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HAMILTON-JACOBI-BELLMAN EQUATION ARISING FROM
OPTIMAL PORTFOLIO SELECTION PROBLEM

DANIEL ŠEVČOVIČ AND CYRIL IZUCHUKWU UDEANI ∗

Abstract. The Hamilton-Jacobi-Bellman equation arising from the optimal portfolio selec-
tion problem is studied by means of the maximal monotone operator method. The existence and
uniqueness of a solution to the Cauchy problem for the nonlinear parabolic partial integral differen-
tial equation in an abstract setting are investigated by using the Banach fixed-point theorem, the
Fourier transform, and the monotone operators technique.
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1. Introduction. In this contribution, we investigate the existence and unique-
ness of a solution φ = φ(x, τ) to the Cauchy problem for the nonlinear parabolic
PDE:

∂τφ− ∂2
xα(φ) = g0(φ) + ∂xg1(φ),

φ(x, 0) = φ0(x), τ ∈ (0, T ), x ∈ R,
(1.1)

where g0, g1 are Lipchitz continuous functions. In [14], we analyzed solutions to (1.1)
and we proved the existence and uniqueness of a solution to (1.1) (see (3.1) in Section
3). The proof is based on the maximal monotone operator technique (cf. Barbu [2]
and Showalter [13]) and the Banach fixed-point theorem.

The diffusion function α = α(x, φ) is assumed to be Lipschitz continuous and
strictly increasing in the φ-variable. In this contribution, we focus our attention to
the case when the value function of the following parametric optimization problem is
of the form:

α(x, φ) = min
θ∈△

(
−µ(x,θ) +

φ

2
σ(x,θ)2

)
, x ∈ R. (1.2)

Here, µ and σ2 are given C1 functions, and △ ⊂ Rn is a compact decision set. In the
case when the mean return vector µ and the covariance matrix Σ respectively belong
to some compact uncertainty sets M and S , the value function for the worst case
portfolio optimization has the form:

α(φ) = min
θ∈△

(
max

µ∈M ,Σ∈S

(
−µTθ +

φ

2
θTΣθ

))
(cf. Kilianová and Trnovská [8]). The nonlinear parabolic equation expressed in
(1.1) is a result of dynamic stochastic programming. Assume that the underlying
stochastic process {xθ

t } satisfies the following Itô’s stochastic differential equation
dxθ

t = µ(xθ
t ,θt)dt + σ(xθ

t ,θt)dWt, where the control process {θt} is adapted to the
process {xt}. Here, µ(x,θ) and σ(x,θ) are the drift and volatility functions, respec-
tively, and {Wt} is the standard one-dimensional Wiener process. We assume that
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the control parameter θ belongs to a given compact subset △ in Rn. Our goal is to
maximize the conditional expected value of the terminal utility of the portfolio:

max
θ|[0,T )⊂△

E
[
u(xθ

T )
∣∣xθ

0 = x0

]
, (1.3)

on a finite time horizon [0, T ], where u : R → R is an increasing terminal util-
ity function. Following Bertsekas [3], we have that the intermediate value function
V (x, t) := supθ|[t,T )⊂△ E

[
u(xθ

T )|xθ
t = x

]
satisfies the fully nonlinear Hamilton-Jacobi-

Bellman (HJB) parabolic equation

∂tV +max
θ∈△

(
µ(x, t,θ) ∂xV +

1

2
σ(x, t,θ)2 ∂2

xV

)
= 0 ,

V (x, T ) = u(x), x ∈ R, t ∈ [0, T ).

(1.4)

A typical example of the decision set △ is the compact convex simplex △ ≡ Sn =
{θ ∈ Rn | θ ≥ 0,1Tθ = 1} ⊂ Rn, where 1 = (1, . . . , 1)T ∈ Rn. To solve the Cauchy
problem (1.4), we can employ the Riccati transformation. Following the papers by
Abe and Ishimura [1], Ishimura and Ševčovič [4], Ševčovič and Macová [12], and
Kilianová and Ševčovič [7], the Riccati transformation of the value function reads as
follows:

φ(x, τ) = −∂2
xV (x, t)/∂xV (x, t), where τ = T − t. (1.5)

According to [9, Theorem 4.2], an intermediate value function V (x, t) such that
∂xV > 0 is a solution to the Hamilton-Jacobi-Bellman equation (1.4) if and only
if the transformed function φ(x, τ), is a solution to the Cauchy problem for the quasi-
linear parabolic PDE:

∂τφ− ∂2
xα(·, φ) = −∂x (α(·, φ)φ) ,

φ(x, 0) = φ0(x), (x, τ) ∈ R× (0, T ).
(1.6)

Equation (1.6) is of the form (1.1) with g0 being equal to zero and g1(·, φ) = −α(·, φ)φ.

2. The value function α and static Markowitz model. Recall that the goal
of the classical Markowitz static optimization model is to maximize the mean return
of the set of stochastic returns Xi, i = 1, . . . , n, under the constraint that the variance
of the portfolio is bounded by a given constant σ2

0 . Given a vector θ = (θ1, . . . , θn)
T

of weights, we construct a portfolio X =
∑n

i=1 θiX
i. Let µ ∈ Rn, µi = E(Xi),

be the vector of mean returns of stochastic asset returns and Σ be their covariance
matrix, Σij = cov(Xi, Xj), then E(X) = µTθ, and the variance D(X) = θTΣθ. The
Markowitz optimal portfolio optimization problem can be formulated as the following
convex optimization problem to maximize the mean return under the constraint on
the variance:

max
θ∈△

µTθ s.t.
1

2
θTΣθ ≤ 1

2
σ2
0 ,

where △ = {θ ∈ Rn,
∑n

i=1 θi = 1, θi ≥ 0}. The Lagrange function for the mini-
mization of −µTθ has the form: L(θ, φ, λ, ξ) = −µTθ + φ 1

2θ
TΣθ + λ1Tθ + ξTθ,

where φ ∈ R, λ ∈ R, ξ ∈ Rn, and ξ ≥ 0 are Lagrange multipliers. The same Lagrange
function corresponds to the minimization problem:

α(φ) := min
θ∈△

−µTθ +
φ

2
θTΣθ
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Fig. 2.1. Optimal asset allocation for the German DAX30 stock index for various φ > 0. φ
can be viewed as risk aversion. Source: own calculations.

provided the Lagrange multiplier φ > 0 is given. In Fig. 2.1, we present the optimal
asset allocation for the German DAX30 (2017) stock index for various values of φ > 0.
The value of the Lagrange multiplier φ can be viewed as a measure of the investor’s
risk aversion (see Fig. 2.1). Therefore, the higher the value of risk aversion, the more
the portfolio is diversified among less risky assets with lower mean returns.

The smoothness of the value function α depends on the structure of the decision
set △. In general, it is only C0,1 (Lipschitz) continuous, provided that △ is a compact
decision set. Indeed, if we define αθ(x, φ) := −µ(x,θ) + φ

2 σ(x,θ)
2 then the minimal

function α(x, φ) = minθ∈△ αθ(x, φ) is Lipschitz continuous.

In [10, Theorem 1], Kilianová and Ševčovič derived sufficient conditions for the
decision set △ and functions µ and σ that guarantee higher smoothness of the value
function α. Suppose that △ ⊂ Rn is a compact convex set and µ(x,θ) and σ(x,θ)2

are C1,1 smooth functions such that the function θ 7→ µ(x,θ) + φ
2 σ(x,θ)

2 is strictly
convex. Then, the function α(φ) is C1,1 continuous. The proof is based on the
classical envelope theorem due to Milgrom and Segal [5] and the result on Lipschitz

continuity of the minimizer θ̂(x, φ) belonging to a convex compact set △ due to Klatte
[11]. In Fig. 2.2, we plot the value function α for convex and discrete decision sets △,

its second derivative α′′, and the dependence of the optimal decision vector θ̂ on the
parameter φ. If the decision set △ is a compact convex set, then the function α(φ) is
C1,1 continuous, i.e., the derivative α′(φ) is Lipschitz continuous (blue line). If △ is

a discrete subset △̂ = {θ1,θ2,θ3} ⊂ △, then the function α is just C0,1 continuous
piece-wise affine function (dotted line). Furthermore, we show a trajectory of the

minimizer θ̂(φ) for increasing φ > 0. Fig. 2.2(c) demonstrates that for small values of
φ, the minimizer belongs to a one-dimensional set (edge). For higher values of φ, the

minimizer θ̂(φ) belongs to higher-dimensional subsets (face, volume) of the simplex
△ = {θ ∈ Rn | θ ≥ 0,1Tθ ≤ 1}.

3. Existence and uniqueness of solutions in Sobolev spaces. Let V ↪→
H ↪→ V ′ be the so-called Gelfand triple, where H = L2(R) = {f : R → R, ∥f∥2L2 =∫
R |f(x)|2dx < ∞} is a Hilbert space endowed with the inner product (f, g) =∫
R f(x)g(x)dx. Here, V = H1(R) is a Sobolev space, and V ′ = H−1(R) is its dual
space. The triple V ↪→ H ↪→ V ′ naturally induces the time-dependent Gelfand
triple V ↪→ H ↪→ V ′, where H is a Hilbert space endowed with the norm ∥φ∥2H =∫ T

0
∥φ(τ)∥2Hdτ, ∀φ ∈ H. Similarly, we define the spaces V = L2((0, T );V ), H =

L2((0, T );H) and V ′ = L2((0, T );V ′).

Let us introduce the auxiliary functions: p(x) = maxθ∈△ |∂xµ(x,θ)|, and h(x) =
−maxθ∈△ µ(x,θ). In [14], we proved the following result on the existence and unique-
ness of a solution to (1.6). The proof is based on the maximal monotone operator
technique (cf. Barbu [2] and Showalter [13]) and the Banach fixed-point theorem.
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Fig. 2.2. a) A graph of the value function α, b) its second derivative α′′(φ) for the portfolio
consisting of the stocks index and bonds (cf. [6]) for the convex compact decision set △. The dotted

line in a) corresponds to the discrete decision set △̂ = {θ1,θ2,θ3} ⊂ △. The trajectory of the

minimizer θ̂(x, φ) for increasing φ > 0 is shown in c).
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Fig. 3.1. A solution φ(x, τ) for the DARA utility function u such that φ0(x) = −u′′(x)/u′(x) ∈
{9, 8}. Source: our calculations based on the numerical method from [14, 7]

Theorem 3.1. [14, Theorem 5] Let the decision set △ ⊂ Rn be compact and the
function u : R → R be an increasing utility function such that φ0(x) = −u′′(x)/u′(x)
belongs to the space L2(R) ∩ L∞(R). Suppose that the drift µ(x,θ) and volatility
function σ2(θ) > 0 are C1 continuous in the x and θ variables, and the value function
α(x, φ) given in (1.2) satisfies p ∈ L2(R) ∩ L∞(R), h ∈ L∞(R), and ∂2

xh ∈ L2(R).
Then for any T > 0 there exists a unique solution φ of the Cauchy problem (1.6) that
satisfies φ ∈ C([0, T ];H) ∩ L2((0, T );V ) ∩ L∞((0, T )× R).

In contrast to the fully nonlinear property of the original HJB equation (1.4), the
transformed equation (1.6) represents a quasilinear parabolic equation in divergence
form. Thus, efficient numerical schemes can be constructed for this class of equations.
In our computational experiments, we employ the finite volume discretization scheme
proposed and investigated by Kilianová and Ševčovič [9, 7, 10]). Fig. 3.1 shows the
results of a time-dependent sequence of profiles φ(x, τ) for a constant initial condition
φ0 ≡ 9. This graph shows the solution profiles for the discountinuous initial condition
φ0 ∈ {9, 8}. It represents the utility function u of the decreasing absolute risk aversion
(DARA) such that φ0(x) = −u′′(x)/u′(x). The function φ(x, τ) increases in the
variable x and decreases in the variable τ = T−t. Therefore, the optimal vector θ(x, τ)
contains a more diversified portfolio of assets when x increases and time t → T (see
Fig. 3.1). Furthermore, it is reasonable to invest in an asset with the highest expected
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return when the value of the account x is low, while an investor must diversify the
portfolio when x is large and time t approaches the end of maturity T .

4. Conclusions. In this paper, we discussed the qualitative and numerical re-
sults of a fully nonlinear HJB equation that arises from a stochastic dynamic optimiza-
tion problem in Sobolev spaces. This equation is related to a portfolio management
problem where the goal is to maximize the expected terminal utility of a portfolio.
We transformed the equation into a quasilinear parabolic equation using the Riccati
method, and under certain assumptions, we showed that the diffusion function is
globally Lipschitz continuous. We also provided numerical examples to illustrate our
results.
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[6] Kilianová, S., Melicherč́ık, I., Ševčovič, D.: Dynamic Accumulation Model for the Second Pillar
of the Slovak Pension System, Finance a uver - Czech Journal of Economics and Finance,
56, 506–521 (2006).
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[12] Macová, Z, Ševčovič, D.: Weakly nonlinear analysis of the Hamilton-Jacobi-Bellman equation
arising from pension savings management. Int. J. Numer. Anal. Model., 7(4), 619–638
(2010).

[13] Showalter, R.: Monotone operators in Banach space and nonlinear partial differential equations.
American Mathematical Soc., 49, (2013).
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