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EVOLUTION OF SPACE CURVES BY PARAMETRIC METHOD
WITH NATURAL AND UNIFORM REDISTRIBUTION

MANEESH NARAYANAN1 AND MICHAL BENEŠ1

Abstract. Space curve evolution occurs frequently in various domains of science and engineering
such as computer graphics, navigation, or vortex motion. This paper focuses on the parametric
method for evolving space curves by normal curvature and force. We first introduce the concept
of curve evolution and its parametrization. Subsequently, we present a numerical scheme based on
method of lines and show several computational studies of the forced curvature flow in space.
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1. Introduction. In this text we discuss computational results of motion of a
closed curve Γt, t ≥ 0 in three dimensional Euclidean space (3D) according to the
geometric law:

∂tX = αT+ βN+ γB+ F, (1.1)

where T is the unit tangent vector, N the normal vector, and B is the binormal vector
in the Frenet frame. The scalar velocities α, β, γ are smooth functions of the position
vector X ∈ R3, the curvature κ, and of the torsion τ . The term F is a known external
force vector acting on Γt in arbitrary direction. We restrict our scope to the motion
by curvature in normal direction, i.e. when γ = 0, β = κ, and α may serve for the
redistribution of points along the curve for numerical purposes.

The motion law (1.1) is treated by the direct approach where the evolving curve
is parametrized as Γt = {X(u, t), u ∈ I, t ≥ 0} where X : I × [0,∞) → R3 is a smooth
mapping, I = R/Z ≃ S1 is the interval I = [0, 1] isomorphic to the unit circle S1

corresponding to a curve which is closed.
Dynamics of space curves by a geometric motion law can be identified in many

problems in science and engineering. One-dimensional structures can describe defects
- dislocations - of the crystalline lattice (voids or interstitial atoms) organized along
glide planes (see Hirth and Lothe [10]). The dislocations can move along the glide
planes under the external stress field which can lead to the change of the glide plane
- the motion becomes three-dimensional (see Devincre et al. [6] or Pauš et al. [23] or
Kolář et al. [16]). Applications in image processing are discussed in [29, 22].

Certain class of nano-materials is produced by electrospinning - jetting polymer
solutions in high electric fields into ultrafine nanofibers (see Reneker [24], Yarin et al.
[28], He et al. [9]). These structures move freely in space according to (1.1) before
they are collected to form the material with desired features.

Linear molecular structures can be recognized inside cells and exhibit specific
dynamics in terms of (1.1) in space, which is rather a result of chemical reactions.
They can interact with other structures as described in Fierling et al. in [8] where
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Fig. 2.1. 3D curve and the Frenet frame.

the deformations and twist of fluid membranes by adhering stiff amphiphilic filaments
have been studied.

Theoretical analysis of the motion of space curves can be found in papers by
Altschuler and Grayson in [1] and [2]. Recently, this type of motion has been addressed
in Jerrard and Smets in [12], Minarč́ık and Beneš in [21], Beneš et al. in [3]. Particular
issues were numerically studied by Ishiwata and Kumazaki in [11].

2. Theoretical Background. Geometric properties of a differentiable space
curve are described by the Frenet formulae linking the tangent, normal and bi-normal
vectors (see 2.1):

∂s

T
N
B

 =

 0 κ 0
−κ 0 τ
0 −κ 0

T
N
B

 . (2.1)

Due to our selection of the geometric motion by curvature β = κ, we express the
normal term as

βN = ∂sT.

Considering the parametrization X = X(u, t) of Γ, and the functions in (1.1) as
α = α(u, t), γ = 0, F = F(u, t), we have

∂sT =
1

|∂uX|
∂u

( ∂uX

|∂uX|

)
,

and express (1.1) as

∂tX =
1

|∂uX|
∂u

( ∂uX

|∂uX|

)
+ α(u, t)T+ F(u, t). (2.2)

The motion law is accompanied by the initial condition

X(u, 0) = X0(u).

We remark that even though (2.2) does not have the bi-normal component, the vector
B is present in the Frenet frame and in our subsequent considerations. The discussed
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motion law belongs to the class of problems studied in [3]. For abbreviation, we
denote g = |∂uX| and Lt =

∫
Γt

|∂uX|du, and we summarize its properties and recall
important relations. For future purposes, we also project the force term to the normal,
bi-normal and tangential direction

vN = κ+ F ·N, vB = F ·B, vT = α+ F ·T.

We can then recall the following
Proposition 2.1. For a smooth space curve Γt evolving according to (2.2), the

following identities hold

∂tg = −gκvN + ∂uvT , (2.3)

∂tLt = −
∫
Γt

κΓvN + ∂svT ds. (2.4)

Proof. From the proof presented already in [3], we underline several important
facts below. The differentiation is derived from (1.1) with general form of vT , vN ,
and vB , i.e. including the bi-normal term and the force.

∂t∂uX = ∂u(vN )N+ vN∂u(N) + ∂u(vT )T+ vT∂u(T) + ∂u(vB)B+ vB∂u(B).

The Frenet formulae yield

∂t∂uX = (−gvNκ+ ∂uvT )T+ (gvNτ + ∂uvB)B+ (∂uvN + vT gκ− gτvB)N.

From

∂tg = ∂t|∂uX| = ∂uX · ∂t∂uX
g

, (2.5)

it follows, due to perpendicularity, that

∂tg = −vNgκ+ ∂uvT . (2.6)

The length decay rate follows from

∂tLt = ∂t

∫
Γt

ds =

∫ 1

0

∂tgdu.

2.1. The role of redistribution along the curve. For stability of computa-
tional algorithms as well as for analytical purposes, the term g should also be bounded
from below. This is, in general, not guaranteed for motion law (1.1). We first mention
a modified expression for the normal curvature term presented for planar curves in
[5], known as the deTurck trick [18] and used e.g. in [22, 14].

As the expression

∂2
uuX

|∂uX|2

can be decomposed into the normal and tangential part, we have

∂2
uuX

|∂uX|2
=

1

|∂uX|
∂u

( ∂uX

|∂uX|

)
+

((∂uX) · ∂uuX)∂uX

|∂uX|4
. (2.7)
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The tangential term serves for a natural redistribution along space curves in numerical
schemes for space curves as explained below. We then consider the modified motion
law

∂tX =
∂2
uuX

|∂uX|2
+ α(u, t)T+ F(u, t), (2.8)

X(u, 0) = X0(u). (2.9)

As introduced in literature, an active tool in redistribution along the curve useful
under extreme force acting on curves externally is the uniform redistribution (see e.g.
[3], [25, 19, 20], [30]). For this purpose, a function of ratio of interest

θ(u, t) = ln(
g(u, t)

Lt
)

is treated. As

∂tθ(u, t) =
∂tg(u, t)

g(u, t)
− ∂tLt

Lt
,

and
∫
Γt

∂svT ds = 0 due to periodicity of vT , the time derivative ∂tθ is expressed using
Proposition 2.1

∂tθ(u, t) = −vNκ+ ∂sα+

∫
Γt

vNκds

Lt
.

Imposing a requirement ∂tθ(u, t) = 0 we get

∂uα = gvNκ−
∫
Γt

vNκds

Lt
.

For the integration, we assume the conditions of periodicity over S1 and α(t, 0) = 0.
Uniformity and rate of asymptotical redistribution can be controlled by a parameter
ω ≥ 0 in a modified expression

∂uα = gvNκ−
∫
Γt

vNκds

Lt
+ ω

(Lt

g
− 1

)
, (2.10)

as suggested in [19, 20].

2.2. Forced curvature flow. The forced curvature flow, a very common mo-
tion in plane (see [15]), along surfaces (see [13]) or along planes in space (see [16]),
frequently considers the force given in the direction of the normal vector given by the
two-dimensional Frenet frame with both signs of curvature allowed.

Space curves can evolve by an analogue of this force type under limited conditions
only, which are given by features of the three-dimensional Frenet frame with non-
negative curvature. For a smooth space curve, it may happen that the Frenet frame
flips over at some part of it due to zero values of curvature in vicinity of such points
(see [7]).

When the force term F = F(t,X) is just a smooth function of time and space, it
acts on the curve independently of the local orientation of the Frenet frame. However,
it is projected to it in the formula for the uniform redistribution (2.10). Such a force
has been considered in e.g. [21, 3, 17].

We therefore provide some computational examples related to this issue and open
this part of the curve motion for future research.



PARAMETRIC SPACE CURVE DYNAMICS 113

2.3. Discretization. Motion laws (2.2), (2.7) are discretized by the flowing fi-
nite volume method as in [4, 3]. The curve Γt is discretized by m nodes Xj(t) =
X(t, jh), j = 0, 1, 2, . . . ,m with h = 1/m. Related quantities expressed or approxi-
mated at these nodes are denoted correspondingly. The curvature expression in (2.2)
is approximated as

1

|∂uX|
∂u

( ∂uX

|∂uX|

)
|j ≈ Kj =

2

|Xj−1 −Xj−1|

(
Xj+1 −Xj

|Xj+1 −Xj |
− Xj −Xj−1

|Xj −Xj−1|

)
.

(2.11)
The deTurck expression for the curvature in (2.7) is approximated as

∂2
uuX

|∂uX|2
|j ≈ KT

j = 4
Xj+1 − 2Xj +Xj−1

|Xj−1 −Xj−1|2
. (2.12)

The tangent vector is approximated as

T|j ≈
Xj+1 −Xj−1

|Xj−1 −Xj−1|
. (2.13)

The normal vector explicitly appears in the redistribution formula, and, as mentioned
above, may be part of the formula for the force F. One has to be aware of the fact that

it is available only for the parts of the curve, where κ ̸= 0, i.e. 1
|∂uX|∂u

(
∂uX
|∂uX|

)
̸= 0.

Then

N|j = |
(

Xj+1 −Xj

|Xj+1 −Xj |
− Xj −Xj−1

|Xj −Xj−1|

)
|−1

(
Xj+1 −Xj

|Xj+1 −Xj |
− Xj −Xj−1

|Xj −Xj−1|

)
The redistribution formula is approximately solved by denoting

κj =
2

|Xj−1 −Xj−1|

∣∣∣∣ Xj+1 −Xj

|Xj+1 −Xj |
− Xj −Xj−1

|Xj −Xj−1|

∣∣∣∣ ,
gj = |Xj −Xj−1|, vN,j = κj + Fj ·N|j ,

Im =

m∑
j=1

gjvN,jκj , Lm =

m∑
j=1

gj ,

and expressing the summation

αj+1 = αj + gjvN,jκj −
Im
Lm

, for j = 0, . . . ,m− 1, α0 = 0.

We then solve, alternatively, the initial-value problems

dXj

dt
= Kj + αj

Xj+1 −Xj−1

|Xj−1 −Xj−1|
+ Fj , for j = 1, . . . ,m

Xm = X0, (2.14)

Xj |t=0 = X0(jh), for j = 1, . . . ,m

and

dXj

dt
= KT

j + αj
Xj+1 −Xj−1

|Xj−1 −Xj−1|
+ Fj , for j = 1, . . . ,m

Xm = X0, (2.15)

Xj |t=0 = X0(jh), for j = 1, . . . ,m

Both systems of ordinary differential equations are numerically solved using the Run-
ge–Kutta–Merson method as in [26, 27, 3].
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3. Case studies. We present several qualitative computational examples of
space curve dynamics showing curve shortening, effect of redistribution and external
force, all obtained by schemes (2.11), (2.15). The schemes are convergent, a detailed
numerical study is beyond the limits of this text.
Example 1 - curve shortening of a space curve. The initial curve is parametrized
as

r =
1√

1 + 16 cos2(12πu)
,

x(0, u) = r cos(2πu),

y(0, u) = r sin(2πu),

z(0, u) = r cos(12πu), u ∈ ⟨0, 1⟩.

The dynamics has been computed by scheme (2.15) with natural redistribution. Fig
3.1 shows the curve dynamics attaining a planar position and shrinking to a point.
Example 2 - natural and uniform redistribution. The initial curve is parametri-
zed as

r =
1√

1 + cos2(12πu)
,

x(0, u) = r cos(2πu),

y(0, u) = r sin(2πu),

z(0, u) = r cos(12πu), u ∈ ⟨0, 1⟩.

The dynamics has been computed by schemes (2.15), and (2.14) with redistribution.
Fig 3.2 illustrates the comparison of the natural redistribution and the uniform redis-
tribution.
Example 3 - forced curvature flow. The initial curve is parametrized as

x(0, u) = cos(2πu),

y(0, u) = sin(2πu),

z(0, u) = 0.8 sin2(2πu), u ∈ ⟨0, 1⟩.

The dynamics has been computed by scheme (2.15) with natural redistribution. The
force is F = −4Nn, where Nn is the normalized projection of the vector N of Γt to the
horizontal plane. Fig 3.3 shows the dynamics under which the curve is brought by the
force to a planar shape. However the originally strictly positive curvature becomes
zero at some points and the projection of the curve to the plane xy is not convex.
Example 4 - forced curvature flow with nonzero curvature. The initial curve
is parametrized as

x(0, u) = cos(2πu),

y(0, u) = sin(2πu),

z(0, u) = 0.2 sin2(2πu), u ∈ ⟨0, 1⟩.

The dynamics has been computed by scheme (2.15) with natural redistribution. The
force is F = −1.2Nn, where Nn is the normalized projection of the vector N of Γt

to the plane rotated 45 degrees along the y-axis. Fig 3.4 shows the dynamics under
which the curve is brought by the force to a planar shape. The originally strictly
positive curvature is kept during the evolution.



PARAMETRIC SPACE CURVE DYNAMICS 115

t = 0 t = 0.03

t = 0.06 t = 0.09

Fig. 3.1. Example 1. Curve shortening dynamics computed on the time interval [0, 0.09] for
the curve discretized to m = 200 segments.

4. Conclusion. Computational studies of space curve dynamics were presented.
Natural and uniform redistribution were compared. Challenges of forced space curve
dynamics were indicated, which motivate future directions of research.
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