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FINDING LOW-RANK SOLUTIONS IN FINANCIAL FACTOR
MODELS

TERÉZIA FULOVÁ ∗

Abstract.

In financial factor models based on the structure of a correlation matrix, the rank of the correla-
tion matrix should be equal to the number of factors. However, it is not so rare to obtain a high-rank
correlation matrix from the given data in practical applications. Therefore, it is necessary to find
the nearest low-rank correlation matrix to the computed one. If we take the Frobenius norm to
measure the ”nearness” of two matrices, we will show that this problem can be formulated in the
form of a rank-constrained semidefinite program. Although this kind of problem is considered to be
NP-hard, there are some rank reduction techniques to deal with this non-convex rank constraint.
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1. Introduction. As stated in [8] and [15], the problem of finding a low-rank
correlation matrix to the given approximate correlation matrix arose as a part of
the calibration of the so-called multi-factor market model of interest rates. Financial
institutions use this model for pricing their interest rate derivatives portfolio. The
variables are the interest rates assumed to follow log-normal stochastic processes.
With historical data, a correlation structure of interest rates can be extracted. The
idea of the model is then to implant the correlation structure into the stochastic
processes for the interest rates, so that the model can appropriately describe the
dynamics of interest rates and pricing can be more accurate.

If the model works with k factors, it is evident that the rank of the correlation
matrix should not exceed k. If the rank is higher than the number of factors, which is
almost always the case, the correlation matrix cannot be used. Therefore, a low-rank
correlation matrix is necessary that is the best approximation to the given correlation
matrix under the Frobenius norm. That is why the problem of finding the nearest
low-rank correlation matrix (2.1) is so significant.

Let us note that the number of interest rates in the model can be enormous in
practical applications, i.e. the dimension of the correlation matrix is very high. On
the other hand, the term structure of interest rates is driven by multiple factors (four
or more) but definitely not as many as the dimension of the matrix.

We will show how to formulate this problem in the form of a rank-constrained
semidefinite problem, and consequently, we will be able to apply some rank reduction
algorithms to solve it.

1.1. Notation. In this paper, the symbol Sn denotes the linear subspace of n×n
symmetric matrices. If X ∈ Sn is positive semidefinite, we write X � 0. For two
symmetric matrices A and B of order n we say A � B if A − B � 0, which is the
definition of the so called Loewner partial ordering ([5, §A.3]).
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The Schur complement of a matrix X in block matrix

[
A B
C D

]
is defined as

the matrix D − CA−1B assuming matrix A is invertible and according to [4, §A.5.5]
it holds [

A B
C D

]
⇔ A � 0 ∧ D − CA−1B � 0.(1.1)

The rank of a matrix X is denoted by rank(X), and the rank of diagonalizable
matrices is equal to the number of their non-zero eigenvalues. The symbol λi denotes
the eigenvalue of a given matrix with the i-th largest eigenvalue. In case the given
matrix is positive semidefinite, λi is always real.

The Frobenius norm of a matrix X is defined as

‖X‖F =
√
tr(XXT ),(1.2)

where tr(.) denotes the trace of a matrix. As stated in [14, §6], Loewner partial
ordering has the following property

A � B ⇒ tr(A) ≥ tr(B)(1.3)

if A and B are positive semidefinite.

We denote by N (X) the nullspace of a matrix X and by I the identity matrix,
whose dimension should be apparent from the context.

2. Problem formulation. Given a real symmetric matrix C of order n, the
task is to find the nearest low-rank correlation matrix. If we take the Frobenius
norm to measure the ”nearness” of two matrices, this problem can be formulated as
a rank-constrained optimization problem

min
X∈Sn

‖C −X‖2F
Xii = 1, i = 1, ..., n,
X � 0,

rank(X) ≤ k,

(2.1)

where X ∈ Sn is the matrix variable and k ∈ N is the desired rank. The first two
constraints of the problem force the matrix variable to satisfy the definition of the
correlation matrix, i.e. to have unit diagonal and to be positive semidefinite. The
last constraint guarantees that its rank is at most k, where k represents the number
of factors in the model.

If the rank constraint is ommited from the formulation (2.1), we obtain a convex
relaxation of the original problem in the form

min
X∈Sn

‖C −X‖2F
Xii = 1, i = 1, ..., n,
X � 0.

(2.2)

The problem (2.2) represents finding the nearest correlation matrix X to the given
symmetric matrix C disregarding its rank. Equivalently, we can see the problem (2.2)
as the rank-constrained problem (2.1) when choosing k = n.
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3. Literature review. Because of its importance in finance, the problem (2.1)
was recognized by many researchers. In the next, we mention the most known algo-
rithms for solving this problem.

There are several specific methods for this particular problem. Grubisic and
Pietersz introduced a geometric optimization algorithm in [8], based on parametriz-
ing the constraint set by the Cholesky manifold and using and applying standard
algorithms over the manifold. Its disadvantage is a large number of iterations. The
article [15] offers a Lagrange multiplier algorithm. However, it was shown that the
convergence of this method is not guaranteed. In [12], majorization is suggested as
a suitable rank reduction method, but in general, majorization is not considered to be
effective enough for practical computation. In [2], the authors introduced the concept
of the alternating projections algorithm, which is based on the idea to project the
given symmetric matrix onto the cone of matrices with the specified rank.

The problem (2.2) is usually solved by the alternating projections algorithm intro-
duced in [9]. Another approach is to apply the preconditioned Newton method, which
was originally introduced by Qi and Sun in [13] and modified by Borsdorf and Higham
in [3]. There were also efforts to formulate the problem in the form of a semidefinite
program. However, the expression of the Frobenius norm via vectorization of the
matrix leads to a large-scale problem, for which the standard solvers for semidefinite
programming problems were not sufficient, as mentioned in [9].

4. Semidefinite formulation. In this section, we introduce the technique of
how to convert the problem (2.2) into a semidefinite program in its standard form

min
X∈Sn

tr(DX)

tr(AiX) = bi, i = 1, ...,m,
X � 0,

(4.1)

where D,A1, ..., Am ∈ Sn and b ∈ Rm.

After adding the rank constraint to the formulation (4.1), the problem (2.1) can
be analogically converted into a rank-constrained semidefinite problem of the form

min
X∈Sn

tr(DX)

tr(AiX) = bi, i = 1, ...,m,
X � 0,

rank(X) ≤ k,

(4.2)

where D,A1, ..., Am ∈ Sn, b ∈ Rm and k ∈ N is the desired rank of matrix variable
X.

The problem (4.1) is known as a semidefinite relaxation of the rank-constrained
semidefinite problem (4.2). However, standard solvers for semidefinite programs are
proved to converge to a high-rank optimal solution despite the existence of low-rank
solutions. Therefore, there arises the need to search for rank reduction methods.

As we mentioned in the previous section, the problem (2.2) can be reformulated as
a semidefinite program using the vectorization of matrix C−X, but the solvers cannot
handle this vectorization. Therefore we offer a new way of handling the Frobenius
norm in order to solve a semidefinite program, which can be solved efficiently using
interior-point methods.

Using the definition of the Frobenius norm (1.2) we can rewrite the problem (2.2)
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into the form

min
X∈Sn

tr
[
(C −X)(C −X)T

]
Xii = 1, i = 1, ..., n,
X � 0.

(4.3)

After introducing a new matrix variable Z satisfying

Z � (C −X)(C −X)T(4.4)

and thanks to the trace property (1.3) we obtain tr(Z) ≥ tr
[
(C −X)(C −X)T

]
and

the problem (4.3) can be equivalently reformulated as follows

min
X∈Sn

tr(Z)

Z � (C −X)(C −X)T ,
Xii = 1, i = 1, ..., n,
X � 0.

(4.5)

Using the Schur complement property (1.1), the inequality (4.4) is expressed as
a linear matrix inequality (LMI) of the form[

I (C −X)T

C −X Z

]
� 0.(4.6)

In the last step, we obtain the semidefinite problem

min
X∈Sn

tr(Z)[
I (C −X)T

C −X Z

]
� 0,

Xii = 1, i = 1, ..., n,
X � 0.

(4.7)

Applying the above procedure, the problem (2.1) can be equivalently reformulated
as a rank-constrained semidefinite problem of the form

min
X∈Sn

tr(Z)[
I (C −X)T

C −X Z

]
� 0,

Xii = 1, i = 1, ..., n,
X � 0,

rank(X) ≤ k.

(4.8)

The semidefinite formulation of the problem (2.1) enables using rank reduction
algorithms to solve the problem (4.8) since they were developed especially for the
semidefinite problems, as explained in the following chapter.
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5. Rank reduction algorithms.

5.1. Rank reduction via convex iteration. In [5, §4.4.2], it is proposed that
the rank-constrained problem (4.2) can be expressed as an iteration of semidefinite
problems where in the t-th iteration the semidefinite problems sequence (5.1) and
(5.2) is solved:

X∗t = argmin
X∈Sn

tr(DX) + ωt tr(U
∗
t−1X)

tr(AiX) = bi, i = 1, ...,m,
X � 0,

(5.1)

and

U∗t = argmin
U∈Sn

tr(UX∗t )

0 � U � I,
tr(U) = n− k,

(5.2)

where ω ≥ 0 is the relative weight and Ut−1 is the so-called direction matrix found
in the previous iteration. Usually U0 = 0 so that in the first iteration the problem
(5.1) becomes equivalent to the semidefinite relaxation (4.1) of the rank-constrained
problem (4.2).

In this algorithm the optimal objective values of (5.2) should satisfy

tr(U∗1X
∗
1 ) ≥ tr(U∗2X∗2 ) ≥ tr(U∗3X∗3 ) ≥ ...,(5.3)

where the objective function of the semidefinite problem (5.2) represents the sum of
n−k smallest eigenvalues of X∗t as introduced in [1]. This optimal value is reached for
the matrix U∗t that consequently enters the problem (5.1) in the (t+ 1)-th iteration.
Therefore, the iteration guarantees that it holds

n∑
j=k+1

λj(X
∗
1 ) ≥

n∑
j=k+1

λj(X
∗
2 ) ≥

n∑
j=k+1

λj(X
∗
3 ) ≥ ...(5.4)

Our natural effort is to achieve a matrix X∗t (for some t) with zero sum of its
n− k smallest eigenvalues, i.e.

tr(U∗t X
∗
t ) =

n∑
j=k+1

λj(X
∗
t ) = 0.(5.5)

This would also guarantee that the rank of matrix X∗t is at most k since symmetric
positive semidefinite matrices are diagonalizable. Theoretically, the equation (5.5)
does not have to be reached since the inequalities in (5.4) are not strict.

When we realize that the problem (4.8) can be expressed in its standard form

min
Y ∈S3n

tr(Y )

Yii = 1, i = 1, ..., n,

Y =

 X 0 0
0 I (C −X)T

0 C −X Z

 � 0,

rank(Y ) ≤ n+ k,

(5.6)
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we will consequently solve the semidefinite problems sequence (5.7) and (5.8):

Y ∗t = argmin
Y ∈S3n

tr(Y ) + ωt tr(U
∗
t−1Y )

Yii = 1, i = 1, ..., n,

Y =

 X 0 0
0 I (C −X)T

0 C −X Z

 � 0

(5.7)

and

U∗t = argmin
U∈S3n

tr(Y ∗U)

0 � U � I,
tr(U) = 2n− k,

(5.8)

where t is the number of iteration and ωt ≥ 0 is the relative weight.

5.2. Rank reduction algorithm for semidefinite problems. In [10], there
is introduced a rank reduction algorithm for the semidefinite problem (4.1). Given
a semidefinite matrix X, the task is to find such matrix X+ so that rank(X+) <
rank(X), or equivalently N (X+) ⊃ N (X).

This rank reduction algorithm guarantees to find a solution whose rank satisfies
the upper bound on rank

rank(X) ≤
⌊√

8m+ 1− 1

2

⌋
,(5.9)

where m is the number of linear equality constraints in the semidefinite problem (4.1).
Such a solution is guaranteed to exist as proved in [10].

Let us describe the algorithm. First of all, for any semidefinite matrix there exists
a matrix V ∈ Rn×r, where r = rank(X), such that

X = V V T .(5.10)

Since X is a symmetric positive semidefinite matrix, its spectral decomposition can
be expressed in the form X = QΛQT = (QΛ

1
2 )(QΛ

1
2 )T , where QQT = I and Λ =

diag(λ1, ..., λn). When we take the first r column of the matrix QΛ
1
2 , we obtain

matrix V from decomposition (5.10).
If we search for matrix X+ in the form

X+ = V (I + α∆)V T ,(5.11)

where ∆ ∈ Sn is a direction matrix and α ∈ R is a step size, we can see (5.11) as
a shift of matrix X

X+ = X + αV∆V T .(5.12)

Our intention is to choose α and ∆ such that X+ is a solution of (4.1) and
rank(X+) < rank(X). It is obvious that α 6= 0 so that X+ 6= X.

In order to maintain optimality, we require that tr(DX+) = tr(DX). After
substituting X+ with (5.12), we obtain condition

tr(V TDV∆) = 0.(5.13)
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In order to maintain feasibility, X+ needs to satisfy equality constraints tr(AiX) =
bi, i = 1, ...,m, from where we have condition

tr(V TAiV∆) = 0, i = 1, ...,m(5.14)

and X+ has to stay positive semidefinite which is fulfilled if and only if

I + α∆ � 0.(5.15)

Since we want X+ to be a shift of matrix X in the direction of matrices with a lower
rank, the matrix I + α∆ has to be also singular. To achieve this we take α = − 1

λ1
,

where λ1 is a maximum-magnitude eigenvalue of ∆.
Considering the rank-constrained semidefinite problem (4.8), we have to undergo

this procedure for matrix Y . This rank reduction algorithm is summarized below.

Algorithm 1: Rank reduction for semidefinite programs

Input: a solution X of a semidefinite problem (4.1);
while rank(X) > k do

compute the factorization X = QΛQT using Matlab function svd(X);

take the first r columns of matrix QΛ
1
2 as columns of matrix V ;

solve a feasibility problem with constraints (5.13) and (5.14) to find
a nonzero ∆;

find eigenvalues of ∆ using Matlab function eig(∆);
denote the maximum-magnitude eigenvalue of ∆ by λ1;

take α = − 1
λ1

;

define X = V (I + α∆)V T ;

end

6. Numerical results. Our experiments were performed in MATLAB R2019a
[11] on an Intel Core i7-4690 CPU (3.6 GHz). To solve semidefinite programming
problems, we used solver SDPT3 included in the CVX modelling system, a package
for specifying and solving convex problems [6], [7].

In the first experiment, we have compared the proposed semidefinite formulation
(4.7) of the problem (2.2) to the alternating projections algorithm and the precondi-
tioned Newton method. Using Matlab function gallery(’randcorr’,n) we gener-
ated 100 random correlation matrices C of order n = 10, n = 20 and n = 50. The
results of these experiments, displayed in Table 6.1, have shown that for bigger order
n, the alternating projections algorithm requires too many iterations. Therefore, it is
more effective to apply the preconditioned Newton method, as declared in [3].

Our semidefinite approach is worse than these two standard approaches concern-
ing computation time which is caused by the necessity to initialize the CVX modelling
system. Therefore, for the convex problem (2.2) (without the rank constraint), it is
more effective to apply the preconditioned Newton method. However, the semidefi-
nite program (4.7) found an optimal solution with the same (or even slightly lower)
value of the objective than the other two approaches, which was the purpose of this
comparison. We emphasize in each of 100 experiments this deviation was at the level
of 10−7 on behalf of the semidefinite approach.

The most beneficial advantage of the proposed semidefinite formulation (4.7) of
the problem (2.2) and using the SDPT3 solver (and the CVX modelling system) is
that it allows the rank-constrained semidefinite reformulation (4.8) of the original
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rank-constrained problem (2.1). Recall that our primary goal is to find the nearest
correlation matrix of the desired rank and the rank reduction algorithms included in
Section 5 were designed for rank-constrained semidefinite programming problems of
the form (4.2).

n
time
(AP)

time
(N)

time
(SDP)

‖Xap − C‖F ‖Xn − C‖F ‖Xsdp − C‖F
10 0.005 s 0.005 s 0.107 s 2.585818121 2.585818303 2.585818104
20 0.008 s 0.005 s 0.172 s 6.634680585 6.634680745 6.634680550
50 x 0.005 s 0.107 s x 20.3988005 20.398780

Table 6.1
Comparison between finding a solution to the problem (2.2) by the alternating projections algo-

rithm (AP), the preconditioned Newton method (N) and semidefinite programming (SDP). There are
average values of computation time and objective function counted from 100 generated experiments.

In the next experiment, we generated a random correlation matrix of order 100,
and without loss of generality, we considered a three-factor model, which means we
solved the problem (4.8) for k = 3. In order to determine the rank of the solution,
we computed its eigendecomposition using Matlab function eig(.). Considering the
eigenvalues lower than 10−6 to be zero, the rank was established as the number of its
non-zero eigenvalues. Let us note that considering another tolerance for zero eigen-
values, the results would look slightly different, but the comparison of the methods
would not change.

In the first step, we solved the rank-constrained semidefinite problem (4.8) via
the convex iteration (5.7) and (5.8). Since one of the iterating problems is bi-criteria,
it was necessary to deal with the choice of relative weight ωt. We set this weight to
be an increasing sequence of the number of iteration t and compared the behaviour of
the solution. Figure 6.1 and Table 6.2 show that for a faster increasing sequence, the
convex iteration requires fewer iterations, and leads to a solution with the comparable
value of the objective function.

Consequently, we applied the rank-reduction algorithm to solve the problem (4.8).
As displayed in Fig. 6.1 and Table 6.2, the rank reduction algorithm led to a much
better low-rank solution of the problem (4.8) than the convex iteration. The increment
of the value of the objective function of (2.1) in the convex iteration is caused by the
low weight put on the minimized Frobenius norm in the bi-criteria problem (5.7).
From this point of view, the rank reduction algorithm should be preferred when
solving a rank-constrained semidefinite problem because of its ability to control the
value of its objective.

Convex Iter.
ω = 2t

Convex Iter.
ω = 10t

Convex Iter.
ω = t

Rank
Reduction

# iterations 8 3 72 8
‖X − C‖F 55.90 56.09 55.80 11.18

Table 6.2
Comparison between the rank reduction algorithm and the convex iteration for ωt = 2t, ω = 10t

and ω = t with t being the number of iteration, n = 100 and k = 3.

7. Conclusions. We have proposed the semidefinite reformulation (4.7) of the
problem (2.2) and demonstrated that the semidefinite approach leads to compara-
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Fig. 6.1. Trade-off between the rank and the objective function value of the solution found by
the rank reduction algorithm (green) and the convex iteration for relative weights ωt = 2t (red),
ωt = 10t (blue) and ωt = t (black) with t being the number of iteration, where n = 100 and k = 3.
The points represent solutions in particular iterations. The starting point [100, 0]T represents the
given full-rank correlation matrix C.

ble solutions with the existing approaches by running several experiments. This
semidefinite reformulation enabled us to equivalently reformulate the original non-
convex problem (2.1) into the rank-constrained semidefinite problem (4.8), which can
be solved by rank reduction algorithms. When applying the convex iteration (5.7)
and (5.8), the Frobenius norm that measures the ”nearness” of the low-rank corre-
lation matrix to the given matrix, is relatively large because of the low ability of
this algorithm to control the value of the objective sufficiently. Nevertheless, the
rank reduction algorithm (Algorithm 1) provided a much better solution and can be
recommended to solve rank-constrained semidefinite problems. It is an object for
further research if there exists a correlation matrix of the given rank which would be
”nearer” to the given correlation matrix than the one found in this work. It has shown
that it is reasonable to deal with finding new methods for solving rank-constrained
semidefinite problems.
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