 c0c2

0
∑m
j=1 c

2
0 . . . 0

∑m
j=1 c0c1

∑m
j=1 c0c2

...
...

. . .
...

...
...

0 0 . . .
∑m
j=1 c

2
0

∑m
j=1 c0c1

∑m
j=1 c0c2∑m

j=1 c0c1
∑m
j=1 c0c1 . . .

∑m
j=1 c0c1 n

∑m
j=1 c

2
1 n

∑m
j=1 c1c2∑m

j=1 c0c2
∑m
j=1 c0c2 . . .

∑m
j=1 c0c2 n

∑m
j=1 c1c2 n

∑m
j=1 c

2
2


,

b =



2
∑m
j=1 c0τjR1j

2
∑m
j=1 c0τjR2j

...
2
∑m
j=1 c0τjRnj

2
∑n
i=1

∑m
j=1 c1τjRij

2
∑n
i=1

∑m
j=1 c2τjRij


, e =

n∑
i=1

m∑
j=1

τ2j R
2
ij .

In a similar way the second component F2 of the objective function, i.e.,

1

n

n∑
i=1

(ri − rKFi )2 =
1

n

n∑
i=1

r2i − 2rir
KF
i + rKFi

2
(5.6)
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might be expressed as 1
n

(
xTCx+ dTx+ f

)
, where

C = diag(1, 1, . . . , 1, 0, 0), d =
[
−2rKF1 ,−2rKF2 , . . . ,−2rKFn , 0, 0

]T
, f =

n∑
i=1

(rKFi )2.

In this manner the problem of finding the parameters α, σ2 and estimation for the
short rate values (r1, . . . , rn)T by minimization of the objective function (5.5) for a
fixed value of the parameter β can be written in a following matrix form

minimizex∈Rn+2 xT

[
µ

n
∑
j τ

2
j

A+
1− µ
n

C

]
x+

[
µ

n
∑
j τ

2
j

b+
1− µ
n

d

]
x+ g

subject to σ2 ≥ 0.

(5.7)

where g = µ
n
∑

j τ
2
j
e+ 1−µ

n f is a constant, so it may be omitted when minimizing the

quadratic function.

6. Application to real data. In the previous section we have proposed a cali-
bration method, which provides the estimation of the risk-neutral parameters for the
Vasicek model and also for the realizations of the short rate. To test the suggested
algorithm we have used real market data. The dataset consisted of the interest rates
implied by a Slovakia government bonds1 with different lengths of maturities varying
from 1 to 20 years. The dataset covered the timeframe of the second half of the year
2017.

7e−07 8e−07 9e−07

0e
+
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1e

−
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−
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−
06

4e
−

06

F1

F
2

µ =µ =µ =
µ =

µ =

0.0010.20.5

0.9

1

Fig. 6.1. Graph of the relationship between F1 and F2 of the objective function (5.4), according
to the different values of the parameter µ.

We have applied the proposed algorithm on the aforementioned dataset and ana-
lyzed the behavior of the algorithm for different values of the µ. The higher the value
of the µ is, the more weight is put on the first component F1 of the objective function.
Therefore the F1 is a decreasing function of the µ. Analogically, the function F2 is
increasing in the µ. Figure 6.1 shows the relationship between the values of F1 and

1source: https://www.investing.com/rates-bonds/world-government-bonds

https://www.investing.com/rates-bonds/world-government-bonds
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F2, which is decreasing. One can observe a steep decline in the values of F1 as well
as in the values of F2. From this point of view, it would be appropriate to choose
such value of the µ that in a sense takes into consideration the minimization of both
objective functions. As seen in Fig. 6.1, if µ is small (e.g. µ = 0.5) then by increasing
its value we obtain a significant reduction in the value of F1 while the value of F2
increases only slightly. The choice of the exact value of µ is then subjective, in our
case, µ may be chosen around the value 0.9, which corresponds to the optimal values
of the parameters being β = 0.03951986, α = 0.004063299 and σ2 = 0.0001800155.
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Fig. 6.2. The left graph shows the estimated vector of the short rate gained from Kalman
filtering in comparison with the estimation from the proposed algorithm for different values of µ.
The right graph illustrates the fit of the estimated rate for the bond with maturity of 14 years in
comparison with the real market value.

Another way of analyzing the proposed algorithm is by looking at the estimation
of the short rate. As the Kalman filtering itself generates the estimation for the
latent variable, i.e., the short rate, and our algorithm also provides such estimate,
we compared these two approaches, also considering different values of the µ. The
left graph in Fig. 6.2 provides the graphical illustration of this comparison. It can
be seen that when the µ = 1, i.e., when the objective function F2 is not taken into
the consideration, then the estimation of the short rate from the Kalman filtering
differs significantly from the estimation based on the original calibration stated in
section 3.2. Lowering the value of the µ just slightly results in a reduction of this
difference and the estimation of the short rate starts to follow the development of the
estimation from the Kalman filter. When the parameter µ is taken from the interval
(0, 0.1), then the estimation of the short rate from the proposed algorithm almost
collides with the estimation gained from the Kalman filtering. One may also observe
the fit of the estimated rate for the bond with 14 years maturity gained from the
proposed algorithm in comparison with the real market values on the right graph in
Fig. 6.2. According to the chosen values of the weights wj , the fit for long term bonds
is more accurate than the fit for bonds with shorter maturity. Also higher the value
of µ is, the estimated rate more accurately copies the market value.

7. Conclusions. The paper deals with the calibration of the Vasicek model
using multicriteria optimization. We propose a new algorithm that combines two ap-
proaches, one of which relies on fitting the term structure of the interest rates and the
second one uses probability distribution of the underlying short rate. Weighted sum
method is then used to scalarize the problem of minimizing two objective functions,
specifically first that takes into account the weighted mean square errors between
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estimated and realized bond rates and second, that minimizes mean square errors be-
tween the estimations of the short rate, one of which is gained from Kalman filtering.
The proposed algorithm is then tested on real market data to determine the appro-
priate value of the parameter µ, which for the tested dataset lies in the vicinity of 0.9.
Calibration also provides an accurate fit, especially for long-term interest rates.

Possible extensions of the research include adding new criteria to the problem,
choosing different method of scalarization of the multicriteria problem, or implement-
ing the algorithm to multi-factor interest rates models, e.g., two-factor Vasicek model.
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