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WATER SUSPENSION INFILTRATION WITH ADSORPTION IN
UNSATURATED-SATURATED POROUS MEDIA∗

JOZEF KAČUR† AND PATRIK MIHALA‡

Abstract. Transportation of contaminated water suspension (water and silt) in unsaturated-
saturated porous media is considered. Moreover, the water in suspension is contaminated and this
contaminant is adsorbed by the porous media matrix. The deposition of silt in the matrix is charac-
terized by a filtration function, and the contaminant adsorption is modeled by a sorption isotherm.
The mathematical model includes a coupled system for the water suspension infiltration, silt, and
contaminant (uniformly mixed in the water) transport with dispersion and their deposition and ad-
sorption in porous media. Filtration function expresses the rate of silt deposition depending on the
amount of (immobile) deposited silt. Contaminant adsorption is modeled in terms of the contami-
nant concentration in suspension, the amount of adsorbed contaminant, and the rate of adsorption.
The main goal is to develop a suitable numerical approximation that can be applied to the solution
of direct and inverse problems. In the numerical experiments, we demonstrate the correctness and
the effectiveness of the used method.
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1. Introduction. The flow of water suspension (silt particles mixed in water)
in porous media was modeled and intensively discussed last decade. Silt particles are
retained at the pores. Some of them become immobile and some of them continue
transportation. Kinetics of particle retention depends on the concentration of parti-
cles in suspension, on the amount of already retained immobile particles and on the
speed of water suspension. The retention process is much more complex, influenced
also by the ionic strength of microparticles and physicochemical mechanisms including
the contact with porous media. Also, repulsive interaction occurs, and thus both phe-
nomena, deposition, and release of particles, participate. For practical applications,
not all attributes and influences could be included in the model. The deposition of
particles based on the mechanical mechanism modeled in terms of filtration function
was presented by Herzig et all [13]. This model was simple, expressing just con-
servation of the mass of deposited particles and particles in suspension. There, the
kinetics of particle retention is dependent on their concentration in water suspension
and level of retained ones expressed in terms of the filtration function. Determination
of filtration function (dependent on the amount of retained particles) was discussed
in a series of papers, see [14], [11], and citations there. In spite of elegant analysis,
the used method requires very special (smooth and obeying some structural condi-
tions) input data which represent an inflow/outflow measurements of concentration.
A more complex model has been discussed in [12] (see also citations there) where
transport of silt solute together with particle transport was considered containing de-
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position/release phenomenon. The kinetics of deposition/release is expressed in terms
of silt concentration and water velocity changes. Suspension flow is assumed in fully
saturated porous media. The flow speed in [13] is constant and in [12] is assumed in
an analytical form.
Besides the filtration property of porous media also the distribution of particle depo-
sition in porous media is of interest.

Fig. 1.1. Sample with its cross-section

In our contribution, we discuss a more complex 3D model for suspension flow
where we allow also partial saturation. The contaminant in suspension is transported
and absorbed by the matrix. Both deposited silt and adsorbed contaminant change
porosity and hydraulic permeability. The suspension flow in unsaturated porous me-
dia is governed by gravitation and capillarity phenomenon which depends on sus-
pension saturation in porous media. Thus, the complex system is strongly coupled.
Mathematical models for the flow of water and contaminant transport is discussed in
monographs, e.g. [8], [9], [10] and numerical modeling with inverse problems we have
realized in [6] for 1D case. The governing equations of our system consist of a strongly
nonlinear and degenerate elliptic-parabolic system. The suspension flow is governed
by Richard’s type equation where capillary pressure and hydraulic permeability versus
suspension saturation is assumed in an empirical model by van Genuchten/Mualem
[4]. Moreover, these fundamental flow relations and porosity depend on deposited
silt, adsorbed contaminant. Here, we do not consider the heat energy transport with
its change and influence on the viscosity. The heat exchange between the porous me-
dia matrix and infiltrated suspension in the pores has been analyzed in our previous
contribution [15] where only clean water has been considered.

In this contribution, we consider contaminant adsorption and only silt deposition
mode. Our main goal is the development of a correct and efficient numerical method
for solving the direct (when all model parameters are available) and inverse problems
in which we determine the adsorption isotherm and the filtration function. There,
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the inflow/outflow measurements in laboratory experiments are used. In the solution
of inverse problems, we consider the 3D sample in cylindrical form. The 3D sample
enables us to use a large scale of experimental scenarios choosing suitable boundary
conditions. We choose optimal of them with respect to the reliability of determined
model parameters and the technical simplicity of realized additional measurements
needed for the inverse method. The experiment is schematically drawn in Fig. 1.1.

Our numerical method is based on operator splitting and finite volume method
with flexible time discretization where successively along with small-time interval we
separately solve suspension flow, transport of silt, and contaminant with deposition
and adsorption. In the numerical approximation of the suspension flow model we
follow the strategy introduced in [3] and also used in well-known software Hydrus (see
[2]).

In Section 2 we present the mathematical model and in Section 3 its transforma-
tion to the cylindrical coordinates. In Section 4 we discuss the numerical approxi-
mation of the proposed model. The solution of the inverse problems is presented in
section 5. The solution of direct complex problem is introduced in Section 6 with its
graphical interpretation.

2. Mathematical model.

2.1. Suspension flow model. The flow is modeled by hydraulic permeability
K = Ksk(h), with

Ks = κ0
ρg

µ
,

where ρ and µ are the density and the dynamical viscosity of the suspension, respec-
tively. The coefficient κ0 depends only on the structure of the porous medium and
g is the gravitational acceleration. Denote by θ suspension saturation, θf amount of
silt in suspension, f silt fraction in the suspension, and by h the pressure head of
suspension. The model function k(h) is linked with the capillary forces dependent
on the corresponding effective saturation θ̄ (see van Genuchten [4]). We note that
these parameters depend on suspension deposited material S = (S1, S2) where S1 is
adsorbed contaminant, and S2 is deposited silt. By Cw we denote contaminant con-
centration in suspension. By ρw, ρs and ρm we denote the densities of water, silt and
matrix, respectively. By κ we denote the adsorption kinetics rate coefficient. Let Ψ1

denote the adsorption isotherm and Ψ2 the infiltration function which will be speci-
fied below. We use D for dispersion matrix linked with our porous media. The flux
of water suspension ~q0 is the global flux of water and silt together and is driven by
gravitation and capillary pressure, expressed in terms of hydraulic permeability and
saturation using van Genuchten-Mualem empirical model. We consider K in more
general form

K(Cw, S, h) =
(θs − θr − (S1 + S2))

θs
Ks(Cw, S, h) · k(h),

since the deposited material decreases the original porosity θs. Here, Ks = K(Cw, S, 0)
is the hydraulic permeability in fully saturated porous media. We consider k in the
van Genuchten/Mualem empirical form (see [4])

k(θ̄) = θ̄
1
2 (1− (1− θ̄ 1

m )m)2 (2.1)
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where

θ̄ =
θ

θs − θr − (S1 + S2)
(2.2)

with (originally) fully saturated θs and residual θr water contents, respectively. The
capillary pressure vs. saturation (fundamental relation) we consider in the form

θ̄ =
1

(1 + (αh)n)m
, (2.3)

where n > 1, m = 1 − 1
n and α < 0 are the soil parameters in the van Genuchten-

Mualem (empirical) ansatz (see [1], [4]).
In the saturated zone we have (Darcy’s law) k(h) ≡ 1. The influence of dynamical
viscosity on Cw, S can be found on tables for discrete values of variables and we use
a spline interpolation of them in our computations. The Richard’s type equation
modelling the contaminated suspension flow reads as follows

∂tθ +∇.(qw + qs) + ∂t(S1 + S2) = 0, (2.4)

∂t(θCw) +∇.(qwCw − θD∇Cw) + ρm∂tS1 = 0, (2.5)

∂tS1 = κ(Ψ1(Cw)− S1), (2.6)

∂t(θf) +∇.qs + ∂tS2 = 0, (2.7)

∂tS2 = Ψ2(S2)θf. (2.8)

The suspension flux is

~q0(x, t) = −K(Cw, S, h)

(
∇h−

(
1− f + f

ρs
ρw

)
ez

)
, θ̄ =

θ

θs − θr − S1 − S2
, (2.9)

then the water and silt flux is

qw = (1− f)~q0, qs = f ~q0 − (1− f)(D0θI + θD).∇f, (2.10)

where D0 is molecular difusion coefficient and I is identity matrix.

2.2. Contaminant and silt transport model. The flux of dissolved contam-
inant with concentration Cw denoted by JCw

is

JCw = θ(vCw −D∇Cw). (2.11)

Here, v is the seepage velocity of the contaminated suspension linked with the flux
~q0 = vθ in the suspension flow model. Denote by D the dispersion matrix with the
components

Dij = (D0 + αT |v|)δij +
vivj
|v|

(αL − αT ),
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where αL and αT are longitudinal and transversal dispersive coefficients, respectively,
δij is the Kronecker delta and D0 is the molecular diffusion coefficient. Then, the
contaminant transport model is (2.5). The adsorption of the contaminant is gov-
erned by the ODE (2.6) (see [1]). The adsorption isotherm Ψ1 belongs to a chosen
class of functions with tuning parameters underlying for determination via solution
of corresponding inverse problem.

The conservation of silt in suspension is governed by (2.7) and (2.8). The filtra-
tion function also belongs to a chosen class with tuning parameters underlying for
determination. We use a simple form Ψ2(S2) = 1

ā+b̄S2
with tuning parameters ā, b̄.

In solution of inverse problems we consider axially symmetric cylindrical sample and
thus we rewrite our model in cylindrical coordinates.

3. Mathematical model in cylindrical coordinates. Our sample is a cylin-
der with the radius R and the height Z. We transform the mathematical model using
cylindrical coordinates (r, z).

3.1. Flow of contaminated water. The governing PDE for infiltration (in
gravitational mode) reads as follows

∂tθ(h) =
1

r
∂r(rK(Cw, S, h)∂rh− (1− f)(D0θ + θD1,1∂rf + θD1,2∂zf))

+∂z(K(Cw, S, h)(∂zh− ξ)− (1− f)(D0θ + θD2,1∂rf + θD2,2∂zf))− ∂t(ρmS1 + S2),

where

ξ = 1− f + f
ρs
ρw
.

The suspension flux in cylindrical coordinates is of the form

~q0 = −(qr, qz)T , (3.1)

qr = K(Cw, S, h)∂rh, q
z = K(Cw, S, h)(∂zh− ξ).

3.2. Contaminant transport by water. A matrix D is of the form

D =

(
D1,1 D1,2

D2,1 D2,2

)
=

(
αL(qr)2 + αT (qz)2 (αL − αT )(qrqz)
(αL − αT )(qrqz) αL(qz)2 + αT (qr)2

)
1

|~q0|
. (3.2)

Denote by

QCr = −qrCw + θ(D1,1∂rCw +D1,2∂zCw) +DoθCw, (3.3)

QCz = −qzCw + θ(D2,1∂rCw +D2,2∂zCw) +DoθCw. (3.4)

Then, the contaminant transport reads as

∂t(θCw)−
(

1

r
∂r(rQCr) + ∂z(QCz)

)
= −ρm∂tS1. (3.5)
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3.3. Silt transport. We define silt fluxes Qfr, Qfz in the same way as QCr,
QCz, where we replace Cw by f . Then we rewrite the heat transport equation re-
placing Cw, QC

r, QCz by f,Qfr, Qfz and obtain contaminant transport equation in
cylindrical coordinates.

These governing equations are completed by corresponding boundary conditions
including the external driven forces. For simplicity, we assume that on the boundary
there are prescribed fluxes or values of the unknown h,Cw, f , and a combination of
them. Also, water and heat energy transmission from externally driven forces into
facade could be considered and the corresponding transmission coefficient could be
scaled by the solution of the inverse problem.

4. Numerical method. We approximate the time derivative by backwards dif-
ference and then we integrate our system over the angular control volume Vi,j with
the corners ri±1/2, zj±1/2 and with the length (∆r,∆z) of the edges. Then, our ap-
proximation (by FV method) in the inner grid point (ri, zj) at the time t = tk and
used abbreviation K(U) := K(Ck−1

w , Sk−1, h) is

θ(h)− θ(hk−1)

τ
∆r∆z −∆z

ri+1/2

ri

[
K(Ui+1) +K(U)

2

(
hi+1 − h

∆r

)]
+ ∆z

ri−1/2

ri

[
K(U) +K(Ui−1)

2

(
h− hi−1

∆r

)]
−∆r

[
K(Uj+1) +K(U)

2

(
hj+1 − h

∆z
− ξ
)]

+ ∆r

[
K(U) +K(Uj−1)

2

(
h− hj−1

∆z
− ξ
)]

= −

(
Sk

1 − Sk−1
1

τ
+
Sk

2 − Sk−1
2

τ

)
∆r∆z

(4.1)

where only changes of {i, j} are indicated.

4.1. Quasi-Newton linearisation. In each (ri, zj) we linearise θ in terms of h
iteratively (with iteration parameter l) following [3] in the following way

θ(hk,l+1)− θ(hk−1)

τ
= Rk,l h

k,l+1 − hk,l

τ
+
θk,l − θk−1

τ
, (4.2)

where

Rk,l =
∂θk,l

∂hk,l
= (θs − θr − S1 − S2)(1− n)α(αhk,l)n−1(1 + (αhk,l)n)−(m+1)

for hk,l < 0, else Rk,l = 0. We stop iterations for l = l∗, when
∣∣hk,l∗+1 − hk,l∗

∣∣ ≤
tolerance and then we put hk := hk,l

∗+1. Finally, we replace the non-linear term
K(Uk) by K(Uk,l), then our approximation scheme becomes linear in terms of hk,l+1.
Generally, we speed the iteration by the special construction of starting point hk,0 ≈
hk−1, and using suitable damping parameter in solving the corresponding linearized
system. Applying operator splitting method in successive solution for adsorption and
deposition at the time section t = tk we start from t = tk−1 and use the obtained
flow characteristics from t = tk for θk, hk, ~qk and for matrix Dk. We use the same
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approximation strategy for the transport of silt and contaminant. To obtain approx-
imation linked with the boundary points we apply the same strategy of the finite
volume method, where the control volume Vi,j is only half or quarter of the ∆r∆z
corresponding to the inner grid points. All iterations we realize in the flow part of
the model thanks to the operator splitting strategy. The other model variables are
taken from the time section k−1. The approximation of other model equation is very
similar and must be done carefully for flux ~q0 and matrix D.

5. Inverse problems. The determination of parameters Ks, n, α, αL, αT we
have discussed in our previous contributions (see [5]).

We shortly discuss the determination of adsorption function Ψ1 with the kinetic
rate coefficient κ and the filtration function Ψ2. We use the following experimental
scenario. The sample cylinder is flow isolated on the top. The cylinder mantel is
immersed in the bigger cylinder with contaminated suspension with concentration
Cw = 0.035. The sample is dry h = −200. On the sample boundary, hydrostatic
pressure is affected by the suspension. The suspension level is originally with the
height H above the top of the sample, see Fig 1.1. We measure the time evolution
of the cumulated outflow concentration which is our characteristics for the inverse
problem method. The outflow proceeds through the sample bottom with half radius
(R1 = R/2). In our experiment we use the adsorption with Langmuir isotherm
Ψ1(Cw) = aCw

b+Cw
, where {a,b} are tuning parameters underlying for determination.

We use the computed characteristics with the starting model parameter ps = [a, b, κ].
Then, we add some noise to the computed characteristics (representing measured
characteristics) and forget the used model parameters. Iteratively we compute the
optimal model parameters minimizing the discrepancy of computed and measured
characteristics.

These optimal parameters we consider as required model parameters in our com-
plex model. The obtained model parameters are collected in the Tab 5.1 together
with the starting points used in the iteration procedure. The computed and modified
characteristics with noise are drawn in the Fig. 5.1.

Fig. 5.1. Time evolution of the contaminant concentration of the cumulated suspension in the
outflow chamber (blue) and with random noise (red)
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We test the reliability of the obtained model parameters by choosing different
starting parameters in the iteration procedure and changing the level of added noise.
These facts and the sensitivity of characteristics on model parameters create the
ground for suitability of suggested experimental scenario.

Table 5.1
Optimal values of a, b, κ for ps = [2, 1, 0.05] with noise 0.01

pstart popt
[1, 0.5, 0.01] [1.9901, 0.9484, 0.04934]
[1, 0.5, 0.01] [1.9319, 0.9398, 0.05069]
[3, 0.5, 0.01] [2.0059, 1.0529, 0.05099]
[3, 0.5, 0.01] [2.0774, 1.0515, 0.04929]
[1, 2, 0.01] [1.9904, 1.0384, 0.05024]
[1, 2, 0.01] [1.9943, 0.9523, 0.04971]
[3, 2, 0.01] [2.0555, 1.0427, 0.04930]
[3, 2, 0.01] [1.9226, 1.0558, 0.04976]
[1, 0.5, 0.1] [1.9303, 1.0381, 0.05010]
[1, 0.5, 0.1] [1.9190, 1.0596, 0.04943]
[3, 0.5, 0.1] [1.9801, 0.9355, 0.04907]
[3, 0.5, 0.1] [1.9697, 1.0707, 0.04982]
[1, 2, 0.1] [1.9493, 1.0306, 0.05079]
[1, 2, 0.1] [1.9372, 1.0650, 0.05028]
[3, 2, 0.1] [1.9214, 0.9552, 0.04981]
[3, 2, 0.1] [2.0414, 1.0373, 0.04969]

The determination of model parameters for the function Ψ2(S2) = 1
ā+b̄S2

proceeds
in a similar way. Here in the outer cylinder, we use the suspension with a given
constant fraction f = 1/3 . On the outflow, we measure the silt fraction evolution of
cumulated outflow suspension.

6. Direct solution of our complex model. Finally, we present the solution
of the complex system with suspension flow, silt deposition and also with contaminant
adsorption. We will use the following model data ([CGS]) θ0 = 0.38, θr = 0, Ks =
2.4 10−4, α = 0.0189, n = 2.81, g = 981, H(0) = 5, D0 = 0.01, αL = 1, αT = 1

10 , cv =
cm = 1,κ = 0.05, ρm = 1, a = 2, b = 1, Ψ2(S2) = 1

150+300S2
. The Ψ2 function is rather

an intensive filtration function, which stops the infiltration in a relatively short time.
In Fig. 6.1, Fig. 6.2 and Fig. 6.3 we present the evolution of pressure head, effective
saturation, silt fraction in suspension, deposited silt, contaminant concentration in
suspension, and adsorbed contaminant in 3 time sections. We use t1 = 30s, t2 = 250s,
t3 = 813s. The used parameters in the filtration function cause the quick filling
of the pores by the deposited silt near the infiltration boundary. In this case, the
continuation of the infiltration process stopped after a short time. Inside the sample,
there is a redistribution of the saturation leaving part of the sample suspension free
as you can see in Fig. 6.3. Moreover we include figures with level contours of h,θef ,f
and S2 in the corresponding time sections as we can see in Fig. 6.4. For time t = 30s
we use a red dashed line, for time t = 250s we use a blue dash-dotted line and for
time t = 813s we use a green solid line.
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Fig. 6.1. Distribution of the entity values inside the sample at the time t = 30s.

Fig. 6.2. Distribution of the entity values inside the sample at the time t = 250s

7. Summary. Numerical modeling of contaminated suspension infiltration into
unsaturated porous media is discussed. The mathematical model includes silt and
contaminant transport with silt deposition and contaminant adsorption.

The adsorbed contaminant, deposited silt, and adsorbed contaminant influence
the hydraulic permeability and degrades the porosity.

The efficient numerical method is developed on the base of operator splitting,
flexible time discretization, and finite volume method. In our numerical experiments,
we have demonstrated the suitability of the proposed method for solving direct and
inverse problems. A laboratory experiment scenario is proposed to determine the
adsorption and filtration functions and rate coefficient of adsorption.

In the direct solution of our complex model, we demonstrated the correctness and
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Fig. 6.3. Distribution of the entity values inside the sample at the time t = 813s

Fig. 6.4. Time evolution of the contours for t = 30s red dashed line, for t = 250s blue dash-
dotted line and for t = 813s green solid line

efficiency of our numerical method for solving the direct and inverse problem.
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