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CONSTRUCTION OF LOCAL REDUCED SPACES FOR
FRIEDRICHS’ SYSTEMS VIA RANDOMIZED TRAINING ∗

CHRISTIAN ENGWER, MARIO OHLBERGER, LUKAS RENELT†

Abstract. This contribution extends the localized training approach, traditionally employed
for multiscale problems and parameterized partial differential equations (PDEs) featuring locally
heterogeneous coefficients, to the class of linear, positive symmetric operators, known as Friedrichs’
operators. Considering a local subdomain with corresponding oversampling domain we prove the
compactness of the transfer operator which maps boundary data to solutions on the interior domain.
While a Caccioppoli-inequality quantifying the energy decay to the interior holds true for all Fried-
richs’ systems, showing a compactness result for the graph-spaces hosting the solution is additionally
necessary. We discuss the mixed formulation of a convection-diffusion-reaction problem where the
necessary compactness result is obtained by the Picard-Weck-Weber theorem. Our numerical re-
sults, focusing on a scenario involving heterogeneous diffusion fields with multiple high-conductivity
channels, demonstrate the effectiveness of the proposed method.
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1. Introduction. Many applications show spatially heterogeneous parameters
with local fine-scale structures which are too small to be resolved numerically. Never-
theless, these structures can significantly influence the global solution behavior. Ex-
amples of such problems, known as multiscale problems, range from fibre-reinforced
structures to composite materials and porous media, among others. In addition, we
are also interested in parameterized problems with locally varying influence of the pa-
rameter. If solutions for many different parameter-values are required - for instance in
PDE-constrained optimization problems, inverse problems, Monte-Carlo simulations
or optimal control problems - conventional techniques such as the Reduced Basis
Method [3] prove similarly infeasible without employing localization techniques.

As of now, there exists a wide variety of methods from the multiscale [17, 1, 15, 9],
reduced basis [18, 24, 5] or domain decomposition communities [13, 14]. In this
contribution we focus on multiscale methods utilizing local approximation spaces to
incorporate the fine-scale structures. In contrast to methods that separate the solution
(locally) into fine- and a coarse-scale contributions, these local spaces are designed to
locally approximate the full solution. A global solution is then obtained by solving
a globally coupled problem on the coarse scale using the local spaces. Depending on
the chosen domain decomposition various coupling conditions are possible, we refer
to [6] for an overview of established methods.

One way of constructing the approximation spaces is by means of a localized
training procedure. Here, the problem is solved on an oversampling domain and
subsequently restricted to the interior target domain. One then investigates the be-
havior of the transfer operator mapping arbitrary boundary values to the solution in
the interior domain. Provided that this operator is compact one can then optimally
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approximate its whole range by a few selected vectors, namely its leading left sin-
gular vectors. In practice, quasi-optimal range approximations can be obtained by
repeatedly applying the operator to ’normal-distributed’ boundary conditions [7].

While this method has been proven to be applicable to scalar elliptic [7] and scalar
parabolic [23] problems, we extend the idea to the large class of positive symmetric
operators known as Friedrichs’ systems which include scalar and non-scalar elliptic
problems, as well as certain operators of hyperbolic or mixed type. For a recent con-
tribution on data-driven model order reduction for Friedrichs’ systems we refer the
reader to [22]. We show that for Friedrichs’ systems a Caccioppoli-inequality holds
which quantifies the energy decay of solutions from the oversampling domain to the
interior. Provided that the naturally occurring solution spaces admit a compact em-
bedding into L2(Ω), we show compactness of the transfer operator. In the last section
we apply the developed theory to the elliptic case in its first-order system reformu-
lation. Numerical experiments for a high-conductivity channel problem demonstrate
the performance of the method.

2. Linear, positive symmetric PDE-operators. We start by formally defin-
ing the class of linear Friedrichs’ operators [12] as vector-valued differential operators
of the form

A : C∞(Ω)m → L2(Ω)m, Au = A0u+

d∑
i=1

Ai
∂u

∂xi
(2.1)

with matrix-valued functions Ai ∈ [L∞(Ω)]m×m,
∑d
i=1

∂Ai

∂xi
=: ∇ ·A ∈ [L∞(Ω)]m×m.

Additionally, we require the following two properties:

1. Ai = ATi for all i = 1, . . . , d,

2. A0 +AT0 −∇ ·A > 2εId for some ε > 0.

We define the graph space H(A; Ω) as the space of all L2(Ω)m-functions which possess
a weak A-derivative, i.e.

H(A; Ω) := {u ∈ L2(Ω)m | Au ∈ L2(Ω)m}. (2.2)

A norm on H(A; Ω) is defined by the graph-norm

||u||2H(A) := ||u||2L2(Ω)m + ||Au||2L2(Ω)m . (2.3)

One quickly verifies that H1(Ω)m ⊆ H(A; Ω) ⊆ L2(Ω)m. To incorporate boundary
conditions we define, following [11], the boundary operator D : H(A)→ H(A)′ by

(Du)(v) := (Au, v)L2(Ω)m − (u,A∗v)L2(Ω)m for all u, v ∈ H(A). (2.4)

For sufficiently smooth Ai one has the representation

(Du)(v) =

∫
∂Ω

vTDuds, D :=

d∑
i=1

niAi

where n⃗ = (n1, . . . , nd) denotes the unit outer normal to ∂Ω. This operator D is then
paired with a second, non-unique admissible boundary operator M : H(A) → H(A)′

which needs to satisfy
1. (Mu)(u) ≥ 0 for all u ∈ H(A),
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2. H(A) = ker(D −M) + ker(D +M∗).
Given such an operator M we can define the closed subspace

H0(A) := ker(D −M) ⊂ H(A)

and obtain the following well-posedness result:
Theorem 2.1 (Well-posedness [11]). For any f ∈ L2(Ω)m, the problem

Find u ∈ H0(A) : (Au, v)L2(Ω)m = (f, v)L2(Ω)m ∀v ∈ L2(Ω)m. (2.5)

is well-posed. Its solution u is the unique minimizer of the residual energy

min
u∈H0(A)

||Au− f ||L2(Ω)m . (2.6)

Instead of working with the non-symmetric problem (2.5) one can thus also solve
the corresponding (symmetric) normal equation

Find u ∈ H0(A) : (Au,Av)L2(Ω)m = (f,Av)L2(Ω)m ∀v ∈ H0(A). (2.7)

This approach is also known as first order system least squares, see e.g. [8, 4].

3. Optimal local approximation spaces. For coefficient fields Ai exhibiting
fine-scale or locally strongly varying structure, solving (2.5) globally is not feasible.
We thus employ an overlapping or non-overlapping domain decomposition {Ωi}NV

i=1 of
the domain Ω and aim at approximating the restricted global solution Riu := u|Ωi

using only local computations.
However, exactly computing Riu locally is not possible as for a well-posed lo-

cal problem information about u on the local boundary ∂Ωi is required - which is
inaccessible without the actual global computation of u. This illustrates the need
for a suitable approximation of the local solution via an efficiently computable (local-
ized), small linear subspace. Following [2], one therefore defines oversampling domains
Ω∗
i ⊋ Ωi satisfying

dist(Ωi, ∂Ω
∗
i ) =: δ > 0.

Given a function space Bi(∂Ω∗
i ) of boundary data on the oversampling boundary,

one considers the transfer operator Ti : Bi(∂Ω∗
i ) → X(Ωi) mapping some function

g ∈ Bi to the solution of a local problem, restricted to the interior Ωi. We then aim
at approximating its range rg(Ti) ⊆ X(Ωi) i.e. the space of local solutions for all
possible boundary values in Bi(∂Ω∗

i ). If Ti can be shown to be compact, the optimal
approximation space Rkopt of size k is given by the k leading left singular vectors.

Here, optimality is measured in the sense of Kolmogorov, i.e. Rkopt is a minimizer of
the Kolmogorov N -width

dN (rg(Ti)) := inf
R⊂X,

dim(R)=N

sup
φ∈Bi

inf
ψ∈R
||Tiφ− ψ||X .

The attained minimal value is given by the first neglected singular value σk+1 of Ti.

3.1. Derivation of the local problem formulation. We start the derivation
of a local formulation of (2.5) by considering the restricted Friedrichs’ operator A :
H(A; Ω∗

i )→ L2(Ω∗
i )
m. Defining the shared global boundary Γi := ∂Ω∗

i ∩ ∂Ω and the
internal boundary Γinti := ∂Ω∗

i \ ∂Ω we can also split the boundary operators Di, Mi

as follows

(Diu)(v) = (Dinti u, v)L2(Γint
i ) + (Du, v)L2(Γi),

(Miu)(v) = (Mint
i u, v)L2(Γint

i ) + (Mu, v)L2(Γi).
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Note that for consistency reasons we assume the local operators Di,Mi to coincide
with the global operators D,M on the global boundary Γi. For a given admissible
boundary function g̃ ∈ Bi := rg(Dinti −Mint

i ) we define the subspaces

H0(A; Ω
∗
i ) := {u ∈ H(A; Ω∗

i ) | (D −M)(u) = 0},
H0(A; Ω

∗
i ; g̃) := {u ∈ H0(A; Ω

∗
i ) | (Dinti −Mint

i )(u) = g̃}.

The local weak problem then reads

Find ui ∈ H0(A; Ω
∗
i ; g̃) : (Aui, v)L2(Ω∗

i )
= (f, v)L2(Ω∗

i )
∀v ∈ L2(Ω∗

i )
m. (3.1)

Note, that the restricted global solution Riu is an element of H0(A; Ω
∗
i ; g̃) if we choose

g̃ := (Dinti −Mint
i )(Riu). This implies that for this specific choice of g̃ the restricted

global solution Riu is recovered as the unique solution of (3.1).
Denoting by S̃i : Bi → H(A; Ω∗

i ) the solution operator mapping a boundary
function g̃ to the solution ui of (3.1) we define the transfer operator Ti via

Ti : Bi → H(A; Ωi), Ti(g̃) := S̃i(g̃)|Ωi
. (3.2)

As S̃i (and thus Ti) is only affine linear due to the right-hand side, we replace it
with its linear part Si := S̃i − S̃i(0) which is the solution operator of the shifted local
problem

Find ui ∈ H0(A; Ω
∗
i ; g̃) : (Aui, v) = 0 ∀v ∈ L2(Ω∗

i )
m. (3.3)

Its image, i.e. the set of all possible solutions of (3.3), shall in the following be denoted
by

Hi := Im(Si) ⊆ H0(A; Ω
∗
i ).

3.2. Compactness of the transfer operator. Showing compactness of Ti
usually involves two steps, a compactness argument for the space of possible solutions
Hi and an estimate on the energy decay from the oversampling domain Ω∗

i to the
interior Ωi. The compactness argument heavily relies on the regularizing properties
of A which is why we formulate it as an assumption here:

Assumption 3.1. Hi is compactly embedded in L2(Ω∗
i )
m.

In section 5 this will be shown to hold for a general convection-diffusion-reaction
operator.

Proposition 3.2 (Caccioppoli inequality). Let A = A0 +
∑
Ai∂xi

be a Fried-
richs operator and u ∈ Hi a solution of (3.3). Then, it holds that

||u||H(A;Ωi) ≤
(
max
i
||Ai||∞

) 2

dist(Ωi, ∂Ω∗
i )
||u||L2(Ω∗

i )
. (3.4)

Theorem 3.3 (Compactness of Ti). Let Theorem 3.1 hold. Then, the transfer
operator Ti is compact.

Proof. Let (gk)k∈N ⊆ Bi(∂Ω∗
i ) be an arbitrary bounded sequence of admissible

boundary values. Continuity of Si implies that the local solutions on the oversampling
domain uk := Si(gk) are also bounded in H(A; Ω∗

i ). Theorem 3.1 now guarantees
the existence of a subsequence (ukj )j∈N ⊆ Hi strongly-convergent in L2(Ω∗

i )
m. Using

the Caccioppoli-inequality (Proposition 3.2) we can then deduce that on the interior
domain Ωi this subsequence even converges in the stronger H(A; Ωi)-norm which
concludes the proof.
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4. Quasi-optimal approximation spaces via localized training. Since the
computation of the optimal approximation spaces spanned by the singular vectors
of Ti is infeasible in practice, we introduce a localized training procedure [7] which
efficiently generates quasi-optimal approximation spaces by repeatedly applying Ti to
’random boundary conditions’ g̃.

To that end, let Bh ⊂ B be a discretization of the boundary functions with finite
dimension NB ∈ N. Given a basis ΦB of Bh, we define the isomorphism DΦB

: Bh →
RNB mapping a function to its coefficient representation in ΦB . Conversely, we can
obtain a ’random boundary function’ by sampling a vector r ∈ RNB with normal
distributed entries ri ∼ N (0, 1) and considering D−1

ΦB
r ∈ Bh.

Algorithm 1 is now obtained by combining the repeated application of Ti to
random boundary conditions with an a-posteriori error estimator which is given as
the projection error of an additional set of random solutions onto the current range
approximation, see [7] for details. The error of the obtained range approximation Rn

can then a-priori be bounded as follows:

Proposition 4.1 ([7]). Let Rn be the result of Algorithm 1. Then, for n ≥ 4
there holds

E (||Ti − PRnTi||) ≤ α min
k+p=n
k, p≥2

(1 +
√

k

p− 1

)
σk+1 +

e
√
n

p

∑
j>k

σ2
j

 1
2

 .
Note, that the bound scales approximately as

√
nσn+1 and is thus almost optimal.

Algorithm 1 Adaptive randomized range approximation [7]

B ← ∅
sample ri ∼ N (0, 1)
M ← {TD−1

S r1, . . . , TD
−1
S rnt

}
while maxt∈M ||t|| · cest > tol do

sample r ∼ N (0, 1)
B ← B ∪ (TD−1

S r)
orthonormalize(B)
M ←

{
t− Pspan(B)t | t ∈M

}
end while
return Rn = span(B)

5. Application to diffusion problems in mixed form. In this section we
apply the developed theory to a classic convection-diffusion-reaction (CDR) problem{

−∇ · (D∇u) + b⃗∇u+ cu = f in Ω,

u = g on ∂Ω.
(5.1)

with D ∈ L∞(Ω)d×d symmetric positive definite, b⃗ ∈ H(div; Ω), c ∈ L∞(Ω), c− 1
2∇ ·

b⃗ ≥ 0 a.e., g ∈ H1/2(∂Ω).

Localized training using a classic weak formulation has been investigated e.g.
in [7]. These results can be considered as a reference for the performance of our
approach based on the reformulation as a Friedrichs’ system: Introducing the diffusive
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flux σ := −D∇u one obtains the mixed formulation

A(σ, u) :=

(
D−1σ +∇u

∇ · σ + b⃗∇u+ cu

)
=

(
0
f

)
in Ω, u = g on ∂Ω. (5.2)

One can verify that A is indeed a Friedrichs’ operator with graph space H(A) isomor-
phic to H(div; Ω)×H1(Ω) [10]. By choosing the boundary operator

⟨M(σ, u), (τ, v)⟩ := (σn⃗, v)L2(∂Ω) − (u, τ n⃗)L2(∂Ω)

we obtain classic Dirichlet-boundary conditions, i.e. H0(A; Ω) ∼= H(div; Ω)×H1
0 (Ω).

5.1. Weak formulation. We consider the shifted local weak formulation (3.3)
and the associated transfer operator

Ti : Bi → H(A; Ωi).

Proposition 5.1. Let A be as in (5.2) and d ≤ 3. Then, Ti is compact.

Following Theorem 3.3 we need to show that Theorem 3.1 holds for the given operator
A. While the full graph space H(A) ∼= H(div; Ω)×H1(Ω) is not compact in L2(Ω)m

we can further characterize the solutions u ∈ H to obtain a compact embedding of
the subspace H ⊊ H(A) into L2(Ω)m:

Lemma 5.2. Let d = 3, then for (σ, u) ∈ H one has D−1σ ∈ H0(rot; Ω).

Proof. We have D−1σ = −∇u in L2(Ω)d and thus ∇× (D−1σ) = 0 as the curl of
a gradient field is zero. The tangential trace also vanishes as can be easily seen from
the identity ∫

∂Ω

n⃗× (D−1σ) ds =

∫
Ω

∇× (D−1σ) dx = 0.

Theorem 5.3 (Picard-Weber-Weck [19, 25, 26]). Let ε ∈ L∞(Ω)3×3 be symmet-
ric and uniformly positive definite and Ω ⊆ R3 be a bounded weak Lipschitz-domain.
Then, the embedding

H0(rot; Ω) ∩ ε−1H(div; Ω)→ L2(Ω)3

is compact.
Theorem 5.4 (Rellich compactness theorem [20]). Let Ω ⊆ Rd be a open and

bounded Lipschitz-domain. Then, the embedding

H1(Ω)→ L2(Ω)

is compact.
The proof of Theorem 5.1 for d = 3 now follows as a direct combination of the

last three statements: For any bounded sequence (σn, un)n∈N ⊆ H we can (due to
Theorem 5.2) apply Theorem 5.3 to the sequence (D−1σn)n∈N by considering ε :=
D−1. Denoting by (D−1σnj )j∈N the obtained converging subsequence, boundedness
of D implies the convergence of (σnj )j∈N in L2(Ω)d. The claim follows by applying
Theorem 5.4 to (unj

)j∈N. In dimension d = 2 we have

rot2(σ) := ∂x1σ2 − ∂x2σ1 ∈ L2(Ω)

by an argument similar to Theorem 5.2. Applying Theorem 5.3 to the natural exten-
sion (σ1, σ2, 0) : Ω → R3 then yields the desired statement. The case d = 1 directly
follows from Theorem 5.4 due to the identity H(div; Ω) = H1(Ω).
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Test case Ω δ D(x) b⃗ c(x)

Pure diffusion [0, 1]2 various 1.0 (0, 0)T 0

Full CDR [0, 1]2 1.0

{
102 x ∈ ωHC ,
1.0 else.

(1, 1)T

{
0, x ∈ ωHC
1.0 else.

Table 6.1: Parameters of the test cases

6. Numerical experiments. In this section we will numerically examine the
proposed method for the CDR-problem (5.2). An impementation based on DUNE-
PDELab1 and instructions for reproduction are publicly available at [21].

We consider the domain Ω = [0, 1]2 and corresponding oversampling domain Ω∗ =
[−δ, 1+ δ]2, δ > 0 which we approximate using a structured grid Ω∗

h of quadrilaterals
with edge length h. For the discretization of the graph-space H(A) ∼= H(div; Ω)×H1

Lagrange-elements Pk(Ω∗
h) of order k = 1 for the scalar variable and Raviart-Thomas

functions RT k−1(Ω∗
h) for the flux variable are used. The discrete boundary space B

is chosen as the trace space of Pk(Ω∗
h), i.e. B := Pk(∂Ω∗

h).

6.1. Different oversampling sizes. First, we numerically examine possible
choices of the oversampling distance δ. In most publications this distance is chosen as
δ = diam(Ωi) which amounts to an additional layer of coarse grid cells (Figure 6.2).
In Figure 6.1 the influence of the oversampling distance δ in a pure diffusion prob-
lem is depicted. Here, the size N of the generated basis with the tolerance being
fixed, scales approximately like O(δ−1), reminiscent of the scaling in the Caccioppoli-
inequality Theorem 3.2. As the approximation error ||T − PNT || converges exponen-
tially in N we infer the relation

||T − PNT || ∈ O(exp(−c δN)).

As the runtime of Algorithm 1 scales approximately quadratically in δ, we stick to
δ = 1 for the subsequent experiments which already produces sufficiently small ap-
proximation spaces.

1 5 10 15 20 25 30 35 40 45 50 55 60 65
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10−2

100

Local basis size N

W
ei
gh

te
d
L
2
-e
rr
or

Tolerance
δ = 0.25
δ = 0.5
δ = 1

Fig. 6.1: Influence of different oversampling sizes δ in a simple diffusion test case.
The same grid width h = 1/40 was used in all tests.

6.2. Results for the full CDR problem. We now consider the full CDR
problem with diffusion, advection and reaction of comparable magnitude (Table 6.1).
In addition, a subdomain ωHC ⊆ Ω∗ of high-conductivity channels is introduced

1https://www.dune-project.org/modules/dune-pdelab

https://www.dune-project.org/modules/dune-pdelab
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where the diffusion tensor D has a significantly larger magnitude. In a first test
case the channels do not intersect and run parallel from left to right, whereas the
second test case consists of channels in both x- and y-direction (Figure 6.3). In both
configurations we evaluate the generated approximation spaces using an additional
validation set of 20 solutions. As the flux variable σ ≈ −D∇u has, due to the high
diffusivity values, a significantly larger magnitude, we consider the error norm

||σ, u||2 := ||D−1σ||2L2(Ω)d + ||u||2L2(Ω) ∼ ||σ, u||2L2(Ω)m .

in order to obtain a more uniform convergence of both solution components.

Ωi Ω∗
i

Fig. 6.2: Computa-
tional domain.

Dii = 102

Dii = 1

Fig. 6.3: Diagonal entries of the diffusion coefficient Dii

for two different test cases.

In the case of parallel channels (Figure 6.4) we first of all note the exponential
decrease of the approximation error with increasing size of the computed local basis
(Figure 6.5). Furthermore, there is a distinctive improvement in approximation qual-
ity at N = 8. We suspect that at this point the most energetic modes related to the
two channels reaching the interior have all been included in the range approximation
leaving only less energetic modes entering through low diffusivity regions.

(a) Restricted solution on Ω

−0.2

0

0.2

(b) Restricted flux on Ω
0

200

400

600

Fig. 6.4: Exemplary solution to the local problem, first test case.

The second test case introduces additional channels in the vertical direction cre-
ating a lattice-like structure. This results in solutions with lower energy in the inte-
rior (Figure 6.6) as the additional connections promote the diffusion of the incoming
boundary data. Evaluating the spaces generated by Algorithm 1 subsequently reveals
a more rapid decrease of the approximation error (Figure 6.7).

7. Conclusion. In this contribution we evaluated the applicability of localized
training methods to PDE-operators of Friedrichs’ type. We showed that Caccioppoli-
type estimates hold and proved compactness of the transfer operator provided that
the operator exhibits sufficient smoothing properties. The method was then applied
to a convection-diffusion-reaction problem where we verified the smoothing properties
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Fig. 6.5: Error in the range approximation, first test case
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Fig. 6.6: Exemplary solution to the local problem, second test case
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Fig. 6.7: Error in the range approximation, second test case

of the associated first-order Friedrichs’ operator in the weak formulation. Employing
an algorithm based on randomized numerical linear algebra then produces local spaces
that closely approximate the optimal spaces spanned by the left singular vectors of
the transfer operator. In a challenging test case featuring multiple high-conductivity
channels, we demonstrated the numerical viability of this strategy.

Further research will integrate the generated local spaces into composite meth-
ods to solve the globally coupled problem. In order to tackle parametric problems
where computing local approximation spaces for many parameters would be required,
adaptive approaches using online enrichment strategies provide a promising approach.
Notably, recent work proposed using a localized, residual-based error estimator to
drive an adaptive algorithm which was then successfully applied to a scalar elliptic
problem [16]. Future work will aim at combining this approach with our work.
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Fig. 6.7: Error in the range approximation, second test case

of the associated first-order Friedrichs’ operator in the weak formulation. Employing
an algorithm based on randomized numerical linear algebra then produces local spaces
that closely approximate the optimal spaces spanned by the left singular vectors of
the transfer operator. In a challenging test case featuring multiple high-conductivity
channels, we demonstrated the numerical viability of this strategy.

Further research will integrate the generated local spaces into composite meth-
ods to solve the globally coupled problem. In order to tackle parametric problems
where computing local approximation spaces for many parameters would be required,
adaptive approaches using online enrichment strategies provide a promising approach.
Notably, recent work proposed using a localized, residual-based error estimator to
drive an adaptive algorithm which was then successfully applied to a scalar elliptic
problem [16]. Future work will aim at combining this approach with our work.
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