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AUTOMATED COMPLETION OF SEGMENTED FRAGMENTS OF
MACROPHAGES USING WEIGHTED DILATION AND EROSION IN

2D+TIME MICROSCOPY VIDEOS∗

SEOL AH PARK† AND KAROL MIKULA ‡

Abstract. This paper presents a method for automated completion of segmented fragments
in 2D+time microscopy movies. This method aims to automatically and accurately compute mor-
phological features for segmented macrophages that are critical for understanding their phenotypic
characteristics. In the situation that segmentation results in fragments corresponding to a sin-
gle macrophage, it becomes challenging to determine whether these fragments belong to the same
macrophage. Consequently, it is essential to complete the fragments for accurate quantitative anal-
ysis of morphology. To achieve this, we propose a method based on weighted dilation and erosion
(WDE) in the level-set formulation. By regulating the speed of the level lines based on local image
intensity and thresholds calculated from the local Otsu’s method, this approach effectively integrates
fragmented segments while preserving the overall macrophage shape. The efficacy of the method is
demonstrated through both visual and quantitative assessments, which indicate its ability to accu-
rately complete segmented macrophages across a range of shapes and intensity levels in the images.
Furthermore, the method has been shown to improve the accuracy of quantitative assessments when
compared to ground truth images.
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1. Introduction. The morphological characteristics of macrophages have been
identified as important factors that distinguish between different phenotypes and func-
tions [1] at the two extremes of polarization, known as the M1 and M2 states [3].
Macrophages in the M1 state are implicated in pro-inflammatory responses typically
observed during the early stages of inflammation [4]. As inflammation resolves, M1
macrophages switch to the M2 state, which orchestrates anti-inflammatory responses
to facilitate tissue repair and remodeling [5]. With regard to the morphological dif-
ferences between the two states, M1 macrophages are characterized by a rounded and
flat shape, while M2 macrophages exhibit elongated and complex morphologies.

Quantitative analysis of morphological features in microscopy videos can con-
tribute to studying the differences in shape between M1 and M2 macrophages, as
well as their changing morphologies over time. This typically involves two processes.
First, cell tracking identifies the centers of individual macrophages over time. Second,
based on a detected center, the morphological features of the corresponding segmented
cells are measured to ensure accurate computations for all individual macrophages.
This approach is accurate when there are no segmented fragments; here, segmented
fragments mean that image segmentation results in multiple disconnected pieces cor-
responding to a single macrophage. For instance, there are three fragments in the
bottom-right of Fig. 1.1 that belong to a single macrophage as shown in the original
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image (top panel). From the result of cell tracking, the center of the macrophage is
designated also as one of the small fragments. Consequently, the perimeter, area, and
other measurements for this macrophage become very small at this time moment if
we measure them for one connected segmented cell. To resolve this, the completion of
fragmented segments corresponding to the same macrophage is needed. We use the
dilation-erosion process using the level-set approach [6, 7], which involves expanding
and contracting level lines along fragment boundaries to fill gaps or missing edges.
This method involves the evolution of level lines in the normal direction – either
outward or inward – only determined by the sign of the velocity. Initially, the level
lines associated with fragment boundaries undergo expansion and adhesion (dilation),
followed by a subsequent phase of contraction (erosion) once the fragments are fully
connected. However, within the image domain, some segmented cells exist that do not
require this expansion-contraction process (see the second row of Fig. 3.2). Applying
uniform dilation-erosion speeds across all pixels risks distorting the shapes of already
completed segmented cells. Hence, we introduce varying speeds for each pixel de-
pending on whether a pixel is located near either a fragment or an already completed
cell. Specifically, we utilize image thresholds computed from local Otsu’s method
for all pixels, which allows us to assign faster speeds to pixels near fragments and
slower speeds to those near completed cells. By integrating these evolving speeds into
the level-set equation, the so-called weighted dilation-erosion approach ensures the
accurate completion of fragments while preserving the shapes of existing segmented
cells. Note that the method proposed in the paper serves as a post-processing step in
segmentation, particularly in the context of the segmentation pipeline, corresponding
to filtering, local Otsus’s method, and subjective surface, segmentation suggested in
[10].

The dataset presented in this paper corresponds to that of [10], employing a
three-day-old transgenic zebrafish larva (Tg(mpeg1:Gal4/-UAS:Kaede)) and imaging
it with a spinning disk confocal microscope.

The structure of this paper is as follows. Section 2 describes the mathematical
model. In Section 3, visual and quantitative assessments are presented. Finally, we
discuss the advantages and limitations of the proposed model and conclude the paper.

2. Mathematical and numerical methods. In this section, first, the math-
ematical expression and its numerical discretization of the level-set equation will be
presented. Then, the level-set equation with the varying speed of each pixel will be
presented.

2.1. Level-set method. The level-set equation for the motion of level lines in
a normal direction representing dilation and erosion is written as

∂u

∂t
+ µ|∇u| = 0, (2.1)

where t denotes the scale, the amount of evolution of level lines, u(t, x1, x2) is the
unknown real function which is defined on [0, TF ] × Ω, x = (x1, x2) ∈ Ω ⊂ R2, and µ
is a constant.
The initial condition is given by

u(0,x) = u0(x) (2.2)

and it corresponds to a binarized image obtained from image segmentation.
Let us denote by un

i,j a numerical solution at the pixel (i, j) in nth discrete step
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Fig. 1.1. Original (top) and segmented image (bottom) with a macrophage trajectory (pink line)

nτ with step size τ . Then, Equation (2.1) is discretized in time as

un+1
i,j − un

i,j

τ
= −µ|∇un

i,j |. (2.3)

By using the upwind scheme, the norm of the gradient of u in the nth evolution step
for a pixel (i, j) is computed as [8]

|∇±un
i,j | = [max{max(D∓αun

i,j , 0), -min(D∓αun
i,j , 0)}2+

max{max(D∓βun
i,j , 0), -min(D∓βun

i,j , 0)}2]1/2,
(2.4)

where

D±αun
ij = ± 1

h
(ui±1,j − ui,j),

D±βun
i,j = ± 1

h
(ui,j±1 − ui,j),

(2.5)

and h denotes the pixel size. Finally, Equation (2.1) is discretized as follows.

un+1
i,j = un

i,j − τ [max(µ, 0)∇+un
i,j + min(µ, 0)∇−un

i,j ]. (2.6)

Dilation and erosion occur when µ < 0 and µ > 0, respectively.

2.2. Weighted dilation and erosion. The thresholds obtained from the local
Otsu’s method are used to control the speed of the evolving level lines for every pixel.
The local Otsu’s method is the classical Otsu’s method [9] restricted to a window
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centered at a pixel (i, j), providing the optimal threshold T ∗
r for the pixel (i, j). A

comprehensive mathematical explanation can be found in [10].
Let Ii,j represent the image intensity of the original image at pixel (i, j), and

T ∗
i,j denote the computed optimal threshold at the same pixel, where T ∗

i,j ∈ [0, 1] and
Ii,j ∈ [0, 1]. Based on the image segmentation workflow outlined in the paper[10],
pixels situated between fragments tend to exhibit low image intensities, resulting in a
uni-modal distribution characterized by a single peak, within the local window (see the
second row of Fig. 3.1). Therefore, the computed threshold T ∗

i,j closely positions with
the image intensity Ii,j in the histogram. On the other hand, within the local window
depicted in the first row of Fig. 3.1, the part of the macrophage exhibits substantially
higher image intensity compared to the background, leading to a significant deviation
of T ∗

i,j from Ii,j . We will use this property to determine the evolution speed of each
pixel along the level lines.

From Equation (2.6), the speed at a pixel (i, j) in the normal direction can be
rewritten as

µ → ±vi,j , vi,j =
1

2
(S̃i,j + Ii,j), (2.7)

where ± denotes erosion (+) and dilation (−), and S̃i,j = 1−|Ii,j−T ∗
i,j |. As mentioned

above, a darker pixel (i, j) with a small value of |Ii,j − T ∗
i,j | is likely to be inside a

macrophage, but is not detected as a part of a macrophage, thus requiring completion.
While, pixel (i, j) with a large value of |Ii,j−T ∗

i,j | is more likely to be positioned in the
background but close to an already fully segmented cell where significant evolution
is undesirable. As a result, S̃i,j will have a high value in the former case and a low
value in the latter. Finally, the addition of Ii,j to the speed, as illustrated in Equation
(2.7), results in a deceleration of the evolution of the level lines as they approach the
background due to the low image intensity of the background. From this point, we
will refer to the dilation and erosion with different speeds for each pixel as “weighted
dilation and erosion”. Furthermore, we add the small effect of curvature, κ, for
regularization. The curvature κ with finite difference approximations is computed as
follows.

κ = −
uxxu

2
y − 2uxuyuxy + uyyu

2
x

|∇u|3
,

ux =
1

2h
(ui+1,j − ui−1,j), uy =

1

2h
(ui,j+1 − ui,j−1),

uxx =
1

h2
(ui+1,j − 2ui,j + ui−1,j), uyy =

1

h2
(ui,j+1 − 2ui,j + ui,j−1),

uxy =
1

4h2
(ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1).

(2.8)

The discrete formulation of weighted dilation and erosion is described as

un+1
i,j = un

i,j − τ [max(F, 0)∇+un
i,j + min(F, 0)∇−un

i,j ], (2.9)

where F = ±vi,j + ϵκ. Here, vi,j denotes the normal speed for each pixel (i, j) in
accordance with Equation (2.7) with the negative for dilation, and positive sign for
erosion, respectively. The term of ϵκ is the curvature effect multiplied by a small
constant, ϵ ≪ 1. In this study, we select the values of the parameters ϵ = 0.01, h = 1,
and τ = 0.25.
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3. Result.

Fig. 3.1. Images and histograms evaluated in local windows (yellow) are displayed. The first row
shows a local window centered on pixel a, accompanied by the corresponding histogram. Similarly,
the second row displays a window centered on pixel b along with its histogram. Here, Ia and Ib
represent the image intensities at pixels a and b, respectively. The computed thresholds are denoted
as T ∗

a and T ∗
b .

3.1. Visual assessment of weighted dilation and erosion. In this section,
we illustrate the results of the dilation and erosion processes, both with and with-
out considering different speeds of level lines at individual pixels. For comparison,
we examine two macrophages with contrasting characteristics: one exhibits a bright
macrophage intensity and simple shapes, yielding a well-segmented shape, while the
other displays weaker macrophage intensity and complex shapes, resulting in seg-
mented fragments.

To see the difference of |Ii,j − T ∗
i,j | between these two macrophages, in Fig. 3.1,

we present the image histogram within local windows, denoted by yellow squares,
centered on the pixels a and b. The pixel a is in the background near the bright area
of the macrophage, causing the histogram to display bi-modality. It means that the
computed threshold T ∗

a is significantly distant from the image intensity Ia at pixel
a . Conversely, in the local window centered on the pixel b located between the frag-
ments (see Fig. 3.1), the computed threshold T ∗

b is close to the image intensity Ib.
Therefore, the value of |Ia−T ∗

a | is larger than |Ib−T ∗
b |, resulting in slower movement

of level lines at a compared to b. The parameters for the local Otsu’s method to
compute T ∗

a and T ∗
b are selected from the aforementioned paper [10].

In Fig. 3.2, the red lines show the boundaries of the two macrophges after di-
lation with the same number of iterations (= 30) for cases of three different speeds.
The first column is the original image, while the second, third, and fourth columns
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Fig. 3.2. Boundaries (depicted by red lines) after applying dilation with three different speeds of
the level-set equation. The first column shows the original images of two macrophages. The second
column displays boundaries after dilation with a constant speed. In the third column, boundaries
after dilation with the speed −S̃i,j = −1 + |Ii,j − T ∗

i,j |, are illustrated. Lastly, the fourth column

exhibits boundaries after dilation with the speed −vi,j = − 1
2

(S̃i,j + Ii,j). Here, Ii,j and T ∗
i,j denote

the image intensity and computed threshold at a pixel (i, j), respectively. The number of iterations
of level lines is set to 30.

are the results when the speed F is constant, −S̃i,j , and −vi,j , respectively. When
F = −1, the expansion speed is uniform for both macrophages, and the high curva-
ture regions of the macrophage in the first row disappear. However, when different
speeds in individual pixels are considered, the amount of expansion is different for the
two macrophages. In addition, the high curvature parts remain as holes in the third
and fourth columns, thereby allowing for the preservation of high curvature parts
when attempting erosion. Particularly in the fourth column, the high curvature parts
correspond better to the original image Ii,j .

Starting with the boundaries denoted by red in Fig. 3.2, erosion is performed
with the same number of iterations for cases of three different speeds. As illustrated
in Fig. 3.3, the top panel of the second column shows that macrophages with complex
shapes are oversimplified, as the high curvature regions are eliminated during dila-
tion. In contrast, erosion with F = vi,j gives accurate boundaries in both cases. In
addition, the boundary for the macrophage in the second row is closer to the original
when using F = vi,j compared to F = 1 and F = S̃i,j .

3.2. Quantitative assessment of weighted dilation and erosion. This sec-
tion presents measurements of morphological features, including perimeter, area, and
circularity (calculated as 4π ∗ area/perimeter2) for two segmented macrophages over
time with the application of weighted dilation and erosion (hereafter referred to as
WDE). In addition, we compare these measurements to results obtained from ground
truth and to results obtained before the application of WDE. Fig. 3.4 and 3.5 il-
lustrate the morphological features, including perimeter (top-left), area (top-center),
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Fig. 3.3. Boundaries (depicted by red lines) after the erosion with three different speeds starting
from the dilated images in Fig. 3.2. The first column shows the original images of two macrophages.
The second column displays boundaries after erosion with a constant speed. In the third column,
boundaries after erosion with the speed S̃i,j = 1 − |Ii,j − T ∗

i,j |, are illustrated. Lastly, the fourth

column exhibits boundaries after erosion with the speed vi,j = 1
2

(S̃i,j + Ii,j). Here, Ii,j and T ∗
i,j

denote the image intensity and computed threshold at a pixel (i, j), respectively. The number of
iterations of level lines is set to 30.

and circularity (top-right), calculated from ground truth (shown in green), before ap-
plying WDE (shown in blue), and after applying WDE (shown in red).

The way of computing morphological features is as follows: utilizing the results of
cell tracking [10], we identify the centers of segmented regions, representing connected
subregions within the segments. Perimeter, area, and circularity are then computed
solely within the respective segmented regions. For instance, in the scenario presented
in the second row of the third column in Fig. 3.4, two centers corresponding to two
segmented regions are obtained. However, only one center is chosen to represent the
macrophage’s location, resulting in morphological features being computed for ap-
proximately half the original area.

For a detailed comparison, we select four time moments denoted as i, ii, iii, and
iv of the two inspected macrophages and visually assess the corresponding segmented
shapes in comparison to the original images. Before the application of WDE, the
areas at these selected time points are notably smaller than those computed from
ground truth, indicating the presence of fragmented segments, as shown in the “Be-
fore WDE” row. After the application of WDE, all three morphological features are
much more similar to the ground truth results. This is evident in the “After WDE”
row, where all segmented fragments are integrated, preserving the overall shapes of
the macrophages.

The morphology of the macrophages shown in Fig. 3.5 is more complex compared
to those in Fig. 3.4. To highlight the performance of WDE, we selected four spe-
cific time points as before. The areas corresponding to these time points are smaller
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Fig. 3.4. Morphological characteristics such as perimeter, area, and circularity are calculated
over time for a macrophage exhibiting relatively round shapes. Four time points, labeled as i, ii, iii, iv,
are chosen to compare the segmented shapes before and after the application of weighted dilation and
erosion.

than those computed from the ground truth before the application of WDE. In par-
ticular, in cases ii and iv, the areas are significantly small compared to the ground
truth. This is mainly because the positions of the detected centers obtained from
cell tracking are within a very small segmented region, and morphological features
are computed only within these limited regions. After applying WDE, all segmented
fragments are effectively completed, allowing for a more accurate quantitative evalu-
ation. However, there are cases where the regions after applying WDE yield higher
values than the ground truth, especially in cases involving complex shapes, because
the smoothing effect of WDE tends to mitigate highly curved regions, as observed
in ii and iv. Nonetheless, even accounting for this discrepancy, the application of
WDE still provides a significantly improved quantitative assessment compared to its
absence.

4. Discussion and conclusion. The aim of this paper was to achieve auto-
mated calculation of morphological features using segmented images of macrophages,
utilizing centers detected through cell tracking. Since there are some segmented frag-
ments of macrophages, the completion of segmented fragments is essential for the



AUTOMATED COMPLETION OF SEGMENTED FRAGMENTS 19

Fig. 3.5. Morphological characteristics such as perimeter, area, and circularity are calcu-
lated over time for a macrophage exhibiting relatively complex shapes. Four time points, labeled as
i, ii, iii, iv, are chosen to compare the segmented shapes before and after the application of weighted
dilation and erosion.

accurate computation of morphology. We presented a method involving weighted di-
lation and erosion using the level-set approach to complete these segmented fragments.
The speed of level lines is regulated by the relationship between thresholds computed
from the local Otsu’s method and the original image intensity. We showed the effec-
tiveness of the proposed approach in completing segmented fragments by preserving
overall macrophage shapes across different shapes and intensity ranges. Ultimately,
this method allowed for accurate quantitative evaluations. However, two limitations
remain. First, in regions of high macrophage curvature, the method occasionally re-
sults in the smoothing out of such areas. Second, it is difficult to connect fragments
that are too far apart. Despite the aforementioned limitations, the computed mor-
phological features obtained from weighted dilation and erosion are precise enough
as shown in several real examples. Furthermore, we expect that this approach could
enhance tracking accuracy by employing a single center obtained from a completed
segmented region, rather than relying on multiple centers for a single macrophage.
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