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EVOLUTION OF MULTIPLE CLOSED KNOTTED CURVES IN
SPACE

MIROSLAV KOLÁŘ ∗ AND DANIEL ŠEVČOVIČ †

Abstract. We investigate a system of geometric evolution equations describing a curvature
driven motion of a family of 3D curves in the normal and binormal directions. We explore the direct
Lagrangian approach for treating the geometric flow of such interacting curves. Using the abstract
theory of nonlinear analytic semi-flows, we are able to prove local existence, uniqueness, and contin-
uation of classical Hölder smooth solutions to the governing system of non-linear parabolic equations
modelling n evolving curves with mutual nonlocal interactions. We present several computational
studies of the flow that combine the normal or binormal velocity and considering nonlocal interaction.
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1. Introduction. In this work, we focus on the evolution of space curves in-
volving interactions. These one-dimensional structures, which form space curves, are
frequently encountered in various scientific and engineering challenges. Connections
to dislocation dynamics are discussed in [10, 11] along with additional references.
Historical research into the dynamics of vortex structures and rings, which align with
one-dimensional curves, was initiated by Helmholtz [16]. The significance of vortex
structures in aerospace technology is highlighted in several foundational studies (refer
to Thomson [29], Da Rios [24], Betchov [6], Arms and Hama [3], and Bewley [7]).
Vortex structures are known to maintain stability over time. This stability is evident
in studies of tornadoes and descriptions of volcanic activities (see Fukumoto et al.
[13, 14], Hoz and Vega [18], Vega [30]). Specific interactions between linear vortex
structures, exhibiting dynamic behaviors such as ’frog leaps’, are noted (refer to Mar-
iani and Kontis [21]). For an overview of vortex dynamics and further discussions on
the evolution of closed curves, please see our latest publication [9] by Beneš, Kolář,
and Ševčovič.

The structure of the paper is as follows. Section 2 revisits the Lagrangian frame-
work for evolving curve families. It introduces a set of evolutionary equations govern-
ing the dynamics of interacting curve systems, together with recent findings on the
existence and uniqueness of classical Hölder continuous solutions. The proof technique
employs the abstract theory of analytic semi-flows in Banach spaces, due to Angenent
[2, 1]. Section 3 concentrates on the numerical discretization approach, utilizing the
flowing finite-volume method for spatial derivative discretization and the method of
lines to address the resulting ODE systems. In Section 4 we present examples of the
dynamics of interacting curves, with interactions shaped by the Biot-Savart nonlocal
law, and discusses the development of 3D evolving knotted curves.
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2. Lagrangian description of evolving curves. We investigate a family of
curves {Γt, t ≥ 0} evolving in space R3. We employ the Lagrangian description of
curves, in which a curve is described by the position vector X = X(t, u) for t ≥ 0 and
u ∈ I, where I = R/Z ≃ S1 is the unit circle. The curve Γt is then parameterized
by Γt = {X(t, u), u ∈ I}. The unit tangent vector T to Γt is defined as T = ∂sX,
where s is the unit arc-length parametrization defined by ds = gdu where g = |∂uX|
is the relative local length of the curve. Here, | · | denotes the Euclidean norm. The
curvature κ of a curve Γt is defined as κ = |∂sX × ∂2

sX| = |∂2
sX|. If κ > 0, we

can define the Frenet frame along the curve Γt with unit normal N = ∂2
sX/κ and

binormal vector B = T×N, respectively. More specifically, we focus on the analysis
of the motion of a family of n closed 3D curves Γi

t, i = 1, . . . , n, evolving in normal
and binormal directions. Curves Γi

t are described by position vectors Xi and they
satisfy the following system of geometric evolution equations for i = 1, . . . , n:

∂tX
i = ai∂2

siX
i + bi(∂siX

i × ∂2
siX

i) + Fi + αiTi, Xi(·, 0) = Xi
0(·), (2.1)

which is subject to initial conditions at the origin t = 0 representing parametriza-
tion of the family of initial curves Γi

0, i = 1, . . . , n. Here ai = ai(Xi,Ti) ≥ 0, and
bi = bi(Xi,Ti) are bounded and smooth functions of their arguments, Ti is the unit
tangent vector to the curve and si is the unit arc-length parametrization of the curve
Γi
t. The source forcing term Fi is assumed to be a smooth and bounded function. Here

Fi = Fi(Xi,Ti, γi1, . . . , γin) is the forcing term and γij = γij(Xi,Γj) may depend on
the position vector Xi ∈ R3 and the entire curve Γj

t . Notice that equation (2.1) repre-
sents the system of geometric evolution equations ∂tX

i = viNNi+viBB
i+viTT

i where
the normal viN , binormal viB and tangent velocity viT are given by: viN = aiκi+Fi ·Ni,
viB = biκi + Fi ·Bi, and viT = αi + Fi ·Ti.

As an example of nonlocal source terms Fi, i = 1, . . . , n, one can consider a flow
of n = 2 interacting curves evolving in 3D according to the geometric equations:

∂tX
1 = a1∂2

s1X
1 + b1(∂s1X

1 × ∂2
s2X

1) + γ12(X1,Γ2),

∂tX
2 = a2∂2

s2X
2 + b2(∂s2X

2 × ∂2
s2X

2) + γ21(X2,Γ1),

where the nonlocal source term given by the following vector field

γij(Xi,Γj) =

∮
Γj
t

(Xi −Xj(sj))×Tj(sj)

|Xi −Xj(sj)|3
dsj

represents the Biot-Savart force measuring the integrated influence of points Xj be-
longing to the second curve Γj

t = {Xj(u), u ∈ [0, 1]} at a given point Xi ∈ Γi
t.

The tangential velocity αi that appears in geometric evolution (2.1) has no impact
on the shape of the evolving family of closed curves Γi

t, t ≥ 0. This means that the
curve Γi

t, t ≥ 0, evolving according to (2.1) does not depend on a particular choice
of the total tangential velocity viT = Fi ·Ti + αi. On the other hand, the tangential
velocity has a significant impact on the analysis of evolution of curves from both
the analytical and numerical points of view (see e.g., Hou et al. [17], Kimura [20],
Mikula and Ševčovič [26, 22, 23], Yazaki and Ševčovič [27]). Barrett et al. [4, 5],
Elliott and Fritz [12], investigated the gradient and elastic flows for closed and open
curves in Rd, d ≥ 2. They constructed a numerical approximation scheme using a
suitable tangential redistribution. Kessler et al. [19] and Strain [28] illustrated the
role of a suitably chosen tangential velocity in numerical simulation of two-dimensional
snowflake growth and unstable solidification models. Garcke et al. [15] applied the
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uniform tangential redistribution in the theoretical proof of the non-linear stability of
stationary solutions for curvature driven flow with triple junction in the plane.

It is known that the ratio gi/Li of the relative local length gi and length Li =∫
Γi
t
ds of Γi

t is constant with respect to time t, i.e., gi(u,t)
L(Γi

t)
= gi(u,0)

L(Γi
0)

, u ∈ I, t ≥ 0

provided that the total tangential velocity viT satisfies ∂siv
i
T = κiviN − 1

Li

∫
Γi
t
κiviNdsi,

where viN is the normal velocity in the direction Ni (see, e.g., [17], [20], [26], [22],
[23]). Another suitable choice of the total tangential velocity viT is the so-called
asymptotically uniform tangential velocity proposed and analyzed by Mikula and

Ševčovič in [22, 23]. It satisfies limt→∞
gi(u,t)
L(Γi

t)
= 1 uniformly with respect to u ∈ [0, 1].

This means that the redistribution becomes asymptotically uniform.

In [9], Beneš, Kolář and Ševčovič generalized methodology and techniques of
proofs of the local existence, uniqueness and continuation of solutions from our pre-
vious paper [8] to the case of combined motion of closed space curves evolving in
normal and binormal direction and taking into account mutual nonlocal interactions.
We proved the result on existence and uniqueness of classical solutions for a system
of n evolving curves in R3 with mutual nonlocal interactions including, in particular,
the vortex dynamics evolved in the normal and binormal directions and external force
of the Biot-Savart type, or evolution of interacting dislocation loops.

In the rest of this section we state the result on the existence and uniqueness
of classical Hölder smooth solutions to the system of governing equations (2.1). The
method of the proof is based on the abstract theory of analytic semi-flows and the
theory of maximal regularity in Banach spaces due to Angenent [2, 1]. First, we
introduce the function space setting. By hk+ε(S1) we denote the so-called little Hölder
space, i.e. the Banach space which is the closure of C∞ smooth functions in the norm
Banach space of Ck smooth functions defined on the periodic domain S1, and such
that the k-th derivative is ε-Hölder smooth. Here 0 < ε < 1 and k is a non-negative
integer. The norm is given as a sum of the Ck norm and the Hölder semi-norm of the
k-th derivative. Next, we introduce the scale of Banach spaces of Hölder continuous
functions defined in the periodic domain S1:

Ek = (h2k+ε(S1))3, Ek = Ek × . . .× Ek︸ ︷︷ ︸
n−times

, k = 0, 1/2, 1

We assume that the functions ai > 0, bi, and Fi are sufficiently smooth and globally
Lipschitz continuous functions (see [9, assumtions (H)] for details). Moreover, αi, i =
1, . . . , n, is the tangential velocity that preserves the relative local length. Assume
that the parametrization X0 ≡ (Xi

0)
n
i=1, of initial curves Γi

0 belongs to the Hölder
space E1, and it is a uniform parametrization, that is, |∂uXi

0(u)| = L(Γi
0) > 0 for all

u ∈ I and i = 1, . . . , n. With regard to [9, Theorem 4.1], there exists T > 0 and
the unique family of curves {Γi

t, t ∈ [0, T ]}, i = 1, . . . , n, evolving in 3D according
to the system of nonlinear nonlocal geometric equations (2.1). Their parametrization
satisfies X = (Xi)ni=1 ∈ C([0, T ], E1)∩C1([0, T ], E0), and X(·, 0) = X0. If the maximal
time of existence Tmax < ∞ is finite then limt→Tmax maxi,Γi

t
|κi(·, t)| = ∞.

3. Flowing finite volumes numerical discretization scheme. In this sec-
tion, we present a numerical discretization scheme for solving the system of equations
(2.1) enhanced by the tangential velocity αi. Our discretization scheme is based on
the method of lines with spatial discretization obtained by means of the finite-volume
method. For simplicity, we consider one evolving curve Γt (omitting the curve index
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Fig. 3.1. Discretization of a segment of a 3D curve by the method of flowing finite volumes.

i) and rewrite the abstract form of (2.1) in terms of the principal parts of its velocity.

∂tX = a∂2
sX+ b(∂sX× ∂2

sX) + F+ αT. (3.1)

We consider M discrete nodes Xk = X(uk), k = 0, 1, 2, . . . ,M , X0 = XM along the
curve Γt. The dual nodes are defined as Xk± 1

2
= X(uk ± h/2) (see Figure 3.1) where

h = 1/M , uk = kh ∈ [0, 1] and (Xk + Xk+1)/2 is the midpoint of the line segment
connecting nodes Xk and Xk+1 and differs from Xk± 1

2
∈ Γt. The k-th segment Sk

of Γt between the nodes Xk+ 1
2
and Xk− 1

2
represents the finite volume. Integration of

equation (3.1) over such a volume yields∫ u
k+1

2

u
k− 1

2

∂tX|∂uX|du =

∫ u
k+1

2

u
k− 1

2

a
∂

∂u

(
∂uX

|∂uX|

)
du+

∫ u
k+1

2

u
k− 1

2

b(∂sX× ∂2
sX)|∂uX|du

+

∫ u
k+1

2

u
k− 1

2

F|∂uX|du+

∫ u
k+1

2

u
k− 1

2

α∂uXdu.

(3.2)

Let us denote dk = |Xk − Xk−1| for k = 1, 2, . . . ,M,M + 1, where XM = X0 and
XM+1 = X1 for closed curve Γ and we approximate the integral expressions in (3.2)
by means of the flowing finite volume method as follows:∫ u

k+1
2

u
k− 1

2

∂tX|∂uX|du ≈ dXk

dt

dk+1 + dk
2

,

∫ u
k+1

2

u
k− 1

2

a∂u

(
∂uX

|∂uX|

)
du ≈ ak

(
Xk+1 −Xk

dk+1
− Xk −Xk−1

dk

)
,

∫ u
k+1

2

u
k− 1

2

b(∂sX× ∂2
sX)|∂uX|du ≈ bk

dk+1 + dk
2

κk(Tk ×Nk),∫ u
k+1

2

u
k− 1

2

F|∂uX|du ≈ Fk
dk+1 + dk

2
,

∫ u
k+1

2

u
k− 1

2

α∂uXdu ≈ αk
Xk+1 −Xk−1

2
.

The approximation of the nonnegative curvature κ (which is regularized by small
0 < ε ≪ 1 in the case κk is close to zero), tangent vector T and the normal vector N,
κN = ∂sT reads as follows:

κk ≈
∣∣∣∣ 2

dk + dk+1

(
Xk+1 −Xk

dk+1
− Xk −Xk−1

dk

)∣∣∣∣ ,
Tk ≈ Xk+1 −Xk−1

dk+1 + dk
, Nk ≈ κ−1

k

2

dk + dk+1

(
Xk+1 −Xk

dk+1
− Xk −Xk−1

dk

)
.
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To discretize the governing equations, we assume that ∂tX, ∂uX,F, α, κ, a, b,T and
N are constant over the finite volume Sk between the nodes Xk− 1

2
and Xk+ 1

2
, taking

values ∂tXk, ∂uXk,Fk, αk, κk,Tk and Nk, respectively. In approximation Fk of the
non-local vector-valued function F, we assume that the curve Γ entering the definition
of F is approximated by the polygonal curve with vertices (X0,X1, . . . ,XM ). To
find the approximation αk of the tangential velocity, we apply a simple trapezoidal
integration formula as in [27]. The values α0 = αM are chosen so that

∑M
j=1 αjdj = 0.

In summary, the semi-discrete scheme for solving (3.1) can be written as follows.

dXk

dt

dk+1 + dk
2

= ak

(
Xk+1 −Xk

dk+1
− Xk −Xk−1

dk

)
+ bk

dk+1 + dk
2

κk(Tk ×Nk)

+Fk
dk+1 + dk

2
+ αk

Xk+1 −Xk−1

2
,

Xk(0) = Xini(uk), for k = 1, . . . ,M.

Resulting system of ODEs is solved numerically by means of the 4th-order explicit
Runge-Kutta-Merson scheme with automatic time stepping control and the tolerance
parameter 10−3 (see [25]). We chose the initial time step as 4h2, where h = 1/M is
the spatial mesh size.

4. Examples of evolution of linked Fourier curves under Biot-Savart
external force. As an example of a non-local source term F we consider the external
force corresponding to the Biot-Savart law. It represents the integrated influence
of all points belonging to the curve Γt = {X(s), s ∈ [0, L(Γt)]} at a given point
X ∈ R3,X ̸∈ Γt. It is given as a line integral:

F(X,Γt) =

∫
Γt

(X−X(s))× ∂sX(s)

|X−X(s)|3
ds. (4.1)

Let Γ1
t and Γ2

t be two non-intersecting closed curves in 3D. The Biot-Savart force is
connected with the Gauss linking number and the integral link(Γ1

t ,Γ
2
t ) of Γ

1
t and Γ2

t

can be defined as follows:

link(Γ1
t ,Γ

2
t ) =

1

4π

∮
Γ1
t

∮
Γ2
t

det
(
∂s1X

1(s1), ∂s2X
2(s2),X

1(s1)−X2(s2)
)

|X1(s1)−X2(s2)|3
ds1ds2

= − 1

4π

∮
Γ1
t

F(X1(s1),Γ
2
t ) · ∂s1X1(s1)ds1 = − 1

4π

∮
Γ2
t

F(X2(s2),Γ
1
t ) · ∂s2X2(s2)ds2,

where the closed curves Γ1
t and Γ2

t are parameterized by X1(s1) and X2(s2), respec-
tively. The linking number link(Γ1

t ,Γ
2
t ) belongs to Z.

A Fourier curve is a closed curve in 3D that can be parameterized by a finite
Fourier series in the parameter u ∈ [0, 1]. In Fig. 4.1 a) we show two linked circles
Γ1
t and Γ2

t with the linking number link(Γ1
t ,Γ

2
t ) = −1 for parameterization (4.2), and

link(Γ1
t ,Γ

2
t ) = 1 when parameterized by (4.3):

X1(u) = (cos(2πu), sin(2πu), 0), X2(u) = (1 + cos(2πu), 0, sin(2πu)), (4.2)

X1(u) = (− sin(2πu), cos(2πu), 0),X2(u) = (1 + cos(2πu), 0,− sin(2πu)). (4.3)

In Fig. 4.1 b) we present two linked circles given by (4.3), and Biot-Savart force vector
field (4.1) induced by Γ2

t acting on points belonging to Γ1
t .
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a) b)

Fig. 4.1. Two linked circles a) and the Biot-Savart force vector field induced by Γ2
t acting on

points of Γ1
t , b).

a) b)

Fig. 4.2. The Listing’s 8-knot curve linked with a circle a) and an ellipse b).

The explicit parametrization of the Listing’s 8-knot curve X1 is given by

X1(u) = (3 cos(4πu), 2 sin(6πu+ 1/2), (cos(10πu+ 1/2) + sin(6πu+ 1/2))/2). (4.4)

The Listing’s 8-knot curve parameterized by (4.4) is shown in Fig. 4.2 a) with a
linked-in circle (linking number 0) that is parameterized by:

X2(u) = (cos(2πu), 0 , sin(2πu)). (4.5)

The Listing’s 8-knot curve Γ1
t with a linked-in ellipse (linking number -2) that is

parameterized by:

X2(u) = (cos(2πu)− 1.5, 0.5 , 0.8 sin(2πu)) (4.6)

is shown in Fig. 4.2 b).
In what follows, we present results of numerical approximation of solutions to the

coupled system of governing PDEs:

∂tX
1 = ∂2

s1X
1 + δF(X1,Γ2

t ),

∂tX
2 = ∂2

s2X
2 + δF(X2,Γ1

t ),

which is subject to initial conditions X1(·, 0) and X2(·, 0) at the origin t = 0. As a
forcing term, we consider the Biot-Savart force F(Xi,Γj

t ) scaled by the factor δ = 0.1.
In Fig. 4.3 and Fig. 4.4 we present the time evolution of two linked circles

Γ1
t and Γ2

t parameterized by (4.2) with the linking number link(Γ1
t ,Γ

2
t ) = −1 and

link(Γ1
t ,Γ

2
t ) = 1, respectively.
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t = 0 t = 0.031 t = 0.062

t = 0.093 t = 0.124 t = 0.146

Fig. 4.3. Evolution of the initial linked circles parameterized by (4.2) with link(Γ1
t ,Γ

2
t ) = −1.

In Fig. 4.5 we present the time evolution of the initial Listing’s 8-curve Γ1
t linked

with a circle Γ2
t parameterized by (4.5) shown in Fig. 4.2 a) with the linking number

link(Γ1
t ,Γ

2
t ) = 0. In Fig. 4.6 we present the time evolution of the initial Listing’s

8-curve Γ1
t linked with an ellipse Γ2

t parametrized by (4.6) shown in Fig. 4.2 b) with
the linking number link(Γ1

t ,Γ
2
t ) = −2.

5. Conlusions. In this article, we investigated a set of geometric evolution equa-
tions that describe the curvature-driven motion of a family of 3D curves along the
normal and binormal directions. An evolving family of curves can interact in either
local or non-local ways. In particular, we analyzed evolving pairs of closed linked
curves that form knots in 3D. We utilized the direct Lagrangian method to solve the
geometric flow of these interacting curves. We applied the abstract theory of nonlin-
ear analytic semi-flows to prove the local existence, uniqueness, and continuation of
classical Hölder smooth solutions for the system of nonlinear parabolic equations in
question. Using the finite-volume method, we proposed an effective numerical method
for solving the governing system of parabolic partial differential equations. Finally,
we provided multiple computational studies on the flow of linked curves.
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[23] K. Mikula and D. Ševčovič, A direct method for solving an anisotropic mean curvature

flow of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), pp.
1545–1565.



138 M. KOLÁŘ, D. ŠEVČOVIČ
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