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FINETUNING GREEDY KERNEL MODELS BY EXCHANGE
ALGORITHMS∗

TIZIAN WENZEL† AND ARMIN ISKE‡

Abstract. Kernel based approximation offers versatile tools for high-dimensional approximation,
which can especially be leveraged for surrogate modeling. For this purpose, both “knot insertion”
and “knot removal” approaches aim at choosing a suitable subset of the data, in order to obtain a
sparse but nevertheless accurate kernel model.

In the present work, focussing on kernel based interpolation, we aim at combining these two
approaches to further improve the accuracy of kernel models, without increasing the computational
complexity of the final kernel model. For this, we introduce a class of kernel exchange algorithms
(KEA). The resulting KEA algorithm can be used for finetuning greedy kernel surrogate models,
allowing for an reduction of the error up to 86.4% (17.2% on average) in our experiments.
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1. Introduction. Kernel methods comprise versatile tools for multivariate nu-
merical approximation, statistical learning and machine learning [13, 24, 25]. They
are popular due to their easy implementation, good performance and well-established
mathematical theory based on reproducing kernel Hilbert spaces. In applications,
sparse kernel models are frequently used for surrogate modeling purposes [5, 6, 11],
where efficient models are required that are able to accurately describe an expensive
full model. This can be achieved by using only a small subset of a possibly big initial
training set for computing the final model. For this, the computation of an optimal
subset is frequently intractable due to the high combinatorial complexity [12]. Thus,
a more practical way is provided by using greedy algorithms, which are only locally
optimal, however very efficient to run. For the task at hand, these greedy algorithms
either start with a small or even empty set and then add points, or they start with
the full set and then remove points. In both approaches, a desired expansion size or
a desired accuracy threshold may serve as stopping criteria.

In first approach, i.e. inserting points, most work focussed on greedy algorithms
that iteratively add single points according to some selection criterion. For this, var-
ious criteria with different purposes and advantages have been introduced, e.g. the
f -greedy algorihtm [23], the P -greedy algorithm [1], or the f/P -greedy algorithm
[17]. These algorithms were jointly analyzed in a framework of so-called β-greedy al-
gorithms in [28]. Despite a greedy algorithm is a concatenation of local optimal steps,
the overall procedure usually does not give a globally optimal solution. Nevertheless,
some of these greedy insertion algorithms have been proven to be asymptotically op-
timal: For the P -greedy algorithm, the optimality of the resulting convergence rate

∗The authors acknowledge financial support through the projects LD-SODA of the Landes-
forschungsförderung Hamburg (LFF) and support from the RTG 2583 “Modeling, Simulation and Op-
timization of Fluid Dynamic Applications” funded by the Deutsche Forschungsgemeinschaft (DFG).

†Department of Mathematics, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany,
(tizian.wenzel@uni-hamburg.de).

‡Department of Mathematics, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
(armin.iske@uni-hamburg.de).

1



2 T. WENZEL AND A. ISKE

in several cases was proven in [20, 27], while the optimality of the convergence rate of
the f -greedy algorithm is discussed in [22].

The second approach, i.e. removing points, was proposed in [8, 9] under the no-
tion of thinning algorithms, for the purpose of generating quasi-uniformly distributed
subsets of scattered points. Adaptive thinning algorithms were later suggested and
analyzed in [2, 3]. Further work in this direction was done e.g. in [16] under the
notion knot removal schemes, where an efficient reduced basis algorithm (ERBA) was
introduced for removing points. Also for these removal algorithms, optimality results
are available [4].

As these greedy insertion algorithms are (partly) known to be asymptotically
optimal, the rate of convergence cannot be improved anymore. Nevertheless it may
be possible to further minimize the absolute error for a given expansion size, without
achieving a faster convergence rate, i.e. by minimizing the prefactors in front of the
asymptotic decay. To the best of the authors knowledge, this subject was never
considered in the literature so far, probably because it is not possible to modify the
greedy selection criteria such that a smaller error is obtained for any expansion size.
In this sense, greedy algorithms can be seen as limited when aiming for a small error
given an restricted expansion size (budget).

While one might be tempted to think about a global optimization of the centers
and a decoupling of centers and function values (as in unsymmetric collocation [14]),
this would likely require costly gradient descent techniques while also loosing the
theoretical access based on the well-known kernel representer theorem [7, 25].

Therefore, we introduce exchange algorithms, which solely make use of the avail-
able training data and thus stick to the framework and mathematical theory provided
by the representer theorem. By using an initial set of greedily selected centers – ob-
tained either via insertion or removal strategies – and subsequent exchange steps of
these centers, we are able to finetune greedy kernel models. While this introduces a
small computational overhead, the improved accuracy of the kernel model frequently
pays off in subsequent evaluations, as the number of centers and thus the cost of
evaluation of the kernel model stays fixed. All in all, the combination of greedy al-
gorithms and kernel exchange algorithms is a further contribution step towards the
optimal selection of centers for kernel approximation.

The paper is structured as follows: In Section 2, greedy kernel algorithms are
reviewed, which serve as building blocks for the kernel exchange algorithm (KEA),
which is introduced and discussed in Section 3. Section 4 showcases the use of the
KEA algorithms on a variety of use cases, achieving improvements of up to 86.4%.
Finally Section 5 concludes the paper.

2. Background on greedy kernel models. The following section reviews the
most important terminology from kernel interpolation, which is required for the in-
troduction and discussion of the kernel exchange algorithms (KEA) in the subsequent
Section 3.

For our purposes, we consider strictly positive definite continuous kernels k : Ω ⊂
Ω→ R, which are defined on some bounded subset Ω ⊂ Rd. Strictly positive definite
means, that the kernel matrix k(X,X) := (k(xi, xj))

n
i,j=1 ⊂ Rn×n is positive definite

for any choice of pairwise distinct points {x1, ..., xn}ni=1 ⊂ Ω. Given such a kernel k,
there always exists a unique native space of functions associated to k, the so called
reproducing kernel Hilbert space Hk(Ω) ⊂ C(Ω). A typical example of such a kernel
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is given by the basic Matérn kernel

k(x, z) = exp(−∥x− z∥), (2.1)

which is also called exponential kernel or Laplace kernel. The class of Matérn kernels
will be used for the numerical experiments in Section 4.

Given a function f ∈ Hk(Ω) and pairwise distinct interpolation nodes Xn ⊂ Ω,
the kernel representer theorem states that there exists a minimum norm interpolant

sf,Xn
=

n∑
j=1

α
(n)
j k(·, xj), (2.2)

where the coefficients α = (α
(n)
j )nj=1 ⊂ Rn can be computed directly by solving the

linear equation system k(X,X)α = (f(xi))
n
i=1. Thus accuracy of the interpolant

sf,Xn
for approximation of the target function f crucially depends on the choice of

the kernel and on the choice of interpolation points {xj}nj=1 ⊂ Ω. In this work we
deal with the second case, i.e. a suitable choice of interpolation points. As elaborated
in Section 1, greedy algorithms provide a computational efficient method to obtain a
suitable set of interpolation points.

2.1. Greedy point insertion. Greedy insertion algorithms usually start with
an empty set X0 := {}, which is iteratively updated by inserting a bunch of points.
We focus on the most popular case, which adds single points xn+1 and thus reads
Xn+1 := Xn ∪ {xn+1}. This procedure is iterated, until a suitable expansion size n
is met or some accuracy or stability threshold is reached. For the choice of the new
point xn+1, several criteria have been established (see e.g. [28, Section 1] for a more
detailed discussion), of which we focus in the following on the residual based f -greedy
and the power function based P -greedy criterion:

xn+1 = argmax
x∈Ω

|(f − sf,Xn
)(x)| (f − greedy),

xn+1 = argmax
x∈Ω

PXn
(x) (P − greedy).

(2.3)

Here, PXn
(x) is the so-called power function, defined as

PXn
(x) = sup

0 ̸=f∈Hk(Ω)

|(f − sf,Xn
)(x)|

∥f∥Hk(Ω)
,

which measures the worst case error. The power function can be computed efficiently
based on the centers Xn and the kernel k. In practice, a large discrete base set X ⊂ Ω
is used instead of the domain Ω.

In order to update the kernel model Eq. (2.2), one typically does not use the
kernel basis {k(·, xj), j = 1, ..., n}, because it would require a recomputation of the

coefficients {α(n)
j }nj=1 for updating sf,Xn

to sf,Xn+1
. Therefore, one usually prefers to

work in the Newton basis, which allows for efficient updating of sf,Xn
to sf,Xn+1

. We
refer to the reference [18] for more updates on the Newton basis and the corresponding
properties. These efficient update procedures due to the Newton basis will also be
leveraged for an efficient implementation of the kernel exchange algorithm (KEA), to
be introduced in Algorithm 1.

An implementation of such greedy insertion algorithms is provided e.g. by the
VKOGA (vectorial kernel orthogonal greedy algorithm) package [21].
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2.2. Greedy point removal. Greedy removal algorithms start with a large
discrete base set X ⊂ Ω, and are iteratively updated by removing a subset of the
included points [16]. In the following we consider the case of removing single points,
such that the update is given as Xn := Xn+1 \ {xn+1} for n = |X| − 1, |X| − 2, ... .
This is iterated until a desired expansion size is reached or some accuracy threshold
is met.

Analogously to the selection criteria of the greedy insertion algorithms in Eq.
(2.3), there is again a residual based as well as a power function based criterion. The
idea is to remove the point which results in the smallest increase of the corresponding
error indicator. Thus in this case, the residual based as well as power function based
selection criteria read

xn+1 = argmin
x∈Xn+1

|(f − sf,Xn+1\{x})(x)|

xn+1 = argmin
x∈Xn+1

PXn+1\{x}(x).
(2.4)

Both these selection criteria are based on leave-one-out cross validation errors. While
the computation of these leave-one-out cross validation errors is computational more
demanding, there are efficient implementations based on Rippa’s rule and extensions
thereof [15, 19].

An implementation of such greedy removal algorithms is provided e.g. by the
ERBA (efficient reduced basis algorithm) package [16].

Both greedy insertion algorithms as well as greedy removal algorithms are limited
in the sense, that they only increase respectively decrease the number of centers.
Thus, a suboptimal step can never be reversed, which can be seen as a limitation.
This limitation is lifted with the kernel exchange algorithms (KEA) introduced in
Section 3, as they exchange selected centers by inserting a center and also removing
a center in every step, thus performing a locally optimal update.

3. Kernel exchange algorithm: KEA. Section 1 and Section 2 discussed
several aspects of the optimality of the greedy insertion and removal algorithms. Es-
pecially the convergence rates (in the number of interpolation points) of greedy inser-
tion algorithms is known to be asymptocally optimal in several cases. Nevertheless,
the globally optimal selection of interpolation points still remains unclear, especially
due to its computational complexity. In order to narrow this gap between greedily
selected points and optimal points from a practical point of view, we propose kernel
exchange algorithms:

We consider an initial base set (X,Y ) ofN := |X| input points with corresponding
target values Y , as well as a kernel k for approximation of these data points. We
assume a non-empty initial set Xn ⊂ X of n < N centers to be given, which can be
obtained for example by a greedy insertion algorithm (see Section 2.1) or a greedy
removal algorithm (see Section 2.2). Given a maximal number of m exchange steps,
for every exchange step i = 1, ...,m, we pick a data point of X \ Xn to be added,
as well as a data point of Xn to be removed. Like this, the set of selected centers is
updated as

X(i+1)
n := X(i)

n \ {xremove} ∪ {xadd}. (3.1)

For the selection of the points xadd and xremove, we leverage the residual based f -
greedy criterion as well as the power function based P -greedy criterion, see Eq. (2.3)
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respective Eq. (2.4). The step of Eq. (3.1) is repeated, until the predefined number
of maximal exchanges m is reached, or some predefined stopping criterion (based e.g.
on the final accuracy) is met. The overall algorithm is formalized as pseudocode in
Algorithm 1.

For the implementation of the kernel exchange algorithm, we combine the efficient
implementations of the greedy insertion and removal algorithms, as implemented e.g.
in the algorithms VKOGA [21] and ERBA [16], see Section 2.

Algorithm 1: Kernel Exchange Algorithm (KEA) for kernel model∑n
j=1 αjk(·, xj) of expansion size n

Input : Data (X,Y ), initial set of centers X
(0)
n ⊂ X of n > 0 points,

kernel k, number of exchange steps m ∈ N
Result: Exchanged set of centers X

(m)
n ⊂ X, final kernel model s

(m)
n (X̃n)

1

2 s0 = s0(X
(0)
n ) ; /* Compute initial kernel model */

3

4 for i = 1, ...,m do
5 xadd ← select add(sn, X, Y ) according to Eq. (2.3) ;
6 xremove ← select remove(sn, X, Y ) according to Eq. (2.4);

7 X
(i)
n ← X

(i−1)
n \ {xremove} ∪ {xadd};

8

9 si = si(X
(i)
n ) ; /* Compute updated kernel model */

10

11 early stopping(xadd, xremove)

12 end
13

14 return X
(m)
n , sn = sn(X

(m)
n )

4. Numerical experiments. This section provides numerical experiments on
the introduced kernel exchange algorithm (KEA) of Section 3. We start in Section 4.1
with a comparison of greedy insertion and greedy removal algorithms. Subsequently,
focussing on the case of greedy insertion algorithms, Section 4.2 considers low dimen-
sional and Section 4.3 considers higher dimensional examples, where KEA is used to
finetune greedy kernel insertion algorithms. In particular, Section 4.2 and Section 4.3

compare the accuracy of kernel models using a base set X
(0)
n with the accuracy of a

kernel model based on the exchanged set X
(m)
n after using the KEA algorithm.

As kernels we consider Matérn kernels of different smoothnesses, namely k(x, z) =
Φ(x− z), where the function Φ : Rd → R is defined via its Fourier transform Φ̂(ω) =

(1+∥ω∥22)−τ with τ = d+(2p+1)
2 for p ∈ {0, 1, 2, 3, 4}. All these kernels have an explizit

form, and for p = 0 we obtain the kernel from Eq. (2.1).
The implementation of the KEA algorithm as well as the code to reproduce the

numerical experiments can be found at:

https://gitlab.rrz.uni-hamburg.de/bbd9097/

paper-2024-finetuning-greedy-kernel-models

https://gitlab.rrz.uni-hamburg.de/bbd9097/paper-2024-finetuning-greedy-kernel-models
https://gitlab.rrz.uni-hamburg.de/bbd9097/paper-2024-finetuning-greedy-kernel-models
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4.1. Greedy insertion vs. greedy removal. In a first numerical experiment,
we briefly compare the two possible approaches of greedy insertion of centers vs the
greedy removal of centers as introduced in Section 2.1 and Section 2.2. For this, we
make use of the corresponding software packages VKOGA [21] and ERBA [16].

We present two exemplary numerical results, though we remark that the findings
presented here also hold for other examples. We consider the domains Ω = [0, 1]2

respective [0, 1]3 with target functions

f2(x) = ∥x∥2 respective f3(x) = |x1 − 0.5|+ sin(x2 + x3). (4.1)

As a base set, we consider each 256 low discrepancy points X within Ω. In contrast to
the numerical experiments in the next sections, we use low-discrepancy points instead
of randomly sampled points to avoid numerical instabilities due to too small values,
which may occur as soon as nearby points are used as centers. The greedy insertion
algorithm starts with an empty set of centers, and adds centers until all the 256 points
are used. The removal algorithm operates in the reverse sense and starts with all the
centers, and then removes centers until no center is used. The resulting maximal error
maxx∈X |f(x)− sn(x)| over the number n of centers is visualized for each the greedy
insertion model and the greedy removal models sn in Figure 4.1: One can observe that
the maximal error is approximately equal for all the expansion sizes n. Thus, from
the theoretical point of view, either applying a greedy insertion or a greedy removal
yields approximately the same accuracy. However, from a practical point of view, if
only a small number of centers n≪ |X| is desired, it makes more sense to leverage the
greedy insertion algorithm. On the contrary, if only few centers should be removed,
i.e. n ⪅ |X|, it is more practical to use the greedy removal algorithm.

For our motivated purpose of surrogate modeling, the first case n≪ |X| is more
important. Thus we make use of the greedy insertion algorithm in the following,
and investigate to which extent its results can be improved by applying KEA (see
Algorithm 1).

100 101 102
10−5

10−2

101

expansion size n

ap
p
ro
x
im

at
io
n
er
ro
r

addition
removal

100 101 102
10−3

10−2

10−1

100

expansion size n

Fig. 4.1. Visualization of the training error (y-axis) over the number of used interpolation
points (x-axis) for the target functions in Eq. (4.1). The insertion algorithm of Section 2.1 increases
the number of points (operates from “left to right” on the x-axis), the removal algorithm of 2.2
decreases the number of points (operates from “right to left”). Both approaches yield approximately
the same interpolation errors for all expansion sizes n.

4.2. Function approximation: Low dimensional example. As a first test
case, we consider the domain Ω = [0, 1]2 ⊂ Rd as input space and target values
generated by four test functions. For this we chose the classical well-known Franke
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test function f1 as well as three further Franke test function given as [10]

f2(x) =
1

9
(tanh(9x2 − 9x1) + 1),

f3(x) =
125
100 + cos(5.4x2)

6 + 6(3x1 − 1)2
,

f4(x) =
1

3
exp

(
−81

16

(
(x1 − 1/2)2 + (x2 − 1/2)2

))
.

For all the four functions, the input domain Ω is discretized with each 103 uni-
formly randomly sampled training points Xtrain and testing points Xtest. The greedy
insertion algorithm with the f -greedy criterion (see Section 2.1) is used to select up
to 150 (for f1) respective 80 (for f2, f3, f4) centers from the base set Xtrain. For 10
logarithmically equally spaced values n within 5 and 150 respective 80, the result-
ing greedy insertion kernel model sn is finetuned with help of KEA (using at most
m = 100 exchange steps) to obtain the model sn,KEA.

In order to assess the improvement due to the finetuning by KEA, we consider
the improvement ratio on the test set Xtest, i.e.

∥f − sn,KEA∥L∞(Ω)

∥f − sn∥L∞(Ω)
, (4.2)

computed on the 103 test points.
The resulting improvement ratios of Eq. (4.2) over the number of centers n are

visualized in Figure 4.2 for all the four test functions f1 to f4 and all the five considered
Matérn kernels k. It can be clearly seen, that in most cases the improvement ratio is
below 1, which means that the finetuning of the kernel model sn due to KEA achieved
a smaller test error. The best improvement is obtained for the Matérn kernel with
smoothness p = 2 and an expansion size of n = 12: Here, the improvement ratio is
0.136, which means that the exchange due to KEA gave a tremendous improvement,
without changing the size n of the kernel model. On average, an improvement of
17.2% is obtained. In general, the improvement seems to be more pronounced for
smoother kernels, i.e. higher values of p. This observation can be explained in view of
the convergence analysis for greedy insertion algorithms in [28]: There, a convergence
bound as C · n−α (for some prefactor C > 0 and some convergence rate α > 0) is
proven. The prefactor C is increased (compared to the prefactor of a non-greedy
algorithm) by an α-dependent factors as

C ∝ 2α+1/2eα, (4.3)

see [28, Corollary 11]. In the case of Matérn kernels considered here, it holds α = 2p+1
2d ,

such that larger values of p imply a larger increase of the prefactor C. In effect, for
larger values of p there is a bigger gap, which can be narrowed with help of KEA.

Only for a few instances within Figure 4.2, no improvement or in some rare cases
even a deterioration can be observed. We remark that such a deterioration can be
observed despite the local optimality of the kernel exchange algorithm, because the
error is evaluated on an independent test set, which was withheld from the training
process.

4.3. Function approximation: High dimensional example. As a second
test case, we consider the domains Ω = [0, 1]d ⊂ Rd for d ∈ {5, 6} and the following two
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Fig. 4.2. Visualization of the improvement ratio ∥f − sn,KEA∥L∞(Ω)/∥f − sn∥L∞(Ω) (y-
axis) over the kernel model expansion size n (x-axis) for the four two-dimensional test functions
from Section 4.2: For values in (0, 1), KEA yields improvements; for values in (1,∞), KEA yields
deterioration. Five Matérn kernels with different smoothness parameters p ∈ {0, 1, 2, 3, 4} were used.

test functions, which were also used in [26] as test functions for greedy approximation:

f5(x) = e−4(
∑5

j=1 xi−0.5)
2

f6(x) = e−4
∑5

j=1(xi−0.5)2 + 2|x1 − 0.5|

Again we test the five Matérn kernels from Section 4.2, however additionally
making use of a two-layered kernel structure as k(Ax,Az) = Φ(A(x − z)), with a
matrix A ∈ Rd×d that is optimized. This matrix A allows to adapt the shape of
the initially radial kernel k to the data to be approximated, which usually improves
the accuracy for medium- to high-dimensional problems. For details on two-layered
kernels and the corresponding optimization procedure to obtain a suitable matrix A,
we refer to [26].

The layout of the numerical experiment is the same as previously in Section 4.2,
with a couple of minor changes: In order to take into account the higher dimensionality
of the domain Ω, we employ 104 uniformly randomly sampled points for Xtrain as
well as Xtest. The greedy insertion algorithm uses again the f -greedy criterion, and
selects up to 100 centers for f5 respective 200 centers for f6. KEA is applied again
to intermediate models of size n for 10 logarithmically equally spaced values of n
between 5 and the maximal expansion size 100 respective 200. The improvement
ratio of Eq. (4.2) is considered, and the results are displayed in Figure 4.3:

As in the low dimensional examples, one can observe that the use of KEA further
reduces the approximation error for most expansion sizes as well as most kernels.
The improvement is more pronounciated for smoother kernels (i.e. large values of p),



FINETUNING GREEDY KERNEL MODELS 9

especially for p = 0 there is frequently no improvement. The same explanation as
given around Eq. (4.3) also applies here. Only in rare cases, there is a deterioration
instead of an improvement of the ratio Eq. (4.2).
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Fig. 4.3. Visualization of the improvement ratio ∥f − sn,KEA∥L∞(Ω)/∥f − sn∥L∞(Ω) (y-
axis) over the kernel model expansion size n (x-axis) for the two high-dimensional test functions
from Section 4.3: For values in (0, 1), KEA yields improvements; for values in (1,∞), KEA yields
deterioration. Five Matérn kernels with different smoothness parameters p ∈ {0, 1, 2, 3, 4} were used.

5. Conclusion & Outlook. In this work, two approaches of greedy kernel algo-
rithms for interpolation were considered and compared, namely greedy insertion and
greedy removal of points. The driving motivation for these algorithms is to derive
sparse and efficient kernel models in a computational feasible way.

In order to finetune these greedy kernel models, we introduced and investigated
a kernel exchange algorithm (KEA): Based on an initial set of centers, provided e.g.
by a greedy algorithm, exchange steps are performed to further optimize the selected
subset of centers, without increasing (or decreasing) the amount of centers. Doing
so, we showed that it is indeed possible to further improve the accuracy of the final
kernel model.

Future work may address the quantification of the possible improvement, in par-
ticular in comparison to a theoretically optimal center distribution, which is however
computational infeasible in most cases.
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