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IMAGE SEGMENTATION OF FLAME FRONT OF A SMOLDERING
EXPERIMENT BY GRADIENT FLOW OF CURVES∗

MIROSLAV KOLÁŘ† , SHIGETOSHI YAZAKI‡ , AND KOYA SAKAKIBARA§

Abstract. In this paper, we review our computational strategy for image segmentation of exper-
imental data of smoldering phenomena by the gradient flow of closed planar curves. The experimental
images are preprocessed using an edge-preserving, inhomogeneous Perona-Malik equation. The gra-
dient flow method is modified by a locally acting artificial pushing term penetrating concavities and
by tangential redistribution stabilizing the appropriate positioning of discretization points.
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1. Introduction. In the research field of moving boundary problems, many ex-
periments can be regarded as two-dimensional phenomena, such as Hele-Shaw flow,
growing snow crystals, annealing of metals, etc.; especially in recent years, an experi-
ment of spreading flame/smoldering fronts along a sheet of paper has been focused on
chemical engineering, mathematical modeling, bifurcation theory, data assimilation,
and numerical approximation points of view [1, 2, 3, 4, 5]. From any viewpoint, un-
derstanding the movement of the moving front in actual experiments is an important
task. Hence, this paper presents a novel and simple image segmentation method that
can detect expanding smoldering fronts using two-dimensional experimental images.
Ultimately, we can detect an expanding smoldering front as a plane polygonal curve.
Once we obtain polygonal curves, it is easy to calculate fundamental geometrical
quantities such as the curvature, the total length, the enclosed area, the center of
gravity, etc.

In digital image processing, identifying the shapes of particular objects of interest
is important. Extraction of such shapes for further processing is called segmentation,
and today, many different techniques for this problem are available. We can refer
the reader to, e.g., statistical methods or graph cut methods [6, 7] and the references
therein. In our work, we focus on PDE-based methods for image segmentation.

In this paper, we restrict ourselves to cases of one segmented object whose bound-
ary can be represented by a closed, non-self-intersecting curve in the plane. Such a
segmentation curve can be found as a stationary solution of a geometric evolution
equation, which can be schematically postulated as

normal velocity = curvature + force. (1.1)

In (1.1), the curvature term represents the smoothing effect, and the force term pushes
the curve toward the boundary of our object of interest. Problem (1.1) can be treated
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either by implicit tracking methods, such as the level set method or the phase-field
method ([8, 9, 10]). However, such methods usually lead to a computationally ex-
pensive task with a large number of degrees of freedom. This paper focuses on a
direct approach (see [11, 12]) to the problem (1.1), which offers a simple, fast, and
straightforward framework for finding a segmentation curve. Such an approach can
be easily modified to open curve problems [13, 14] and easily extended to multiple
curve problems [15]. It also offers a significant advantage when segmenting a large
number of data, typically from a series of images capturing the time evolution of an
experiment. An algorithmic approach, as in [16], can be employed for topological
changes occurring.

Using the direct approach, we consider a family of closed Jordan curves {Γt | t ≥ 0}
evolving in the plane according to equation (1.1). The curve Γt is described by a time-
dependent position vector X = X(t, u), where the spatial parameter u ∈ [0, 1]. The
unit tangent vector T to Γt is given as T = ∂sX, where ∂s is a derivative with respect
to arclength s. Here and hereafter, we use ∂ξF = ∂F/∂ξ, and ∂ξξF = ∂ξ(∂ξF ). Note
that the differential symbol ds = |∂uX|du and the derivative symbol ∂s = |∂uX|−1∂u
are both formal abbreviation of RHS, respectively, since the arclength s depends on
t and u. The inward unit normal vector to Γt is given as N = T⊥. From Frenet
frame, we can define the curvature κ of Γt as κ = ∂sT · N . The sign convention of
the curvature is such that the curvature of the unit circle is one. Then, the motion of
Γt can be written as the sum of its normal and tangential part

∂tX = βN + αT , (1.2)

where the normal component of the velocity β is given by (1.1), and the tangential
part α is briefly discussed in Section 5.

2. Gradient flow method for image segmentation. Gradient flow of evolv-
ing closed curves (including various applications) is extensively discussed in, e.g., [17]
and references therein. Let us consider a sufficiently smooth inhomogeneous energy
density γ(x) > 0 (x ∈ R2) along the curve Γt. Then the energy of the curve Γt is

E(Γt) =

∫
Γt

γ ds,

and its gradient is expressed as

−∇E = γ(X)κN −∇γ(X) on Γt. (2.1)

The basic idea of image segmentation by gradient flow of curves is described in, e.g.,
[17]. Let I(x) ∈ [0, 1] be an image intensity function representing a smooth grayscale
image, originally scaled from the discrete range [0, . . . , 255], defined on the bounded
region (usually it is a rectangle) Ω ⊂ R2.

We define our energy density function as

γ(x) =
1

1 + λ||∇I(x)||2
for x ∈ Ω. (2.2)

Here, such a choice of γ(x) also represents the edge detector function, where λ is a free
parameter of the model. We suggest how to find a suitable parameter λ below. Since
the edges in an image are characterized by an abrupt change of the image intensity
gradient ||∇I(x)||, the value of the edge detector γ(x) is expected to be low for high
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Fig. 2.1. The effect of artificial pushing force in equation (2.3) to penetrating concavities. In
the left figure, no artificial pushing was used. In the right figure, pushing term (2.4) successfully
helped the segmentation curve to penetrate through the small hollow in the lower left corner of the
smoldered region.

values of ||∇I(x)|| near the edges. Since the flow according to (2.1) minimizes the
energy E(Γt), the curve Γt tends to move towards the edges and, upon reaching its
local minimum of energy, attain the stationary shape.

Setting β = −∇E ·N , the segmentation curve Γt is the subject of the following
geometric evolution equation

∂tX = γκ−∇γ ·N + αT . (2.3)

The gradient flow method approach belongs to the family of active contour models
(see [12, 18, 19] and references herein). These methods are very sensitive to the choice
of the initial segmentation curve Γt, and undesirable behavior has been reported.
Typically, when the initial segmentation curve Γt is chosen far from the segmented
object, it can attain a different local minimum of energy, which leads to different
stationary solutions. Such unintended behavior is depicted in Fig 2.1.

Our approach to overcome this unintended effect is to add an artificial, locally
acting force [14] in the normal direction to Γt to equation (2.3), which helps to pene-
trate concavities or to pass through large segments with almost zero gradient of the
image intensity.

We define artificial pushing as the following

ap(x, ||∇I(x)||) =

{
maxx∈Ω ||∇I(x)|| if |κ| < ε and ||∇I(x)|| < ε

0 otherwise
(2.4)

for x ∈ Ω. Then, instead of (2.3) we consider the following gradient flow equation

∂tX = γκ−∇γ ·N + apN + αT . (2.5)

The artificial pushing term ap = ap(x, ||∇I(x)||) in (2.5) is chosen in such a way it
moves affected points on the curve Γt in the maximal distance of one pixel per the
time step during the numerical computations. Let us assume the artificial pushing
activates at a particular point on Γt, i.e., |κ| < ε and ||∇I|| < ε. If I(x) is C2(Ω), then
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||∇γ|| ≤ C||∇I|| holds for a constant C depending on λ and the second derivative of
I. Therefore if |κ| < ε, ||∇I(X)|| < ε, and α ≈ 0, say |α| < ε, hold on Γt, we have

||∂tX|| ≤ ε+ Cε+ |ap|+ ε ≲ max
x∈Ω

||∇I(x)||.

After time discretization, we get

||Xn+1 −Xn|| ≤ ∆t max
x∈Ω

||∇I(x)||.

Let us suppose we work with an image of the resolution M ×M pixels, mapped
to the square domain Ω = (−l/2, l/2)× (−l/2, l/2). The distance between two neigh-
boring points p1 and p2 in an one-pixel is

dist(p1,p2) ≤
√
2

l

M
.

Therefore we can estimate the term ∆t maxx∈Ω ||∇I(x)|| as the following

∆t max
x∈Ω

||∇I|| ≤ ∆tmax
x∈Ω

√
∂xI2 + ∂yI2 ≤ ∆t

√
2

(
1

l/M

)2

= ∆t
√
2
M

l
.

We can estimate the term maxx∈Ω ||∇I(x)|| as the following

max
x∈Ω

||∇I|| ≤ max
x∈Ω

√
∂xI2 + ∂yI2 ≤

√
2

(
1

l/M

)2

=
√
2
M

l
.

Assuming the resolution M is given, we want to discretize our curve by N points
to ensure the artificial pushing doesn’t move the discretization point more than one-
pixel distance per time step, i.e.

∆t max
x∈Ω

||∇I(x)|| ≤ ∆t
√
2
M

l
≤

√
2

l

M
.

Therefore, ∆t must be chosen in such a way it satisfies the following condition

∆t ≤ l2

M2
. (2.6)

3. Treatment of color images. The first problem of color image segmentation
is the transformation of the color image, usually stored in RGB or CMY format, into
a grayscale image. In industry, the standard for grayscale conversion is the NTSC
formula, which transforms the color with (red, green, blue) components into grayscale
as the following

gray = 0.299 red + 0.587 green + 0.114 blue,

where the weighting coefficients are based on the sensitivity of the human eye.
Another way to transform the color image into grayscale is using a color difference

function ∆E measured in Lab color space. For our smoldering experimental data, we
choose CIE94 standard of the ∆E color difference function [20]. If color differences
are calculated correctly, such an approach benefits from emphasizing the segments
of the image with bigger perceptual lightness but small differences in color - i.e., the
parts close to a flame front.
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The process of grayscale transformation is the following. Initially, the source
image is converted to the Lab space [21], where RGB components are converted to
L*, a*, and b* components denoting lightness, green-red opponents, and blue-yellow
opponents, respectively. Then, a reference color is chosen, and for each pixel, we
calculate the distance ∆E in Lab space. Finally, these distances are linearized to an
8-bit grayscale image with the pixel intensity within the range [0, . . . , 255] as in [20].

4. Edge preserving smoothing via Perona-Malik equation. Real images
always contain various imperfections. The most significant factor for image segmen-
tation is noise, which can prevent the segmentation curve from correctly catching the
edges of the desired object. Thus, various preprocessing techniques have been devel-
oped to reduce the noise in the image [22, 23, 24]. A typical example of a denoising
technique is the artificial image smoothing by heat equation. It can be shown this
is equivalent to the convolution of the image intensity function with an appropriate
Gaussian kernel. However, such artificial smoothing is homogeneous in all domains,
affecting (and destroying) also the edges. Thus, smoothing by heat equation can lead
to a loss of information carried by the image.

In our work, we use edge-preserving smoothing by an inhomogeneous diffusion
proposed by Perona and Malik [22, 23]. For the image intensity function I, we assume
the following Perona-Malik equation

∂I

∂t
= ∇ · (σ(||∇I||2)∇I), (4.1)

where the initial condition I|t=0 = I0 is the original image, and the boundary con-
ditions are assumed as, e.g., zero Neumann boundary condition or mirroring. The
inhomogeneous function

σ(s) =
1

1 + λs

and ||∇I(x)||2 are composed to yield the edge detector function (2.2). Indeed, we have
σ(||∇I(x)||2) = γ(x). For the numerical discretization, we rewrite equation (4.1) as
the following

∂I

∂t
= ∇σ(||∇I||2) · ∇I + σ(||∇I||2)∆I, (4.2)

which suggests the smoothing effect in (4.1) is locally corrected by the inhomogeneous
function σ. In Fig. 3.1, the effect of equation (4.2) is depicted.

For correct behavior of edge-preserving smoothing, choice of free parameter λ in
the function σ(s) is crucial. Notice σ(0) = 1 and σ is a decreasing function satisfying
lims→+∞ σ(s) = 0. We define

b(s) = σ(s) + 2sσ′(s) = −2λsσ2(s) + σ(s).

According to [24], right hand side of Perona-Malik equation (4.1) can be rearranged
in terms of σ and b as the following

∂I

∂t
= σ(||∇I||2)ITT + b(||∇I||2)INN ,

where ITT and INN represent the decomposition of inhomogeneous diffusion terms in
tangential and normal directions: INN = ∂N (∂NI), ∂NI = ∇I · N = −||∇I|| with
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Fig. 3.1. The comparison of four suitable grayscale candidates for image segmentation. The
first column shows the original image transformed into a grayscale. In the second column, we
show the result of artificial smoothing by the Perona-Malik equation (4.2), and finally, in the third
column, the segmentation curve is depicted.
In the first row, an original image is transformed into a grayscale. The second row depicts dif-
ferences between the original image and the black color. In the third row, we show the differences
between the original image and the white color. Finally, in the fourth row, there are differences be-
tween the original image and the orange color with RGB coordinates (188,92,68). These coordinates
were obtained by averaging of 10 random orange samples of flame front in original RGB image.
The best segmentation results were achieved for the differences between white and orange colors.

N = −∇I/||∇I||, and then we have INN = −∇||∇I|| ·N = ((Hess I)N) ·N and we
define ITT = ∆I − INN . We require the diffusion in the tangential direction to be
dominant, i.e.

lim
s→+∞

b(s)

σ(s)
= 0.
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Fig. 5.1. The effect of tangential redistribution in the binary image of the ”ki” character,
containing both thin strokes and concavities. The first figure shows the result without the tangential
redistribution, which failed to segment the image. In the second figure, we see that asymptotically
uniform tangential redistribution (5.1) significantly helps in segmntation.

This holds if we can force (for large values s (i.e., large values of ||∇I||2))

sσ′

σ
=

−λsσ2

σ
= −λsσ =

−λs

1 + λs
≈ −1

2
,

i.e. λ ≈ 1/s. Therefore our choice of λ is

λ =
1

maxx∈Ω ||∇I(x)||2
. (4.3)

5. The role of tangential velocity functional. It is known that tangential
velocity component α in (1.2) does not affect the shape of Γt [25]. However, when
solving (1.2) numerically, a suitable choice of α is important for the stability of the
numerical approximation scheme (see, e.g., Mikula and Ševčovič [11, 12, 17]) and
also for the successful attachment of the segmentation curve to the edges in the
image. If discretization points along the curve Γt are placed nonuniformly, without any
possibility of tangential motion, the segmentation procedure could fail in capturing
some parts of the image. Such a behavior of curve evolution problem without the
tangential velocity is depicted in Fig. 5.1.

Following [12, 17] and denoting the total length of Γt as L(Γt) =
∫ 1

0
|∂uX(u, t)|du,

we find the tangential velocity α as the solution of the following problem

∂sα = κβ − ⟨κβ⟩+
(

L(Γt)

|∂uX(u, t)|
− 1

)
ω, where ⟨κβ⟩ = 1

L(Γt)

∫
Γt

κβ ds, (5.1)

for ω > 0. It can be shown limt→∞
|∂uX(u,t)|

L(Γt)
= 1 uniformly with respect to u ∈ [0, 1],

which means the discretization points are redistributed asymptotically uniform. Note
that α is determined uniquely together with the additional condition ⟨α⟩ = 0.

6. Strategy to image segmentation. Our objective is to segment the flame
front from snapshots of smoldering experiments. Then, we find a time-evolving seg-
mentation curve providing the geometrical information about the flame interface,
which can be used to fit the unknown parameters in the flame/smoldering interface
model described by the Kuramoto-Sivashinsky model [2, 4]. Assuming we have the
time series of images from the experiment, our computational strategy is the following:
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Fig. 5.2. Successful segmentation of six snapshots of the smoldering experiment. Segmentation
curves Γt were evolved according to equation (2.5) with artificial pushing term (2.4) and asymp-
totically uniform tangential redistribution (5.1). Segmentation curves Γt are plotted over original
images, which we preprocessed by the Perona-Malik equation (4.2) before the segmentation.
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1. Initial stage: choose the appropriate color space for the particular image.
Except for RGB and CMY colorspaces, our candidate for suitable colorspace
for smoldering experiments is also Lab color space. In Section 3, the trans-
formation from an RGB image to an 8-bit grayscale image of ∆E distances
from a reference color (we recommend white or orange) is described.

2. First stage: smoothing of the initial image. Initial smoothing and noise
reduction can be performed by, e.g., convolution with a Gaussian kernel.
We use the edge-preserving smoothing via the Perona-Malik equation (4.2)
described in Section 4. Parameter λ in inhomogeneous function σ(s) = 1/(1+
λs) is chosen as (4.3). Perona-Malik equation (4.2) is discretized by finite
differences in space and time integration is done by the explicit Euler method.

3. Second stage: evolution of segmentation curve by suitable method. We
employ a direct description of the segmentation curve, which is evolved ac-
cording to the geometrical evolution equation (2.5) given by the gradient
flow method described in Section 2. In the edge detector function γ(x) =
1/(1+λ||∇I(x)||2), the free parameter λ is chosen as λ = 0.01. Moreover, in
geometric evolution equation (2.5), the artificial pushing term (2.4) is used to
penetrate concavities, and asymptotically uniform tangential redistribution α
given by (5.1) is used. The gradient flow equation (2.5) is numerically solved
by the flowing finite volumes method described in, e.g., [17]. For stability of
artificial pushing, the time step ∆t is chosen as in (2.6).

4. Final stage: stopping condition. As a stopping criterion for the evolu-
tion equation for the segmentation curve, the relative difference in lengths of
segmentation curves in time levels n and n − 1 denoted as Ltn and Ltn−1

,
respectively, is used. Calculations stop when

|Ltn − Ltn−1
|

Ltn

< ε,

for given ε = 10−5.

7. Conclusions. In this paper, we summarized our computational approach to
image segmentation of smoldering experimental data by methods based on PDEs. The
consecutive series of experimental images were preprocessed by an edge-preserving,
inhomogeneous diffusion equation. We also introduced the optimal choice of the free
parameter in the Perona-Malik equation. For the image segmentation, the gradient
flow approach was chosen. The known drawback of the gradient flow approach -
overcoming concavities - was solved by introducing a novel, locally acting artificial
pushing term depending on the curvature of the segmentation curve and the image
intensity gradient. We show the stability condition in the sense that the artificial
pushing term doesn’t move the segmentation curve more than one pixel distance per
time step. We successfully applied our computational strategy for segmenting real
experimental data and obtained time-evolving geometrical information of the flame
front for future processing - see Fig. 5.1. In the upcoming work, we aim to modify
the gradient flow approach in the sense of H1 and segment the experimental data of
fingering phenomena.
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