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GAPNET: GRANULARITY ATTENTION NETWORK WITH
ANATOMY-PRIOR-CONSTRAINT FOR CAROTID ARTERY

SEGMENTATION
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Abstract. Atherosclerosis is a chronic, progressive disease that primarily affects the arterial
walls. It is one of the major causes of cardiovascular disease. Magnetic Resonance (MR) black-blood
vessel wall imaging (BB-VWI) offers crucial insights into vascular disease diagnosis by clearly visualiz-
ing vascular structures. However, the complex anatomy of the neck poses challenges in distinguishing
the carotid artery (CA) from surrounding structures, especially with changes like atherosclerosis. In
order to address these issues, we propose GAPNet, which is a consisting of a novel geometric prior
deduced from an anatomical viewpoint. The use of anatomical prior allows the model to avoid seg-
mentation contours whose topology violates the anatomical reality. Specifically, at the first stage,
regional features are learned to identify the location of the target CA and to reduce the influence
from the surrounding similar tissues. The second stage aims to improve the feature representation ca-
pability, by employing a delicately designed Feature Refinement Attention (FRA) module to capture
boundary and detailed information alongside a new Multi-Scale Information Enhancement (MIE)
module at the end of the decoder procedure. Experimental results demonstrate the superior perfor-
mance of our approach on two carotid artery datasets, respectively achieving Dice scores of 0.76 and
0.83, proving the effectiveness of GAPNet in improving the accuracy of carotid artery segmentation
in MR imaging.

Key words. Carotid artery segmentation, anatomical prior, topological prior, deep learning,
isoperimetric theorem.

1. Introduction. Cardiovascular disease gets to be one of the leading causes of
death globally [1]. Atherosclerosis is a chronic and progressive cardiovascular disease
characterized by forming plaques in the arterial intima. These plaques can lead to
arterial stenosis, hardening, and plaque rupture, which in turn cause serious com-
plications such as thrombosis, myocardial infarction, and stroke. Therefore, regular
examination of the carotid arteries and early detection of carotid atherosclerosis are
essential. Magnetic Resonance (MR) black-blood vessel wall imaging (BB-VWI) can
effectively display both normal and pathological arterial vessel walls and character-
ize atherosclerosis, providing important evidence for clinical diagnosis [2]. In clinical
practice, manual carotid artery segmentation is time-consuming, subjective, and re-
quires specialized training in vessel wall review [2]. In addition, the complex geometric
structures of atherosclerotic lesions and carotid artery (as shown in Fig. 1.1) are also
regarded as a crucial reason that yields difficulties for accurate segmentation.
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Fig. 1.1. Typical challenges in CA segmentation task from MRI images. The green arrows
point to the vessel walls undergoing complex deformations due to lesions.

In carotid artery segmentation, traditional methods, such as variational mod-
els [3, 4, 5, 6, 7], usually require specialized domain knowledge, leading to poor gen-
eralization. With the development of fully convolutional networks, many UNet-based
methods have emerged. Menchón-Lara et al. [8] employed a perceptron network seg-
ment ultrasound CA images. Shin et al. [9] utilized convolutional neural networks
(CNNs) to segment ultrasound CA images. Alblas et al. [10] treated vessel wall seg-
mentation as a multitask regression problem in polar coordinates, encouraging to
find continuous and complete segmented structure of the vessel wall. Despite having
improved the accuracy and efficiency of the solutions to the CA segmentation task,
most of these methods rely on learning semantic features from images for segmen-
tation. As an important shortcoming, the lack of geometric constraints, suffered by
these methods, leads to unacceptable structural errors. Azzopardi et al. [11] proposed
a geometrically constrained CNN and used amplitude and phase congruency data as
input. It imposes shape constraints only considering convex shapes, while the CA
may exhibit a certain degree of concavity and convexity simultaneously in reality,
especially at bifurcations.

In this paper, we propose a novel granularity attention network and a penalty term
based on geometric prior from an anatomical viewpoint, also referred to as anatomical
prior, for CA segmentation. A core for the prior lies at the isoperimetric theorem
which reveals the essential relation between the perimeter and area of a connected
region. More specifically, we design a criterion in terms of the isoperimetric theorem to
define the admissibility of a segmented structure. The granularity attention network
consists of a two-stage segmentation network combined with the FRA module and
the MIE module. This network first performs a coarse segmentation of the region,
followed by a refinement process to enhance the network’s representational capacity.
It is designed to better distinguish the CA from other tissues within the complex
anatomy of the neck. The penalty term relying on the introduced prior of the CA
imposes constraint to comply with the anatomical structures.

The main contributions are as follows:

(a) We propose a granularity attention network optimized with anatomical prior
constraint. The network and constraint ensure the completeness and accuracy
of the segmentation by utilizing anatomical prior of the CA and performing
feature extraction from coarse to fine granularity.

(b) A novel penalty term is proposed based on the anatomical prior to reduce
structurally unacceptable segmentation errors. This prior that is taken as an
efficient geometric constraint is able to encourage to detect the correct shapes
of the CA.

(c) A granularity attention network with the FRA module and the MIE module is
designed to enhance the segmentation accuracy. It captures refinement and
multi-scale features through a two-stage network for coarse-to-fine-grained



GAPNET: GRANULARITY ATTENTION NETWORK 101

Fig. 2.1. Diagram of the proposed GAPNet.The backbone of the network consists of two U-
shaped networks embedded with the FRA module and the MIE module.

segmentation.

2. Method.

2.1. Granularity Attention Network. The complex anatomy of the neck re-
gion, where various tissues such as blood vessels, nerves, and soft tissues are densely
packed and closely positioned. To precisely segment the CA from complex struc-
tures, we propose a granularity attention network based on a two-stage architecture,
as shown in Fig. 2.1A. The backbone of the network consists of two U-shaped net-
works. The first stage is employed to extract coarse-grained target regions. It mainly
focuses on identifying the approximate contours of the target, performing a rough
segmentation of the target area in the image. The decoder output feature maps of the
first-stage network are passed through 1×1 convolutions for multi-layer feature fusion
before being transmitted to the second-stage encoder. These feature maps contain
rich high-level information, and this feature-sharing approach helps the network better
understand contextual information, thereby improving segmentation accuracy. The
second stage is employed to refine the CA wall and lumen segmentation. The second
stage segmentation builds on the first stage segmentation, focusing more on refining
the details within the target region. The second stage uses the target area information
provided by the first stage to concentrate on more precise segmentation, distinguish-
ing the CA wall and lumen within the target region. In the second stage, we embed
the feature refinement attention (FRA) module and the multi-scale information en-
hancement (MIE) module. The FRA module is employed to refine the higher-level
features. The MIE module is used to aggregate information across multiple scales.

The FRA module (as shown in Fig. 2.1B) first performs initial feature extrac-
tion and aggregation using two 3× 3 convolutions on different layers of features from
the first stage decoder. Then, we employ position attention and channel attention
modules [12] to weight the features with attention, enabling the network to focus on
the channels and spatial positions of interest adaptively. Next, we integrate features
from channel attention and position attention, leveraging the strengths of both atten-
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(a) (b)

Fig. 2.2. (a) and (b) respectively illustrate the normal and abnormal segmentation results CA.
The regions indicated by cyan color are the segmented CA walls whose external boundary contours
are indicated by black solid lines.

tion mechanisms to enhance feature representation and discrimination capabilities.
Finally, we use 1 × 1 convolutions to adjust the number of parameters, making the
model more lightweight and improving computational efficiency and speed. Addition-
ally, through residual connections [13], the original input information is preserved,
enhancing gradient flow and improving network training effectiveness. The FRA
module can effectively promote cross-layer and cross-stage information interaction.
The MIE module (as shown in Fig. 2.1C) integrates a channel attention module and
aggregates multi-scale features from the decoder. It is employed to enhance the re-
construction of information. Specifically, we use 3 × 3 convolutions to progressively
fuse hierarchical features from different decoder layers, fully utilizing multi-scale in-
formation to improve the accuracy of segmentation details. Then, channel attention
is applied to enhance important feature information, increasing the model’s ability to
capture critical information. Additionally, feature dimensions are adjusted through
1× 1 convolutions during multi-scale feature aggregation, reducing model complexity
and computational cost.

2.2. Penalty Terms from the Anatomical Prior. In medical image segmen-
tation, the anatomical prior penalty term refers to a technique that penalizes the
segmentation results based on the prior knowledge of known anatomical structures.
This penalty term is typically used to guide the segmentation algorithm to follow the
known anatomical structures or biological rules when generating segmentation results,
thereby improving the accuracy and interpretability of the segmentation. Standard
loss functions, such as CrossEntropy loss or Mean Squared Error loss, typically com-
pare the output to the ground truth and quantify their differences. These loss func-
tions usually focus on overall matching between predictions of the model and ground
truth. In contrast, anatomical prior constraints provide richer information, aiding
the model in better understanding the image content. In this study, we incorporate
anatomical prior knowledge of the CA as constraints by adding it as an additional
term to the loss function. This additional term penalizes inconsistencies between the
output and the anatomical prior, thereby enhancing the robustness and accuracy of
the model. The definition of the additional term is as follows.

Topology Prior: The CA vessel walls in MRI images usually appear as a narrow
closed band-shape. However, most of the existing CA segmentation approaches often
suffer from the anatomically incorrect leaking problem, where the segmented walls
are broken and non-closed. To address this issue on topology changes, we introduce
a novel geometric penalization term based on the isoperimetric theorem, encouraging
a closed narrow band wall structure.

We denote by ξ : M → [0, 1] the segmentation prediction of the introduced model,
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where M ⊂ R2 is the open bounded image domain. The segmentation region S ⊂ M
can be recovered from the prediction ξ and a thresholding value λ ∈ (0, 1) such that
ξ(x) > λ means that the point x is inside the segmentation region S, i.e. x ∈ S, and
outside S, otherwise. Let χξ be a binary function associated with the thresholding
value λ, which reads as

χξ(x) =

{
1, if ξ(x) > λ

0, otherwise.

In this case, the length of the boundary ∂S can be denoted by

L(∂S) =

∫
M
∥∇χξ(x)∥dx.

Moreover, the area of the region S reads as

A(S) =

∫
M
χξ(x)dx.

The isoperimetric theorem states that the length L(∂S) and the area A(S) obey
L(∂S)2 ≥ 4πA(S). It measures the relationship between the perimeter of a closed
curve and the area it encloses. Therefore, in terms of the isoperimetric theorem, we
define a ratio for measuring the shape of the segmentation region as follows:

µ(S) :=
4πA(S)

L(∂S)2
. (2.1)

One can see that the ratio µ(S) ∈ [0, 1]. In particular, if the region S is close to a
disk, the ratio µ(S) ≈ 1, while when the segmentation region S appears as a non-
circular narrow closed band shape, µ(S) gets to be small. Specific to the CA vessel
wall segmentation task, the leaking problem usually yields a narrow band shape of
strong concavity, as shown in Fig. 2.2(b), which leads to a very low value of µ(S).
For the normal case, the segmented CA vessel walls can be approximately delineated
via either a disk-like shape, or an elliptical-like shape, or a union of multiple disk-like
shapes, leading to µ(S) ≈ 1.

Providing that the boundary ∂S represents the external contour of the segmented
CA vessel wall structure. We define that a segmented CA vessel wall is admissible if
the ratio µ(S) > τ . Specifically, we consider the following penalization term

Ptopology := max {0,−(µ(S)− τ)} , (2.2)

where τ is a thresholding value and is set as τ = 0.6 through this paper. When
µ(S) > τ , the value of µ(S)− τ is positive, indicating that the topological structure
of the segmentation region is acceptable. In this case, taking the negative of µ(S)− τ
results in a value less than 0, ensuring that no penalty is applied in this case. For
segmentation results that are below the thresholding value τ , the value of µ(S) − τ
is less than 0. After taking the negative of µ(S) − τ , the result is greater than
zero, applying a penalty to these abnormal segmentation results, thus encouraging
the model to generate satisfactory segmentation predication.
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Fig. 3.1. Comparison of different methods. Arrows indicate excessive segmentation and boxes
denote incomplete segmentation structures or insufficient details.

3. Experimental Results.

3.1. Dataset. We used data from the Carotid Vessel Wall Segmentation and
Atherosclerosis Diagnosis Challenge (COSMOS 2022) [2] and the Carotid Artery Ves-
sel Wall Segmentation Challenge 2021(CAVWSC 2021) [14] to validate our method.
The COSMOS 2022 dataset consists of 50 3D MR scans. We randomly split 40 cases
(80%) for training and validation, reserving 10 cases (20%) for testing. Among the
40 cases used for training and validation, we obtained 934 annotated slices, with 80%
randomly assigned for training and 20% for validation. The testing data comprised
268 annotated slices. For the CAVWSC dataset, we obtained 1737 annotated slices
for training and validation, with 80% randomly assigned for training and 20% for
validation. The testing set contained 1754 annotated slices. Each image was resized
to a resolution of 224× 224 for experimentation.

3.2. Implementation Details. Our method uses the PyTorch framework, and
experiments are conducted on NVIDIA Tesla V100. We employ the AdamW optimizer
with a base learning rate of 0.0001. In the first stage, the network uses Dice loss
and cross-entropy loss to supervise the region segmentation; in the second stage, the
network uses a combination of Dice loss, cross-entropy loss, and penalty term to
supervise the target segmentation. For the first 5 epochs, we utilize the Warm-up
learning rate strategy, followed by the Polynomial Decay strategy for learning rate
decay after 5 epochs. The batch size is set to 8, and we train for 300 epochs. Data
augmentation is performed by adding brightness and Gaussian noise and applying
random scaling, rotation, shifting, and cropping. We adopt the Dice coefficient (Dice)
and Hausdorff distance (HD) as evaluation metrics. A 5-fold cross-validation is used
to evaluate the model.
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Table 3.1
Performance comparisons for vessel wall and lumen segmentation.

Methods

CAVWSC 2021 COSMOS 2022

Vessel Wall Lumen Vessel Wall Lumen

Dice ↑ HD ↓ Dice ↑ HD ↓ Dice ↑ HD ↓ Dice ↑ HD ↓

U-Net [15] 0.7295 10.5739 0.9154 9.7920 0.8054 5.6000 0.9152 4.8744

UNet++ [16] 0.7432 10.3248 0.9130 9.3279 0.8226 4.7868 0.9213 4.3572

Attention U-Net [17] 0.7415 9.5014 0.9184 8.7724 0.8214 4.8154 0.9246 5.8245

DualAttentionU-Net [18] 0.7356 7.5142 0.9203 7.9179 0.8232 4.0071 0.9297 3.5967

Res-UNet [19] 0.7473 8.3080 0.9190 7.9907 0.8212 3.8654 0.9266 3.6677

TransUNet [20] 0.7528 7.4204 0.9223 7.1371 0.8209 4.4920 0.9295 5.5275

Swin-Unet [21] 0.7485 6.3345 0.9160 4.3895 0.8050 3.6810 0.9200 3.1113

Proposed 0.7666 4.6540 0.9328 3.5642 0.8397 2.7375 0.9345 2.6059

3.3. Comparison with State-Of-The-Art Models. We compared the pro-
posed method with seven advanced medical image segmentation methods, namely
U-Net [15], UNet++ [16], Attention U-Net [17], Dual Attention U-Net [18], Res-
UNet [19], TransUNet [20], and Swin-Unet [21]. We conducted the same training
and testing on both the COSMOS and CAVWSC datasets using these methods, and
the results are shown in Table 3.1. Our method performs optimally in Dice and HD
evaluation metrics for segmenting the vessel wall and lumen. Specifically, for the chal-
lenging task of vessel wall segmentation, our method achieves a Dice of 0.7666 and an
HD of 4.6540 on the CAVWSC dataset and a Dice of 0.8397 and an HD of 2.7375 on
the COSMOS dataset.

Fig. 3.1 exhibits the qualitative comparison results that depict the CA in MRI
images. The boxes highlight erroneous segmentations caused by complex diseased
vessel wall structures or noise interference in the images, producing discontinuities in
the results that do not align with the real anatomical structure. On the other hand, the
red arrows indicate that TransUNet and Swin-Unet mistakenly identify tissues with
similar features as the CA. In contrast, our method excels in finely and accurately
segmenting vessel wall structures, yielding smoother segmentation contours.

The heatmap in Fig. 3.2 further confirms that our network can focus on more
complete vessel wall areas, particularly in complex diseased vessel wall structures.
In summary, our method excels in accurately locating targets in complex images,
overcoming interference from nearby similar tissues, and producing more detailed and
precise segmentation results, thereby significantly improving result accuracy.

3.4. Ablation Study. To validate the effectiveness of our proposed methods
M1: anatomical prior constraint, M2: FRA module, and M3: MIE module in the CA
segmentation task, we utilized a two-stage granularity network as the backbone and
gradually incorporated our methods for ablation experiments. As shown in Table 3.2,
the experimental results indicate that adding our proposed methods individually to
the backbone, or combining them in pairs in different ways, all had a positive impact
on the experimental results. Finally, the comprehensive GAPNet integrating M1, M2,
and M3 achieved the best overall performance on both datasets. On the other hand, to
verify the effectiveness of the first stage in extracting coarse-grained target regions for
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Fig. 3.2. Visualization of the heat map from the final layer of the decoder.

Table 3.2
Ablation results for vessel wall and lumen segmentation.

Methods

CAVWSC 2021 COSMOS 2022

Vessel Wall Lumen Vessel Wall Lumen

Dice ↑ HD ↓ Dice ↑ HD ↓ Dice ↑ HD ↓ Dice ↑ HD ↓

w/o Stage1+M1 0.7515 7.0755 0.9222 6.5112 0.8168 4.0999 0.9258 3.6526

w/o Stage1 0.7554 6.3529 0.9202 5.7233 0.8194 3.9221 0.9273 3.7459

Backbone 0.7569 5.8109 0.9154 5.4130 0.8243 3.7496 0.9253 3.1835

Backbone+M1 0.7622 5.9202 0.9269 5.3959 0.8276 3.2927 0.9259 2.8477

Backbone+M2 0.7636 5.2730 0.9290 4.7746 0.8351 3.2658 0.9321 2.8156

Backbone+M3 0.7605 5.6511 0.9268 4.7736 0.8257 3.2222 0.9232 2.7375

Backbone+M1+M2 0.7628 5.3616 0.9288 4.6485 0.8328 3.0883 0.9300 2.5990

Backbone+M1+M3 0.7633 5.3028 0.9273 4.5919 0.8287 3.4332 0.9223 2.9572

Backbone+M2+M3 0.7632 5.1912 0.9258 4.4615 0.8358 3.0950 0.9343 2.4486

Backbone+M1+M2+M3 0.7666 4.6540 0.9328 3.5642 0.8397 2.7375 0.9345 2.6059

this task, we conducted experiments by removing the first stage network separately.
The experimental results showed that, compared to GAPNet, removing the first stage
coarse-grained extraction network had a negative impact on the experimental results.
On the CAVWSC dataset, the Dice coefficients for segmenting the vessel wall and
lumen decreased by 1.12% and 1.26%, respectively; on the COSMOS dataset, they
decreased by 2.03% and 0.72%, respectively. All metrics on both datasets showed a
significant decline, indicating that the first stage coarse-grained extraction network
helps the network accurately locate target regions, achieving more precise segmenta-
tion. In experiments removing the first stage coarse-grained extraction network, we
further validated the effectiveness of M1 through ablation. As shown in Table 3.2,
the results indicate that introducing M1 positively impacts the model’s performance,
especially in the vessel wall region. This demonstrates the effectiveness of anatomical
priors for carotid vessel segmentation.

4. Conclusion and Future Work. In this work, we introduce an effective
method for fully automated and precise segmentation of CA in MRI. Our approach
introduces a novel granularity attention network, enabling segmentation from coarse
to fine-grained levels and enhancing the ability to capture boundary and detail in-
formation through the FRA module and the MIE module. Additionally, anatomical
prior constraints are introduced to adjust the segmentation results, thereby improv-
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ing segmentation completeness and accuracy. Comprehensive experimental results
demonstrate that our method achieves excellent performance on two publicly avail-
able datasets, further demonstrating the accuracy and robustness of the model seg-
mentation.

We note that the proposed segmentation model indeed does not take into account
geometric regularization such as curvature-based length, and more types of shape
priors, for instance the star convexity shape prior which is an important cue for
defining the expected segmentation contours in the CA segmentation task. Future
work will be devoting to solving these limitations.
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