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APPLICATION OF AN ADAPTIVE MODEL HIERARCHY TO
PARAMETRIZED OPTIMAL CONTROL PROBLEMS*

HENDRIK KLEIKAMP of

Abstract. In this contribution we apply an adaptive model hierarchy, consisting of a full-order
model, a reduced basis reduced order model, and a machine learning surrogate, to parametrized
linear-quadratic optimal control problems. The involved reduced order models are constructed adap-
tively and are called in such a way that the model hierarchy returns an approximate solution of given
accuracy for every parameter value. At the same time, the fastest model of the hierarchy is evaluated
whenever possible and slower models are only queried if the faster ones are not sufficiently accurate.
The performance of the model hierarchy is studied for a parametrized heat equation example with
boundary value control.
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1. Introduction. Optimal control problems with parameter-dependent system
components typically require an enormous computational effort when considered in
a multi-query or real time scenario. Solving these kinds of problems exactly for
many different values of the parameter is computationally demanding and often pro-
hibitively costly. In [I0], a greedy procedure to construct a reduced order model for
parametrized optimal control problems has been proposed. To further speed up the
online computations of the reduced model, machine learning algorithms have been
used in a certified manner in [9]. In this work, we combine the aforementioned ideas
with an adaptive and certified model hierarchy for parametrized problems which was
introduced in [6] and further applied in [12]. This model hierarchy allows for an adap-
tive construction and improvement of reduced order models and machine learning
surrogates while already querying the model hierarchy for different parameter values.
Hence, no costly offline phase is required, while the results provided by the model
hierarchy still fulfill a prescribed error tolerance. The parametrized optimal control
problem is only solved exactly using the underlying full-order model if necessary.
Whenever possible, cheaper reduced order models are used, which are built, trained
and improved on the fly using data from more accurate but at the same time more
costly models.

The adaptive model hierarchy for optimal control problems introduced in this
contribution could for instance be applied in conjunction with Monte Carlo estimation
of derived quantities. In addition, parameter optimization problems with optimal
control problems as constraint could be another possible field of usage.

Applications of reduced order models to optimal control problems can for instance
be found in [I B, 10]. A combination with tools from machine learning has been
proposed in [2]. In [7], an approach using deep neural networks for the solution of
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parametrized partial differential equations combined with reduced basis reduced order
models constructed via proper orthogonal decomposition has been discussed.

The paper is organized as follows: In Section [2] we introduce the problem consid-
ered in this contribution and present the associated optimality system. Afterwards,
in Section [3] the two reduced order models and an a posteriori error estimator will be
discussed. Section [4] presents the adaptive model hierarchy in a general formulation
which is then applied to the parametrized optimal control setting in Section |5} A nu-
merical example showing the performance of the devised algorithms is performed and
evaluated in Section [6] The paper ends in Section [7] with some concluding remarks
and an outlook to future research directions.

2. Linear-quadratic parametrized optimal control problems. First, we
introduce the parametrized optimal control problems considered in this work. For
simplicity, we state the optimal control problem in a finite-dimensional setting. The
more general formulation for infinite-dimensional parameter, state and control spaces
can be found in [9]. Afterwards, the optimality system using an adjoint variable and
a linear system of equations for the optimal adjoint at final time are presented.

2.1. Problem formulation. Let P C RP be a compact parameter set for
some p € N. For a parameter u € P, the state system is given as

&, (t) = Apz,(t) + Buu(t), te€0,17,

:E#(O) = (E?“

(2.1)

where z,: [0,7] — R” is the state trajectory, u: [0,7] — R"™ denotes the control,
A, € R™*™ is the state operator, B, € R™*™ the control operator, 7" > 0 is the final
time and xz € R"™ denotes the initial state. In the examples we have in mind, for
instance discretizations of time-dependent partial differential equations (PDEs), the
dimension n € N of the state space is typically quite large whereas the number of
controls m € N is of moderate size. For each parameter y € P, we aim to steer the
system state x,(T") at time T close to a given target state xZ € R™ while not spending
too much control energy. We hence aim to minimize the following functional [,
defined for a control u: [0,7] — R™ as

T
Tu(w) = 5 | (@u(T) = ) " M (2, (T) *$E)+/U(t)TR’M(f) dt|
0

where z,: [0,T] — R™ solves the state equation for the control u, the matrix M €
R™"™ is symmetric and positive-semidefinite and the matrix R € R™*™ is symmetric
and positive-definite. The matrices M and R allow for individual weights for different
state and control components. To summarize, given a parameter p € P, we would
like to solve the optimal control problem

muinj#(u), s.t. ,(t) = Az, (t) + Buu(t) for t € [0,T], x,(0) = :vg. (2.2)

2.2. Optimality system. The following optimality system characterizes the
optimal state trajectory x7,: [0,7] — R™, the optimal control Uy, [0,T] — R™ and
the optimal adjoint trajectory 7 : [0,7] — R™ (see [, Theorem 2.4] for more details)
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that solve (2.2)):
(1) = Apap,(t) + B, (1),

—gn(t) = A1), (2.3a)
up,(t) = —R™'B, ¢}, (t),

for ¢ € [0, T] with initial respectively terminal conditions

z*(0) = 22

3 w

@ (T) =M (z3(T) — x,) . (2.3b)

Using the exponential function, we define the weighted controllability Gramian Aff €
Rnxn as

T
AR / e T=9B, RTIB A (T g,
0
With this definition, the optimal state at final time 7 (7") can be expressed as
T
z,(T) = eA“Tmﬁ - /eA“(T_S)BMR_lBIeAI(T_S)s i (T)ds = eAnT Au @ (T).
0

Taking into account the terminal condition of the optimality system in , we
have
(1) = M ((T) =) = M (e T, = Afol (T) = ) -

By rearranging this equation we thus obtain a linear system for the optimal final time
adjoint ¢ (T') (see [9, Lemma 2.5]), which is given as

(I+MAJ) @i (T) =M (e* T, —aT). (2.4)
The solution of the optimality system is already uniquely determined by the
optimal final time adjoint ¢ (T') (in the following we assume that the product M Aff
is positive-semidefinite for all parameters p € P). It is therefore sufficient to first
solve the linear system in (2.4) for ¢7 (T') and afterwards solve the ordinary differential
equation system in to obtaln the optimal control, state and adjoint trajectories.
The linear system can be solved using iterative methods since applying the Gramian
matrix Af to a vector p € R™ is (up to a minus sign) equivalent to solving the
optimality system for terminal condition ¢, (T") = p and initial condition x,,(0) =
0. In the following, solving the linear system in and the optimality system
in exactly will be referred to as solving the full-order model (FOM). The main
idea of the reduced order model introduced in the next section is to approximate the
final time adjoint ¢y, (T") by an element from a low-dimensional subspace of R".

3. Reduced order models for parametrized optimal control problems.
In this section we first introduce a reduced order model (ROM) based on a reduced
basis approximation of the manifold M := {¢}(T) : u € P} of optimal final time
adjoint states. Afterwards, we show how to further accelerate the online phase by ap-
plying machine learning algorithms. We finally discuss an a posteriori error estimator
for both reduced models.
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3.1. Reduced basis ROM. Assume that we are given a reduced basis ®V =
{p1,...,on} for some @1,...,on € R™ and the respective reduced subspace XV =
span(®?) C R™. In the adaptive model hierarchy described below, the reduced basis
is built iteratively by starting with an empty basis and adding optimal final time
adjoint states for certain parameters. A greedy procedure (see [4] for the theoretical
background) to determine a reduced basis for the optimal control problem in
was discussed in [9, Section 3]. Given the reduced space XV and a parameter u € P,
we compute the approximate final time adjoint @ff € XN as

9275 ‘= arg min HM (eA“Tscg - xZ) —(I+ MAE‘) @H . (3.1)
GEXN
In other words, we choose 95/]:[ such that
(1+ MAR) &Y = Pyy ((T+ MAR)@3(D),

where PYMN denotes the orthogonal projection onto the space YMN = (I + M Af’) XV,
This choice is motivated by the least squares solution of the linear system over
the space XN.

To compute the approximation c,bﬁ[ ~ ¢}, (T) in practice, one first computes the
states 2} = (I + MA)gp; for i = 1,...,N (which essentially means to solve the
optimality system in (2.3)). Afterwards, the matrix X, = [z} --- 2] € R™¥ can be
assembled and the coefficients o = (af,...,ak)T € RY are derived as solutions of
the linear system

T ¥ T A
X“ Xuot :XHM(e “ng —xZ)

Having the coefficients at hand, the approximate final time adjoint is given as

N
N _ 7
Pp = E o ;.
i=1
N

The corresponding approximate optimal control 4, is computed by solving the op-
timality system in (2.3). The reduced order model described in this section will be
called reduced basis ROM (RB-ROM) in the following.

3.2. Machine learning ROM. The RB-ROM introduced in the previous sub-
section still involves several steps whose computational effort depends on the di-
mension n of the state space. In particular, computing z! € R™ for i = 1,...,N
corresponds to solving the adjoint and the state equation N times for every new pa-
rameter ;. € P. However, these computations are solely required to solve for the
coefficients a* € RY with respect to the reduced basis. In the machine learning
ROM (ML-ROM) proposed in [9], instead of solving a linear system of equations for
the coefficients, the map 7y : P — RY, mnx(p) := a#, from parameter to coefficients
is approximated using machine learning algorithms. This idea is motivated by the
approach first introduced in [7]. Given an approximation 7y: P — RY of 7y, the
machine learning approximation gbﬁ] € R™ of the optimal final time adjoint is defined
as

N

on =) [An (W]igs.

i=1
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Similar to the RB-ROM in the previous section, the approximate optimal control ﬁﬁf
is derived according to the optimality system from Section

The machine learning surrogate is trained in a supervised manner, i.e. by means of
training data consisting of parameters and corresponding coefficients. Several differ-
ent machine learning algorithms are applicable in this scenario, the only requirement
is that vector-valued functions can be approximated using training data (see [9, Sec-
tion 4]). In our numerical experiment below we apply kernel methods (as discussed
in more detail in [9, Section 4.3.2]) and in particular the vectorial kernel orthogonal
greedy algorithm (VKOGA) as introduced in [IT].

3.3. Residual based a posteriori error estimation. To estimate the error
of the RB-ROM and the ML-ROM in an a posteriori manner, we consider the norm of
the residual of the linear system in . To be more precise, given a parameter y € P
and an approximate final time adjoint p € R", the error estimate 7, (p) is defined as

nu(p) = HM (eA“Txﬂ - xz) - I+ MAf)pH . (3.2)

The reduced solution @7 is thus, by combining (3.1)) and (3.2)), defined as the element
from the reduced space XV that minimizes the error estimator 7,, i.e. it holds @g =
argminge y~ 1,($). As proven in [9, Theorem 3.1], it is possible to show that 7, is
an efficient and reliable error estimator for the true error, i.e. it holds

o™ =pl < mu) < [T+ MAJ|[lep(T) —p]. (3:3)

This error estimator can be applied to both, the solution @LV of the RB-ROM and
the solution ¢, of the ML-ROM. Evaluating the error estimator for some p € R"
requires solving the adjoint equation once backwards in time with terminal condition p,
computing the corresponding control, and finally solving the state equation forward

in time with zero initial condition for the state.

4. Adaptive model hierarchy. In [6], an adaptive model hierarchy for para-
metrized PDEs was presented. The model hierarchy consists of a FOM, an RB-ROM
and an ML-ROM. Both ROMs can be evaluated in terms of their a posteriori error
using a residual-based error estimator. When the model hierarchy is queried for a
new parameter p € P, first the ML-ROM is evaluated and its error compared to
a prescribed error tolerance € > 0. If the ML-ROM, which is the fastest of the
three involved models, is sufficiently accurate, the machine learning approximation is
returned. Otherwise, the RB-ROM, which takes more time to solve than the ML-ROM
but is still faster than the FOM, is called. Also for the RB-ROM, the a posteriori
error estimator is evaluated and the estimated error is compared to the tolerance . If
the RB-ROM is accurate enough, the reduced basis approximation is returned, if not,
the solution provided by the FOM is computed. The FOM is typically much slower
than both of the reduced models. The model hierarchy is constructed in such a way
that, whenever possible, i.e. their accuracy is sufficient, the faster to evaluate reduced
order models are used and calls to the slower models are avoided.

Furthermore, the model hierarchy is also adaptive in the sense that the reduced
models are built while already querying the model hierarchy for different parameters.
To be more precise, instead of using pre-trained reduced order models, one starts
with an empty reduced basis such that the reduced order models can only return
zero as solution. Whenever the FOM is called in the hierarchy, new training data for
the RB-ROM is generated. Hence, calling the FOM improves the RB-ROM. Similarly,
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if the ML-ROM is not sufficiently accurate but the RB-ROM is, new training data
for the ML-ROM is obtained by calling the RB-ROM. This way, the performance
of both reduced models can be improved by solving the more expensive models in
the hierarchy and thus benefit from more accurate solutions obtained by the slower
models.

5. Application of the model hierarchy to optimal control problems.
In the following we transfer the adaptive model hierarchy described in Section []
to parametrized optimal control problems by making use of the ROMs presented
in Sections and [3.2] together with the error estimator from Section[3.3] To this end,
we assume that a desired accuracy € > 0 of the approximate final time adjoint with
respect to the optimal final time adjoint obtained by solving the FOM is prescribed.

As a first step, the ML-ROM as introduced in Section [3.2] is called to obtain
the approximate final time adjoint gfafy . Afterwards, the error of the ML-ROM is
estimated by evaluating nﬂ(gbﬁ[ ) where the error estimator 7, is defined in . If
the estimated error is smaller or equal to the tolerance e, the approximate optimal
control 112[ is returned. If instead the ML-ROM was not accurate enough, the RB-
ROM is solved for c,bf)’ . Similarly to the ML-ROM, the error estimate nu(gbftv ) is
computed and compared to the prescribed tolerance €. If the RB-ROM is sufficiently
accurate, i.e. it holds nu(gbflv) < ¢, the control @V is returned. If even the RB-ROM

o
is not accurate enough, the FOM is called and the optimal control «” is returned.

Due to the reliability of the error estimator 7, from , ie. tﬁe first estimate
in , the result of the model hierarchy comes with a guaranteed accuracy. To be
more precise, the error of the (approximate) final time adjoint used to compute the
(approximate) optimal control that is returned by the model hierarchy is at most e
with respect to the optimal final time adjoint derived from the FOM.

The way the adaptive model hierarchy determines a control when it is evaluated

for a parameter p € P is visualized in Figure [5.1

1 ML-ROM —s &N Adaptive model hierarchy
Pu with tolerance € > 0
nu(@)) <e —2°>(RB-ROM — @Y

- N, *
nu(@)) <& ——>{FOM — ¢;(T)

Yesl

N
©w

N

o
m return u,

return o return @

Fic. 5.1. Visualization of the adaptive model hierarchy applied to the parametrized optimal
control setting.

At this point, we recall again that every call to the RB-ROM in the model hier-
archy generates new training data for the ML-ROM. Similarly, evaluating the FOM
results in a new function for the reduced basis in the RB-ROM. Since extending the
reduced basis results in a larger dimension of the reduced space, we also have to
extend the previous ML-ROM which was created for a smaller reduced basis. One
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possibility to do so is to extend the previous training data by adding zeros for the
new components as done in [6]. However, this strategy might result in an undesired
bias towards zero for the ML-ROM training. To circumvent this issue, we follow a
different policy in which we instead train a new machine learning surrogate for each
individual coefficient in the reduced basis expansion. This means in particular that
in the machine learning training no training data consisting of artificial zeros is used.

We also emphasize that the main computational effort in the ML-ROM is spent
for evaluating the error estimator. Computing the error estimate 7,(p) according
to for a given parameter p € P and approximate final time adjoint p € R"”
still requires the solution of the adjoint equation and the primal state equation and
therefore depends on the (large) dimension n of the state space. This computational
effort in particular limits the efficiency of the ML-ROM when compared to the RB-
ROM and will be discussed in more detail when investigating the numerical test case
in the next section.

6. Numerical experiment. As a numerical example we consider a parame-
trized heat equation where the parameter determines the heat conductivity of the
underlying material as well as the target state. The two components of the control
act on the Dirichlet boundary of the one-dimensional domain. The setting is similar
to the one presented in [0 Section 6.2] and will be recalled briefly in the following
(see [9) for more details).

Given a parameter p = [u1,p2] € P = [1,2] x [0.5,1.5] C R?, the parametrized
heat equation is given as

Owu(t,y) — mAv,(t,y) =0 fort € [0,T],y € Q,
v, (t,0) = w1 (2) for t € 0,77,
v, (t, 1) = uy 2(t) for t € [0,T7,

v,(0,y) = v, (y) = sin(ry) for y € Q,

where v,,: [0,T] x Q@ — R with 7" = 0.1 denotes the state of the system. Furthermore,
we denote by u,(t) = [uml(t),umg(t)]—r € R? for t € [0,T] the control acting as
Dirichlet boundary values on both ends of the one-dimensional domain 2 = [0,1]. In
the optimal control problem we consider, the goal is to steer the system state at final
time T close to the target state given by vf(y) = poy for y € Q. In this setting, the
first component of the parameter determines the heat conductivity of the underlying
material and the second component changes the slope of the target state. For the
discretization of the system above, we use a second-order central finite difference
scheme with n = 200 inner points in space and the Crank-Nicolson method with 6000
time steps for the time discretization. The system matrices are thus given as

-2 1 1 0
1 -2 1 0 0
AM:% eRan and Bu:% ER”X27
1 -2 1 0 0
1 =2 0 1

where h = 1/(n 4+ 1). We choose the matrix M = I € R"*™ as the identity matrix

0125 0
andR_[ 0 025

evaluating v2 and vg on the uniform grid also used in the finite difference scheme.

} € R?*2. The initial and target states z, and x result from
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The adaptive model hierarchy is queried for 10,000 parameters from a uniformly
distributed grid in the parameter set P that were randomly shuffled. The model
hierarchy is applied to this system with a fixed tolerance of € = 10~%. Furthermore,
the ML-ROM is trained whenever the reduced basis is extended or when five new
training samples from the RB-ROM are collected. The experiment was performed on
a dual socket compute server with two Intel(R) Xeon(R) Gold 6254 CPUs running
at 3.10GHz and 36 cores in each CPU. The Python code for the experiment is available
in [8] and can be used to reproduce the results shown belowﬂ

Table[6.I]summarizes the number of solves, number of error estimates, and timings
for the FOM, RB-ROM and the ML-ROM within the adaptive model. We observe
that the ML-ROM is sufficiently accurate in more than 99% of the calls to the adaptive
model hierarchy. The FOM was called 4 times in total which corresponds to a final
reduced basis of size N = 4. We should remark at this point that the required amount
of time for extending the reduced basis of the RB-ROM and for training the ML-ROM
is negligibly small and was therefore omitted in the table. The advantage of using the
adaptive model hierarchy instead of solely the FOM or the RB-ROM is reflected in
the average time per solve of the three models (last column of Table [6.1]). The ML-
ROM is about three times faster than the RB-ROM and about seventeen times faster
than the FOM. This additional speedup of the ML-ROM pays off in view of the
large number of evaluations of the model hierarchy. In particular, due to the error
certification, the results obtained by the RB-ROM and the ML-ROM come with a
guaranteed accuracy. However, we also observe that the speedup of the ML-ROM
compared to the RB-ROM is only moderate. The reason for this observation is the
relatively costly error estimation also for the ML-ROM as already discussed at the
end of Section [5} The speedup of the ML-ROM depends on the size of the reduced
basis and becomes more pronounced for larger reduced bases.

Number of Number of Total time for error Average time for error est.
Model . . .
solves error estimates  est. and solving (s) and solving per solve (s)
FOM 4 — 112.24 28.06
RB-ROM 65 69 299.26 4.60
ML-ROM 9,931 10,000 16,655.78 1.68
TABLE 6.1

Results of the numerical experiment for the heat equation using the adaptive model hierarchy.

The calls to the models together with their runtimes over the queried parameters
are shown in Figure We observe that the FOM is called only for some of the
first parameters and afterwards either the RB-ROM or the ML-ROM is sufficiently
accurate and the FOM is never called again. In contrast, the model hierarchy falls
back to the RB-ROM due to an insufficiently accurate ML-ROM for some parameters
everywhere in the set of 10,000 parameters. Due to the a posteriori error estimation,
such cases are detected and handled properly. The figure further shows that the ML-
ROM is already used after a small number of parameters, i.e. with a limited amount
of training data an ML-ROM that is sufficiently accurate for several parameter values
can be trained. In the last 2,000 calls to the model hierarchy, only the ML-ROM was
used. As before, the runtimes for extending the reduced basis and training the ML-

IThe corresponding GitHub-repository containing the source code is available at https://github.
com/HenKlei/ADAPTIVE-ML-0PT-CONTROL
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ROM are not shown in the plot since they are negligibly small.

Time spent in model evaluation

30 FOM
20 | RB-ROM
ML-ROM
—~ 10
P— f—
£ 91
E
& 64
3 .|
1 ]
T T T T T T
0 2,000 4,000 6,000 8,000 10,000

Number of queried parameter

Fic. 6.1. Performance of the adaptive model hierarchy in terms of the required times for
error estimation and evaluation of the involved models when applied to a parametrized heat equation

problem.

In Figure[6.2 we further present the estimated errors of the RB-ROM and the ML-
ROM over the queried set of parameters. As expected, for the first couple of param-
eters, the estimated error for both reduced models is above the desired tolerance e.
After the four evaluations of the FOM, the RB-ROM is always sufficiently accurate.
The estimated errors of the ML-ROM vary relatively strongly between about 10~*
and 107%. For some parameters, the ML-ROM is not accurate enough and the RB-
ROM is evaluated instead, but for several parameters the error of the ML-ROM is
even about two orders of magnitude smaller than the prescribed tolerance.

Evaluations of the different models with error estimates

102 - - - Tolerance e
RB-ROM
—
g 10—3 ML-ROM
=
[
B 107" S Enn g ta e s m s s s o o e R
=
E1075
3
106
1077 T T T T T
0 2,000 4,000 6,000 8,000 10,000

Number of queried parameter

Fic. 6.2. Error estimation of the RB-ROM and the ML-ROM in the adaptive model hierarchy
when applied to a parametrized heat equation problem.

Altogether, applying the adaptive model hierarchy enables the certified approxi-
mate solution of the optimal control problem for 10,000 different parameters, where in
the same time span only about 608 calls to the FOM or 3,710 evaluations of the RB-
ROM would have been possible.
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7. Conclusion and outlook. This work combines an adaptive model hierarchy
introduced in [6] with reduced basis and machine learning ROMs for parametrized
optimal control problems presented in [9]. The main ingredient for the model hierarchy
is the a posteriori error estimator available for both ROMs. By means of this error
estimator, the model hierarchy is capable of providing certified results with guaranteed
accuracy for every parameter, while only using the fastest models whenever possible.

The numerical example of a parametrized heat equation with controls acting on
the Dirichlet boundary values shows how a combination of several layers of reduced
order models can provide an additional speedup. At the same time, the error in
the result of each query of the model hierarchy can be bounded by the prescribed
tolerance due to the error certification. Hence, applying the model hierarchy results
in a speedup while still maintaining the accuracy of the outputs.

As future research directions, it might be of interest to investigate larger test
cases and apply the model hierarchy in practical applications. Furthermore, one could
investigate different choices of machine learning algorithms also in the setting of the
adaptive model hierarchy. To further improve the performance of the model hierarchy,
the evaluation of the error estimator should be sped up, since this constitutes the main
remaining bottleneck in terms of computational efficiency of the overall procedure.
The authors in [5] describe an approach based on a reduced basis ROM for the state
and the adjoint equations which also accelerates the evaluation of the error estimator.
However, using a reduction for the state and adjoint equations results in an additional
error, which, to the best of our knowledge, has not been investigated so far.
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