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MODELLING OF MICRO- AND MACRO-FRACTURE
IN CEMENTITIOUS COMPOSITES

JIŘ́ı VALA ∗

Abstract. Frequent utilization of composites with a cementitious matrix, reinforced by fibres
of different origin, as constructive parts in civil engineering motivates the reliable computational
prediction of their mechanical properties, namely of the risk of initiation and development of micro-
and macro-fracture. This paper demonstrates the possibility of deterministic prediction of such
physical process, applying the dynamical approach with the modified Kelvin viscoelastic model and
cohesive contacts together with the method of discretization in time, using 3 types of Rothe sequences,
and the extended finite element method (XFEM).
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1. Introduction. Mechanical properties of composites with a cementitious ma-
trix and fibre reinforcement depend on characteristics of particular components, their
interfaces and localization and directional distribution of fibres due to proposed loads.
An increasing number of projects in civil engineering working with such composites
as constructive parts motivates the development of reliable prediction of crack forma-
tion, expectable namely as consequences of concentration of tension stresses. Such
prediction cannot be based on simple calculations well-known from linear elasticity
and related fracture mechanics. Using the nomenclature of [24], the above introduced
materials are from the class of quasi-brittle ones where two stages of damage can be
recognized: i) formation of micro-fractured zones, reducing the stiffness of a structure,
ii) creation of macro-cracks, whose later opening and closing is conditioned by the co-
hesive characteristics of new interfaces. As another serious problem, a reasonable
setting of material parameters on the macroscopic scale, supported by appropriate
experiments, can be seen; some (typically incomplete) data on material structure, as
random or intentionally oriented fibre directions; problems of this kind, preferring non-
destructive or low-invasive testing approaches (as direct photographic, radiographic
and tomographic or indirect electromagnetic ones, working with stationary magnetic
ar harmonic electromagnetic fields), are discussed in [27].

This paper will try to find a compromise between an above sketched multidis-
ciplinary group of problems and the need to design and implement rather simple
computations in the following sense:

• We shall come out from the principle of energy conservation from classical
mechanics, incorporating the kinetic and deformation energy, together with
certain energy dissipation, similarly to [16]. For the strain-stress relations we
shall start with the linearized viscoelastic Kelvin law.

• The initiation of some micro-cracks will be incorporated using the approach
of [20] and [10], working with the non-local Eringen model [7]. The recent
result [8] on the ill-posedness of this model for boundary conditions significant
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in practical applications, is not addressed to our formulation fortunately; for
the detailed analysis see [28].

• The matrix / fibre interfaces, as well as the interfaces inside the matrix, or
even inside any fibre, depending on the process of activation of macro-cracks,
will be assumed to satisfy the cohesive model by [19], [3], [13], [14] and [15].

• For effective practical computations we shall use the method of discretiza-
tion in time, based on the Rothe sequences, end the extended finite element
method (XFEM), working with the adaptive enrichment of the set of base
functions near above mentioned geometric singularities. This method (in-
cluding numerous modifications with their own names and special notations)
has its own rich history; the progress in several decades can be traced from the
comparison of pioneering works [1], [2] and [9] with the later monograph [12]
and the recent articles [16] and [25]. However, we shall pay attention namely
to the unconditional convergence properties of the method of discretization
in time, i. e. those independent of the choice of XFEM adaptive strategies,
as discussed by [11].

Some additional simplifications are motivated by the effort to avoid formally com-
plicated, reader-unfriendly formulae and technical difficulties in proofs, with regard
to the limited extent of this paper.

2. Physical and mathematical background. For simplicity, let us consider a
material specimen occupying an open set Ξ with its boundary ∂Ξ in the 3-dimensional
Euclidean space R3, compound from a finite number of domains Ω× with their bound-
aries ∂Ω× in the following sense:

• The union of all domains Ω× is identical with the closure of the domain Ω in
R3.

• Every boundary ∂Ω× consists of a part belonging to ∂Ξ (external boundary)
and from that non-belonging to ∂Ξ (internal boundary); the 1st one will be
denoted by Ψ×, the 2nd one by Λ×. (Some of them can be empty.) Cohesive
interface conditions will be applied later on Λ×.

• Every boundary part Ψ× is the union of its disjoint subsets Θ× and Γ×. (Some
of them can be empty.) Homogeneous Dirichlet boundary conditions will be
then prescribed on Θ× (supported boundary part), unlike Neumann boundary
conditions (inhomogeneous in general) on Γ× (unsupported boundary part).

• The unions of above introduced sets Θ×, Γ× and Λ× are certain sets Ω, Γ
and Λ. Similarly the union of all Ω× generates an open set Ω (i. e. Ξ without
interior boundaries) with its boundary ∂Ω.

A potential modification for another finite dimension than 3 (as 2 in the illustrative
example of [29]) is left to the curious reader.

In the following text we shall work with the Cartesian coordinate system x =
(x1, x2, x3) in R3 and with the time t from the time interval [0, T ] of the prescribed
positive length T ; the limit passage T →∞ is possible, but not handled here explicitly.
For simplicity we shall introduce the notation

(ϕ,ψ) =

∫
Ω

ϕ(x) · ψ(x) dx

(in the Lebesgue sense) where the central dot refers to the scalar product of vectors
ϕ(x) and ψ(x) from R3, or (here always symmetric) matrices from R3×3

sym , as well as
the notations

〈ϕ,ψ〉Γ =

∫
Γ

ϕ(x) · ψ(x) ds(x) , 〈ϕ,ψ〉Λ =

∫
Λ

ϕ(x) · ψ(x) ds(x)
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with the central dot applied to vectors from R3 in both cases here (considering in-
tegration in the Hausdorff sense). For now we shall assume a sufficiently smooth
boundary and such appropriate choice of ϕ(x) and ψ(x) that all above introduced
integral exist. The upper dot symbol will be reserved for time derivatives, i. e.
∂/∂t. For the brevity we shall use ∅ instead of (0, 0, 0). For an arbitrary virtual
displacement v(x) = (v1(x), v2(x), v3(x)), related to the initial geometric configura-
tion, i. e. for t = 0, such that v(x) = ∅ for any x ∈ Θ (in the sense of traces), we
shall also consider a virtual strain ε(v), introduced by the usual linearized relation
2εij(v(x)) = ∂vi∂xj + ∂vj∂xi for any i, j ∈ {1, 2, 3} and x ∈ Ω. We shall also work
with the notation δv(x) for the differences of triples of values v(x) from the neighbour
domains Ω×. The same notation is applicable to arbitrary ṽ(x, t), dependent also on
t ∈ I, replacing v(x) here.

Let us assume that the volume load f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) for any
x ∈ Ω and t ∈ I and the surface load g(x, t) = (g1(x, t), g2(x, t), g3(x, t)) for any
x ∈ Γ and t ∈ I is prescribed. Our aim is to find such displacement u(x, t) =
(u1(x, t), u2(x, t), u3(x, t)) for any x ∈ Ω and t ∈ I, related to the initial stationary
geometric configuration, thus u(x, 0) = ∅ and u̇(x, 0) = ∅ for any x ∈ Ω, (which can
be seen as the couple of Cauchy homogeneous initial conditions), that u(x, t) = ∅ for
any x ∈ Θ and t ∈ I. Introducing the notation σ(x, t) for a symmetric stress matrix
from R3×3

sym for any fixed x ∈ Ω and t ∈ I and τ(x, t) for a vector of contact load from
R3 for any fixed x ∈ Λ and t ∈ I, the weak form of the principle of conservation of
energy from classical mechanics reads

(v, ρü) + (ε(v), σ) = (v, f) + 〈v, g〉Γ + 〈δv, τ〉Λ on I(2.1)

(a variable t is not highlighted here, this will be true even for x later) for any virtual
displacement v; ρ here means the material density, variable in Ω in general. The
classical differential formulation can be derived, using some facts from the theory of
distributions, following [29], Sections 2 and 4 (handling 2 model problems of the quasi-
static case in details). However, some appropriate properties of prescribed functions
are needed, as well as of virtual displacements v, taken from some subspace of the
Sobolev space W 1,2(Ω) – cf. Section 3 here.

To be able to compute u from (2.1), supplied by the above introduced boundary
and initial conditions, we need to express σ and τ from appropriate constitutive
relations containing u, in addition to a priori known material characteristics. Here we
shall start with the Kelvin viscoelastic relation

σ = γCε(u) + αCε(u̇) on Ω× I(2.2)

where C is the symmetric stiffness tensor with values from R
(3×3)×(3×3)
sym , as usual in

the linear elasticity, containing (in general, for a non-polar continuum) 21 independent
characteristics, whose number can be reduced to 2, well-known as the Lamé factors
(or the Young modulus and the Poisson constant alternatively), in the isotropic case,
and α means the structural damping factor; the damage factor γ < 1 then evaluates
the loss of stiffness caused by micro-cracking. The evaluation of γ can be done using
the formula

γ = 1− ω(|A(σ(., t̃)|3×3) for t̃ ∈ [0, t] on Ω× I(2.3)

where |.|3×3 refers to the norm in R3×3
sym ; ω should incorporate the material character-

istics obtained from laboratory experiments, e. g. the tensile strength. An operator
A(w(x)), compatible with [10], must be defined carefully, to incorporate the damage
history, for a appropriate function w(x) of a variable x ∈ Ω, as an integral
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A(w(x)) =

∫
Ω

K(x, x̃)w(x̃) dx̃(2.4)

where K(x, x̃) is an a priori given operator kernel. Selected possibilities of its practical
constructions, supported by the radial basis functions from [17], are discussed in [28].
In particular, for a sufficiently low |A(σ(., t̃)|3×3 in (2.3) we have always γ = 1, thus
(2.2) refers to the standard linear parallel viscoelastic model; this may be true on
some parts of Ω only (where no micro-cracking occurs yet).

Subsequently, every opening and closing of micro-cracks can be expressed using
the relation

τ = λ(δu) on Λ× I ;(2.5)

potential forms of a just introduced function λ can be found in [13] and [14]. Especially
λ(δu) = λ0 δu with a real constant λ0 → ∞ forces δu → ∅ on Λ, i. e. the continuity
of u without no active macro-cracking. Finally, inserting (2.5), (2.3) and (2.2) back
to (2.1), we receive an integral form of a system of partial differential equations of
evolution of hyperbolic type with only one vector-valued unknown function u

(v, ρü) + (ε(v), αCε(u̇)) + (ε(v), γCε(u))(2.6)

= (v, f) + 〈v, g〉Γ + 〈δv, λ(δu)〉Λ on I ;

γ is supposed (for brevity) to come from (2.3). There are only 2 sources of its non-
linearity, uncovered by the classical book [21]: the evaluations of γ (for micro-cracking)
and of λ (for macro-cracking). Especially the high nonlinearity of the 1st one must be
handled carefully, both from the point of view of existence and convergence questions
and from that of practical XFEM calculations – cf. [10] and [29], Section 6. The same
comment can be addressed to (2.7), (2.8), etc., too.

Now we can sketch the heuristic time discretization, elaborated in the following
section. Let us divide I into a finite number of m subintervals Is = {t ∈ I : (s−1)h <
t ≤ sh} with s ∈ {1, . . .m} where h = T/m (the dependence of h, Is and other quan-
tities on m is not emphasized explicitly). Clearly this is prepared for the limit passage
m → ∞ (or h → 0+). Let us apply the approximation of u using a linear Lagrange
spline on I, working with certain (a priori unknown) nodal values u0, u1, . . . um, which
generates the piecewise linear function um on I, and the approximation of u using
a simple function ūm on I, taking right-hand-side values on every Is, or a simple
function ŭm, taking left-hand side values (thus ŭm can derived as h-retarded from ūm

formally). Respecting the initial conditions, let us define the 1st and 2nd differences
Dus = us − us−1 and D2us = Dus − Dus−1 for each s = {1, . . . ,m), taking u0 = ∅
and Du0 = ∅. Therefore we have

um(t) = us−1 +
t− (s− 1)h

h
Dus , ūm(t) = us , ŭm(t) = us−1

assuming t ∈ Is, s = {1, . . . ,m).
However, such simple discretization cannot be applied to (2.6) directly. For all

integrable functions φ(t) on I let us introduce the additional notation [φ](t), referring
to the integral of φ(t̃) over all t̃ between 0 and t. Then (2.6) can be converted into its
integro-differential form

(v, ρu̇) + (ε(v), αCε(u)) + [(ε(v), γCε(u))](2.7)

= [(v, f)] + [〈v, g〉Γ] + [〈δv, λ(δu)〉Λ] on I ;

Then a natural approximation of (2.7), based on the slight modification of the Euler
implicit method, taking 2 terms disturbing linearity from preceding time steps, is



MODELLING OF MICRO- AND MACRO-FRACTURE IN CEMENTITOUS COMPOSITES185

(v, ρu̇m) + (ε(v), αCε(ūm)) + [(ε(v), γ̆mCε(ūm))](2.8)

= [(v, fm)] + [〈v, gm〉Γ] + [〈δv, λ(δŭm)〉Λ] on I ;

here γ̆m means γ coming from (2.3) and (2.2) evaluated for ŭm replacing u (similarly
γs, γs−1, etc., can be understood) and fm and gm are the results of the Clémens
quasi-interpolation of f and g, implementing the mean values f∗s and g∗s on Is, s ∈
{1, . . . ,m}; for more details see [29]. In terms of the values u1, . . . , um, for each
s ∈ {1, . . . ,m} (2.8) gives

1

h
(v, ρDus) + (ε(v), αCε(us)) + h

s∑
r=1

(ε(v), γs−1Cε(ur))(2.9)

= h

s∑
r=1

(v, f∗r ) + h

s∑
r=1

〈v, g∗r 〉Γ + h

s∑
r=1

〈δv, λ(δur−1)〉Λ .

Subtracting 2 sequential s-th and (s− 1)-th equations (2.9), we obtain

1

h
(v, ρD2us) + (ε(v), αCε(Dus)) + h(ε(v), γs−1Cε(us))(2.10)

= h(v, f∗s ) + h〈v, g∗s 〉Γ + h〈δv, λ(δus−1)〉Λ ,

which is the desired formula for the step-by-step evaluation of us.
The computational scheme (2.10) refers to the numerical analysis of m ellip-

tic problems of infinite dimension. In the following section, under some additional
assumptions, we shall verify its convergence for m → ∞, unconditioned by its dis-
cretization in R3. In practical calculations, instead of v in (2.10) from an inifinite-
dimensional spase V (cf. the following section), we consider a finite number n of test
functions vn; the approximation uns of us from (2.10) with n unknown parameters can
be constructed as their linear combinations. Consequently, step-by-step, we choose
vn = φi where functions φi with i ∈ {1, . . . , n} generate a basis of certain finite-
dimensional space V n, approximating V (which can be a subspace of V in particular
cases), and

uns =

n∑
i=1

unsiφi

with unknown parameters unsi. Typically φi are functions with small compact support,
applicable in Ω, as well as on Θ, Γ and Λ, to create a sparse system of linear algebraic
equations, and unsi refer to nodal displacement values. The guarantee of solvability of
such system, together with the convergence properties for n→∞, depend on certain
(semi-)regularity of such decomposition, including the XFEM adaptive enrichment
functions; for much more details on XFEM strategies see [12], for several instructive
numerical examples cf. [29].

3. Existence and convergence considerations. We shall use the standard
notation of Lebesque, Sobolev, Bochner, etc. (abstract) function spaces, as introduced
by [26], with numerous references to [22]. Namely we shall need the Hilbert spaces

H = L2(Ω)3 , V = {v ∈W 1,2(Ω)3 : v = ∅ on Θ} ,(3.1)

Z = L2(∂Ω ∪ Λ)3 , ZΓ = L2(Γ)3 , ZΛ = L2(Λ)3

with the corresponding scalar products (the same notation as above): (. , .) both in H
and H ×H, 〈. .〉Γ in ZΓ and 〈., .〉Λ in ZΛ; the measure of Θ on ∂Ω must be non-zero.
We shall utilize also some symbols for standard norms, namely | . | both in H and
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H ×H, ‖ . ‖ in V , | . |Γ in ZΓ and | . |Λ in ZΛ. We shall use the upper star symbols for
dual spaces, ⊂ for continuous embeddings, b for compact embeddings and ∼= for the
identification of a space with its dual (following the Riesz representation theorem).
Consequently any v ∈ V can be implemented into (2.6), (2.7), (2.8), (2.10), etc.

In our following considerations these special results from [22] are needed:

• In the Gelfand triple V ⊂ H ∼= H∗ ⊂ V ∗ both inclusions are dense, with the
guaranteed embedding W 1,2,2(I, V, V ∗) ⊂ C(I,H).

• L2(I, V )∗ ∼= L2(I, V ∗), thus L2(I, V ) is reflexive.
• H b V (the Sobolev embedding theorem), thus every weakly convergent

sequence in V converges in H strongly.
• Z b V (the trace theorem); this forces |v|2Γ ≤ T‖v‖2 and |v|2Λ ≤ T‖v‖2 for

any v ∈ V with a positive constant T independent of v and also every weakly
convergent sequence in V converges in Z strongly.

• W 1,2,2(I, V, V ∗) b L2(I,X) with X ∈ {H,Z} (the Aubin - Lions lemma).
• |ε(v)|2 ≥ K‖v‖2 with a positive K independent of v ∈ V (the Korn inequal-

ity); consequently |ε(v)| is an alternatively norm in V is generated because
|ε(v)|2 ≤ |∇v|2 ≤ ‖v‖2 ≤ |v|2 + |∇v|2 = ‖v‖2.

All these results are valid for domains Ω× (from the previous section) with Lipschitz
boundaries literally; some more general domains (or open sets) could be handled (with
non-negligible technical difficulties) following [4].

Some additional assumptions, respecting the notation (3.1), must be satisfied:

• On the volume and surface loads: f ∈ L2(I,H) and g ∈ L2(I, ZΓ).

• On the stiffness characteristics: C ∈ L∞(Ω)
(3×3)×(3×3)
sym , C(x) being positive

definite in the sense
∑
i,j,k,l∈{1,2,3} Cijkl(x)aijakl ≥ C0

∑
i,j∈{1,2,3} aijaij for

any x ∈ Ω with a positive C0 independent of x.
• On the material density: ρ ∈ L∞(Ω) and ρ(x) ≥ ρ0 for a positive ρ0 indepen-

dent of x.
• On the damping factor: α ∈ L∞(Ω) and α(x) ≥ α0 for a positive α0 inde-

pendent of x.
• On the cohesive characteristics: λ is a Lipschitz continuous mapping from
ZΛ to ZΛ; this yields λ(δv) ≤ λ?|δv|Λ ≤ λ?N‖v‖ for any v ∈ V , a positive λ?
and a finite integer N independent of v; the existence of N comes from the
careful definition od Ω and Λ in Section 2 (traces are related to any Ω× at
most N -times, from corresponding cohesive boundary parts Λ×).

• On the nonlocal damage factor: there exists such positive constant ς (inde-
pendent of t) that, for any fixed time t, γ is always a continuous mapping from
V to L∞(Ω) satisfying γ ≤ ς; this must be guaranteed from its construction
by (2.3) (which may be complicated in practice).

Moreover, by its definition, as a function of t, γ cannot be increasing (the loss of
stiffness due to micro-cracking is irreversible). We shall also need the following reg-
ularization (compactness) property of the kernel K, taken from L2(Ω × Ω), follow-
ing (2.4): if {wk}∞k=1 is some sequence converging weakly to w in H then, taking
w̃ = A(w) and w̃k = A(wk), up to a subsequence, {w̃k}∞k=1 converges strongly to w̃
in H. Indeed, w̃k(x)

∞
k=1 converges locally to w̃(x) for almost every x ∈ Ω; by the

Lebesgue dominated convergence theorem is then sufficient to verify the bounded-
ness of {w̃k}∞k=1 in H, which is guaranteed by the weak convergence (thus also the
boundedness) of {wk}∞k=1, by the Fubini theorem (on multiple integrals) and by the
Cauchy - Schwarz inequality; for all details see [5], p. 81. An important consequence
is that for a continuous γ (cf. the assumptions above) and for any fixed t ∈ I we are
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able to guarantee the strong convergence of {γ(u(., t))}∞k=1 to γ(u(., t)) provided that
{uk(., t)}∞k=1 converges weakly to some u(., t) in V .

Let us now come back to (2.10) with s ∈ {1, . . . ,m}, to derive some a priori
bounds for the sequences {um}∞m=1, {u̇m}∞m=1, {ūm}∞m=1 and {ŭm}∞m=1. Choosing
v = Dus/h, we have

1

h2
(Dus, ρD2us) +

1

h
(ε(Dus), αCε(Dus)) + (ε(Dus), γs−1Cε(us))(3.2)

= (Dus, f∗s ) + 〈Dus, g∗s 〉Γ + 〈δDus, λ(δus−1)〉Λ ,

The same results hold with arbitrary r ∈ {1, . . . , s} instead of s. The sum of all such
equations derived from (3.2) is then

1

2h2
(Dus, ρDus) +

1

2h2

s∑
r=1

(D2ur, ρD2ur) +
1

h

s∑
r=1

(ε(Dur), αCε(Dur))(3.3)

+
1

2
(ε(us), γsCε(us)) +

1

2

s∑
r=1

(ε(ur), (γr−1 − γr)ε(ur))

+
1

2

s∑
r=1

(ε(Dur), γr−1Cε(Dur))

=

s∑
r=1

(Dur, f∗r ) +

s∑
r=1

〈Dur, g∗r 〉Γ +

s∑
r=1

〈δDur, λ(δur−1)〉Λ .

All left-hand-side additive terms are non-negative, thus the 2nd, 5th and 6th ones can
be seen as bounded from below by zero, whereas the 1st, 3th and 4th ones admit the
more careful estimates

1

2h2
(Dus, ρDus) ≥

ρ0

2h2
|Dus|2 ,(3.4)

1

h

s∑
r=1

(ε(Dur), αCε(Dur)) ≥
α0C0K

h

s∑
r=1

‖Dur‖2 ,

1

2
(ε(us), γsCε(us)) ≥

ςC0K

2
‖us‖2 .

Finally, using the Cauchy - Schwarz and the Young inequalities, 3 right-hand-side
terms can be estimated as

s∑
r=1

(Dur, f∗r ) ≤
s∑
r=1

|Dur||f∗r | ≤
ε

2h

s∑
r=1

|Dur|2 +
h

2ε

s∑
r=1

|f∗r |2(3.5)

≤ ε

2h

s∑
r=1

‖Dur‖2 +
h

2ε

s∑
r=1

|f∗r |2 ,

s∑
r=1

〈Dur, g∗r 〉Γ ≤
s∑
r=1

|Dur|Γ|g∗r |Γ ≤
ε

2h

s∑
r=1

|Dur|2Γ +
h

2ε

s∑
r=1

|g∗r |2Γ

≤ εT

2h

s∑
r=1

‖Dur‖2 +
h

2ε

s∑
r=1

|g∗r |2Γ ,

s∑
r=1

〈δDur, λ(δur−1)〉Λ ≤ λ?
s∑
r=1

|δDur|Λδur−1|Λ ≤
ελ?
2h

s∑
r=1

|δDur|2λ +
hλ?
2ε

s∑
r=1

|δur|2Λ

≤ ελ?NT

2h

s∑
r=1

‖Dur‖2 +
hλ?NT

2ε

s∑
r=1

‖ur‖2
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where ε is an arbitrary positive constant. Its appropriate setting enables us, imple-
menting (3.5) together with (3.4) into (3.3) to conclude

1

h2
|Dus|2 +

1

h

s∑
r=1

‖Dur‖2 + ‖us‖2 ≤ c+ c?h

s∑
r=1

‖ur‖2 .(3.6)

with certain positive constants c and c? independent of h (as well as of m, s, etc.)
where, in particular, c? = 0 if all ur with r ∈ {1, . . . , s} are continuous on Λ (i. e.
δur = ∅ because no macro-cracks are active yet). In such special case (3.6) takes the
simple form

1

h2
|Dus|2 +

1

h

s∑
r=1

‖Dur‖2 + ‖us‖2 ≤ c̄ .(3.7)

with c̄ = c. Nevertheless, (3.7) (with another value of c̄) is true even with c? > 0,
thanks to the discrete Gronwall lemma, applied to (3.6) – cf. [5], p. 99, and [22], p. 26.

Since um(t) can be seen as piecewice linear abstract functions of t ∈ I and ūm(t)
and ŭm(t) as simple ones for any m ∈ {1, 2, . . .}, the a priori estimate (3.7) guarantees
some boundedness of the Rothe sequences by (2.8) directly:

{u̇m(t)}∞m=1 is bounded in H for any t ∈ I ,(3.8)

{ūm(t)}∞m=1 is bounded in V for any t ∈ I ,
{ŭm(t)}∞m=1 is bounded in V for any t ∈ I ,
{u̇m}∞m=1 is bounded in L2(I, V ) .

Since all spaces in (3.8) are reflexive, the Eberlein - Shmul’yan theorem by [5], p. 67,
yields, up to subsequences, that

{u̇m(t)}∞m=1 converges weakly to u′ in H for any t ∈ I ,(3.9)

{ūm(t)}∞m=1 converges weakly to ū in V for any t ∈ I ,
{ŭm(t)}∞m=1 converges weakly to ŭ in V for any t ∈ I ,
{u̇m}∞m=1 converges weakly to û in L2(I, V )

where u′, ū, ŭ and ù are some elements of corresponding spaces. Let us also define

u(t) =

∫ t

0

u′(ξ) dξ for each t ∈ I .

Now we are ready to exploit the inclusions and compactness lemmas from their list at
the beginning of this section, to verify further convergence properties. Here we shall
present (for brevity) only those crucial ones for the limit passage from (2.8) to (2.7)
with m→∞. Namely

{u̇m}∞m=1 converges strongly to û in L2(I,H) ,(3.10)

{λ(ŭm)}∞m=1 converges strongly to λ(ŭ) in L2(I, ZΛ) ,

taking the continuity of λ into account. However, the 1st relation (3.10) must be true
also with the strong limit u′, thanks to the 1st relation (3.9), thus u′ = û. Moreover,
following (3.7), for any t ∈ I we have

max (|um(t)− ūm(t)|, |um(t)− ŭm(t)|) ≤ max
s∈{1,...,m}

|Dus| ≤
√
c̄h =

√
c̄T

m
,

which implies u = ū = ŭ and u̇ = u′. Consequently u can be considered as a weak limit
in the 2nd and 3rd relations (3.9) and and λ(u) as a strong limit in the 2nd relation
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(3.10), whereas u̇ replaces a weak limit in the 1st and 4th relations of (3.9) and a
strong limit in the 1st relation (3.10). The guarantee of the last needed convergence
result

{γm}∞m=1 converges strongly to γ in t ∈ L∞(Ω)(3.11)

is the most delicate one: this needs the careful design of K, ω, etc., by the rather
complicated formulae (2.3) and (2.4). Nevertheless, such design is not straightforward
and contains still open questions for future work. Finally the convergence properties
of the Rothe sequences by (3.9), (3.10) and (3.11) enables us the announced limit
passage (2.8) to (2.7), which completes the constructive proof of the existence of u
and u̇ from L2(I, V ) satisfying (2.7) for any virtual displacement v ∈ V .

4. Conclusions. Most computational algorithms predicting fracture of cemen-
titious composites refer to some principles of classical mechanics, but apply ad hoc
approaches in heir final stages. Queer and mutually incompatible results lead to their
seeking for some heuristic macroscopic models with numerous parameters, coming
from laboratory experiments, whose reasonable setting needs advanced statistical ap-
proaches or soft computing tricks like genetic programming techniques – cf. [23], [6]
and [18]. Unlike them, this paper tries to demonstrate the possibility of well-posed
formulation of a relevant deterministic problem, supported by the constructive design
of convergent sequences of approximate solutions.

Some rather strong simplifications are involved here, not always caused by the
necessity to avoid technical difficulties in the short conference paper. For example,
some weaker assumptions on given loads and material characteristics could be handled
by more precise embeddings, as L6−ε(Ω)3 b V (instead of H b V ) for a positive
ε ≤ 4 and L4−ε(∂Ω ∪ Λ)3 b V (instead of Z b V ) for a positive ε ≤ 2, etc.; even the
converegence of Rothe sequences does not need the boundedness of {u̇m} in L2(I, V )
and of {u̇m(t)} in H for any t ∈ I, which can be replaced by the boundedness of {u̇m}
in L2(I, V ∗), as evident from [26] (on parabolic problems). However, substantial
restrictions in both nonlinear terms occur: i) the requirement ς > 0 forbids any local
total loss of stiffness due to micro-cracking, whose lifelikeness would be controversial
because of the a priori strain / stress linearizations, ii) macro-cracks are allowed on a
finite number of (potential) cohesive surfaces only, whereas some XFEM algorithms
promise to predict them (nearly) everywhere. Together with the further development
of relevant software (some preliminary crack simulation results can be found in [29]),
these are significant motivations for further research in the near future.
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