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COMPACT SCHEMES FOR ADVECTION EQUATION: EMPLOYING
INVERSE LAX-WENDROFF PROCEDURE∗

KATARÍNA LACKOVÁ† AND PETER FROLKOVIČ‡

Abstract. Numerical schemes with implicit discretizations in time can offer unconditionally
stable numerical methods to solve hyperbolic problems. Such problems can exhibit in general non-
smooth solutions; therefore, a careful choice of approximation methods is necessary to avoid unphys-
ical oscillations in numerical solutions. Such approximation techniques are well developed especially
for numerical discretizations in space, but it is well known that an additional non-oscillatory approx-
imation is necessary also for the implicit discretization in time when large time steps are used that
are not otherwise necessary for explicit methods. In this work, we investigate how one can reach
non-oscillatory behavior by incorporating in a numerical scheme the values of the solution evaluated
in future time points. Namely, we investigate the inverse Lax-Wendroff procedure to derive such
types of scheme and an application of predictor-corrector to implement them in practice. The pur-
pose of this initial study is to evaluate the applicability of this approach to the representative linear
advection equation in the 1D case.
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1. Introduction. Consider the following non-conservative advection equation
in one-dimensional space:

∂tϕ+ u ∂xϕ = 0, ϕ(x, 0) = ϕ0(x), (1.1)

where ϕ = ϕ(x, t), x ∈ [0,∞), t ∈ [0,∞) is the unknown function, u = u(x) > 0 is
given and an inflow Dirichlet boundary condition is prescribed on the left boundary,

ϕ(0, t) = g(t). (1.2)

This equation serves as a solid foundation for testing novel numerical methods
for hyperbolic problems. In our case, we are interested in compact implicit numer-
ical schemes that are unconditionally stable and that solve the problem (1.1) and
its extension to more general cases. In particular, we are interested in numerical
schemes for level set methods [14, 8] in which the advected function ϕ is a continuous
function with possible discontinuities in its gradient. If one is also interested in a
good approximation of the gradient, a careful choice of approximation techniques is
required.

One of such techniques are essentially non-oscillatory (ENO) approximations (and
related ones like WENO) that are widely used for numerical solutions of conservation
laws [15]. If one denotes ψ = ∂xϕ, the function ψ has to fulfill the conservative
advection equation related to (1.1),

∂tψ + ∂x(uψ) = 0. (1.3)
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Although we are primarily interested in the solution ϕ of (1.1), we relate it to the solu-
tion ψ of (1.3) in which a proper numerical approximation of a possibly discontinuous
function without artificial oscillations is required.

One particular example of an unconditionally stable numerical scheme to solve
(1.1) is the following compact implicit parametric finite difference scheme [8], defined
on a regular spatial grid with step size h := xi+1 − xi, where i ∈ {0, 1, 2, . . . , I} is the
spatial index, and with a uniform time discretization with time step τ := tn − tn−1

with n ∈ {1, 2, 3, . . . , N} being the time index:

Φn
i + Ci

(
Φn

i − Φn
i−1 +

1− ωn
i

2

(
Φn−1

i+1 − Φn−1
i − Φn

i +Φn
i−1

)
(1.4)

+
ωn
i

2

(
Φn−1

i − Φn−1
i−1 − Φn

i−1 +Φn
i−2

))
= Φn−1

i .

Here, Ci := τui/h is a non-dimensional Courant number with ui = u(xi) and Φn
i ≈

ϕ(xi, t
n). The scheme (1.4) is second order accurate for any value of the parameter ωn

i

and it is unconditionally stable using the von Neumann stability analysis for Ci > 0
and ωn

i ≥ 0 [6]. The scheme (1.4) is derived in [8] using the so-called (direct) Lax-
Wendroff procedure based on Taylor series. Such tools have recently become popular
for deriving implicit numerical schemes [1, 17, 4, 7]. We give here details later on
the derivation of an analogous scheme to (1.4) when using the inverse Lax-Wendroff
procedure.

Remark 1. Note that the stencil in the implicit part of the scheme (1.4) contains
only the unknowns in the upwind direction. The values Φn

0 are given by the boundary
conditions (1.2) and to express Φn

1 one can conveniently use ωn
1 = 0 in (1.4). Conse-

quently, the numerical solution Φn
i can be obtained simply by ”marching in time” with

n = 1, 2, . . . and using a forward substitution when solving (1.4) for i = 1, 2, . . .. This
approach can also be used in more general settings when applying the so-called fast
sweeping method [18] with Gauss-Seidel iterations realized with different orderings of
unknowns.

Note that a related numerical scheme can be defined for the advection equation
in the conservative form (1.3). If we denote Ψn

i = Φn
i − Φn

i−1 ≈ h∂xϕ(xi, t
n), by the

difference of (1.4) for i and i− 1, one obtains
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This scheme resembles a conservative finite difference scheme for the numerical solu-
tion of (1.3). As noted above, the function ψ can exhibit discontinuities; therefore,
our aim is to choose the values ωn

i in such a way that the approximation of Ψ is
non-oscillatory. The main idea behind this is to define the so-called limiters li by

li = 1− ωn
i + ωn

i ri , ri =
Ψn

i−1 −Ψn−1
i

Ψn
i −Ψn−1

i+1

. (1.6)

Without going into details, see [8] for the full derivation, to obtain a non-oscillatory
behavior of Ψn

i , the limiters must fulfill the inequalities;

−2 ≤ li
ri

− li−1 ≤ 2

Ci
. (1.7)
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It is very important to note that similar inequalities, if 0 < Ci ≤ 1, are well-known
requirements when developing a variety of limiters for a general class of numerical
methods for hyperbolic problems; see, e.g., [11, 5, 9]. In that case, one can always
choose ωn

i (dependent on the numerical solution Φn
i ) so that the inequalities are

fulfilled [8].
Unfortunately, it cannot be done in general if Ci > 1 when such values of param-

eters ωn
i need not be available, and an additional “time limiting” must be applied to

ensure the non-oscillatory behavior of Ψn
i , see [5, 12, 7]. This type of limiting eventu-

ally decreases the order of accuracy of (1.4), which may take the form of a first-order
accurate scheme for very large Courant numbers. As we are interested in numerical
solutions of (1.1) for arbitrary Courant numbers, this is our main motivation to de-
velop numerical schemes analogous to (1.4) that are second-order accurate for any Ci

without usage of the first-order accurate time limiting.
Remark 2. In the context of selecting the parameter ωn

i in (1.4) to use a second-
order approximation in space, we choose here a WENO approximation [15] and the
predictor-corrector method [12]. Firstly, we predict the value Ψn

i (that is, Φn
i and

Φn
i−1) by the predictors Φn,p

i obtained from the first-order implicit numerical scheme,

Φn,p
i =

(
Φn−1

i + CiΦ
n
i−1

)
/ (1 + Ci) . (1.8)

Having such values, we compute two terms used for the second-order update in (1.4),
i.e. for two special choices of the parameter, either ωn

i = 1 or ωn
i = 0,

rn,ui = Ψn−1
i −Ψn

i−1 = Φn−1
i − Φn−1

i−1 − Φn
i−1 +Φn

i−2 (1.9)

rn,di = Ψn−1
i+1 −Ψn,p

i = Φn−1
i+1 − Φn−1

i − Φn,p
i +Φn,p

i−1

and

ωn
i =

ω̃
(
(rn,ui )2 + ϵ

)−2

ω̃ ((rn,ui )2 + ϵ)
−2

+ (1− ω̃) ((rn,di )2 + ϵ)−2
, (1.10)

where ω̃ = 1/3 is the preferable value of the parameter in the case of smooth solutions.
The parameter ϵ is a small value chosen to avoid dividing by zero [15]. Using the value
ωn
i from (1.10) in (1.4), one computes the corrected value of Φn

i .
The paper is organized as follows. The inverse compact scheme is derived in Sec-

tion 2. The scheme can be applied using a marching in space; to use the traditional
marching in time, a predictor-corrector form is derived. In Section 3, we combine
the direct and the inverse schemes to define a general one that can be used for arbi-
trary Courant numbers. In Section 4, several numerical experiments are provided to
compare the schemes for specific examples. Finally, we conclude in Section 5.

2. Inverse compact scheme. In the previous section, we established the foun-
dation for our discussion by introducing the compact implicit second order scheme
(1.4) that has essentially no oscillations in the solution gradient for Ci ≤ 1 if, e.g.,
the WENO parameters (1.10) are used.

Let us rewrite the equation (1.1) in the following form:

∂xϕ+
1

u
∂tϕ = 0, ϕ(0, t) = g(t) (2.1)

and ϕ(x, 0) = ϕ0(x). In this alternative formulation, the exchange of roles between x
and t leads to an interesting observation: As velocity u increases, the corresponding
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slowness 1/u decreases. This inverse relationship highlights the change in our descrip-
tion of propagation speed and will ultimately allow us to define a scheme analogous
to (1.4) with (1.10) that is oscillation-free in the gradient for Ci ≥ 1.

We use the abbreviation for the exact values ϕni = ϕ(xi, t
n), ∂xϕ

n
i =∂xϕ(xi, t

n),
etc. In order to derive a new numerical scheme to solve (2.1), we begin with the
Taylor expansion at point (xi−1, t

n),

ϕni−1 = ϕni − h∂xϕ
n
i +

h2

2
∂xxϕ

n
i +O(h3) . (2.2)

Furthermore, we use the inverse Lax-Wendroff procedure [16] having

∂xϕ
n
i = − 1

ui
∂tϕ

n
i (2.3a)

∂xxϕ
n
i = −∂x

(
1

ui
∂tϕ

n
i

)
= − 1

ui
∂xtϕ

n
i +

u′i
u2i
∂tϕ

n
i . (2.3b)

Substituting the spatial derivatives in (2.2) by (2.3a) and (2.3b) we have

ϕni−1 = ϕni +
h

ui
∂tϕ

n
i − h2

2ui
∂xtϕ

n
i +

h2u′i
2u2i

∂tϕ
n
i +O(h3) , (2.4)

which we further can approximate by appropriate finite differences to obtain the
required numerical scheme. To our knowledge, the inverse procedure has not been
used up to now for such a purpose, but is very popular otherwise for the treatment
of boundary conditions when using high-order numerical schemes [16].

For ui > 0, we choose the following parametric finite difference approximations:

∂tϕ
n
i ≈ ϕni − ϕn−1

i

τ
+
1− αn

i

2 τ

(
ϕn+1
i − 2ϕni + ϕn−1

i

)
+
αn
i

2 τ

(
ϕni − 2ϕn−1

i + ϕn−2
i

)
, (2.5)

∂xtϕ
n
i ≈ 1− αn

i

τh

(
ϕn+1
i − ϕni − ϕn+1

i−1 + ϕni−1

)
+
αn
i

τh

(
ϕni − ϕni−1 − ϕn−1

i + ϕn−1
i−1

)
, (2.6)

where αn
i ≥ 0 is a free parameter to choose.

In the case of a variable velocity u, the term h2

2
u′
i

u2
i
∂tϕ

n
i is also approximated by

a simple backward first-order finite difference. Consequently, we obtain the resulting
scheme in the following form for Ci > 0:

Φn
i + Ci

(
Φn

i − Φn
i−1

)
+

1

2Ci
(Ci − Ci−1)(Φ

n
i − Φn−1

i ) (2.7)

+
1− αn

i

2

(
Φn+1

i−1 − Φn
i−1 − Φn

i +Φn−1
i

)
.

+
αn
i

2

(
Φn

i−1 − Φn−1
i−1 − Φn−1

i +Φn−2
i

)
= Φn−1

i .

At this point one can see that choosing the approximation (2.5) and (2.6) in (2.2),
the value Φn+1

i has canceled out and the final scheme includes only the value Φn+1
i−1

in the future time point tn+1. Analogously to the direct scheme (1.4), resp. (1.5), to
have non-oscillatory approximation for numerical solutions obtained with (2.7), the
parameters αn

i shall fulfill analogous constraints as ωn
i in (1.7), but now with Ci ≥ 1.

Note that this analogy is valid only for constant velocity.
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Similarly as in (1.10), to construct the final second-order WENO scheme, we
define αn

i as follows:

sui = Φn
i−1 − Φn−1

i−1 − Φn−1
i +Φn−2

i (2.8)

sdi = Φn+1
i−1 − Φn

i−1 − Φn,p
i +Φn−1,p

i

αn
i =

α̃ ((sui )
2 + ϵ)−2

α̃((sui )
2 + ϵ)−2 + (1− α̃) ((sdi )

2 + ϵ)−2
,

where α̃ = 1/3 and the values Φn,p
i ,Φn−1,p

i are first-order predictors identical to (1.8).
Both schemes (1.4) and (2.7) have a compact implicit part of the stencil, and

can be solved efficiently using solvers such as the fast sweeping method, see Remark
1. However, they are truly analogous only when the time-marching algorithm (n =
1, 2, . . .) to solve the system of linear equations (1.4) is replaced by the space-marching
algorithm (i = 1, 2, . . .) to solve (2.7).

Remark 3. In order to employ the traditional time-marching loop for the inverse
scheme (2.7), it is necessary to make use of additional predictors computed as

Φ̄n+1,p
i−1 =

(
Φn

i−1 + Ci−1Φ̄
n+1,p
i−2

)
/ (1 + Ci−1) . (2.9)

The resulting scheme has the following form:

Φn
i + Ci

(
Φn

i − Φn
i−1

)
+

1

2Ci
(Ci − Ci−1)(Φ

n
i − Φn−1

i ) (2.10)

+
1− αn

i

2

(
Φ̄n+1,p

i−1 − Φ̄n,p
i−1 − Φn,p

i +Φn−1,p
i

)
.

+
αn
i

2

(
Φn

i−1 − Φn−1
i−1 − Φn−1

i +Φn−2
i

)
= Φn−1

i ,

and αn
i is computed using (2.8) with

sdi = Φ̄n+1,p
i−1 − Φ̄n,p

i−1 − Φn,p
i +Φn−1,p

i . (2.11)

Note that the scheme (2.10) formally contains the values of the numerical solu-
tions at future time points tn+1 to compute the value Φn

i . Of course, future values
must be predicted by (2.9) to be available. An analogous approach is used for the
so-called extended backward differentiation formulae in [3] to integrate numerically
ordinary differential equations.

An analogous scheme to (2.10) can be used instead of (1.4) where the values rn,pi

are completely computed from first-order predictors analogously to (2.11). In both
cases, although the predictors are of first-order accuracy, the numerical experiments
showed the schemes are second-order accurate for smooth solutions; see Table 2.1.

3. General high-resolution scheme. So far we have explored the characteris-
tics of two similar numerical schemes: the direct scheme (1.4), typically favored when
Ci ≤ 1, and the inverse scheme (2.7), which is applicable only when Ci > 0 and is
preferable when Ci ≥ 1. In order to make use of both in general form, e.g., when the
velocity u is not constant, we combine them, making use of predictors as described in
Remark 3.

Recall the Courant number, denoted by Ci, as defined earlier in this article. Now,
we refine this definition by expressing it as the sum of two components, ci and di,



154 K. LACKOVÁ AND P. FROLKOVIČ

Direct scheme Inverse scheme

I N EN
I EOC E∞ EOC EN

I EOC E∞ EOC
100 10 1.58E-03 1.84E-03 3.13E-03 5.83E-03
200 20 3.53E-04 2.16 6.25E-04 1.56 6.20E-04 2.33 2.18E-03 1.42
400 40 8.33E-05 2.08 2.80E-04 1.16 1.27E-04 2.29 7.71E-04 1.50
800 80 1.99E-05 2.07 1.19E-04 1.23 2.52E-05 2.33 2.12E-04 1.86
1600 160 4.90E-06 2.02 3.17E-05 1.91 5.49E-06 2.20 5.40E-05 1.97

Table 2.1
Table of accuracy for both the direct and inverse scheme according to Remark 3. In this example,

a smooth initial condition ϕ0(x) = cos(x) was chosen on interval x ∈ [−π/2, 3π/2], and a constant
velocity u(x) = 1 with the Courant number Ci = 1. The final time was T = 1. More details regarding
the numerical solution algorithm can be found in Section 4.

such that Ci = ci+di, where ci = min{Ci, 1} and di = Ci− ci. Then the final general
second-order scheme has the following form:

Φn
i + Ci(Φ

n
i − Φn

i−1) +
di
2C2

i

(Ci − Ci−1)(Φ
n
i − Φn−1

i ) (3.1)

+
ci
2

(
ωn
i

(
Φn−1

i − Φn−1
i−1 − Φn

i−1 +Φn
i−2

)
+(1− ωn

i )
(
Φn−1

i+1 − Φn−1
i − Φn,p

i +Φn,p
i−1

) )
+
di
2Ci

(
αn
i

(
Φn

i−1 − Φn−1
i−1 − Φn−1

i +Φn−2
i

)
+(1− αn

i )
(
Φn+1,p

i−1 − Φn,p
i−1 − Φn,p

i +Φn−1,p
i

))
= Φn−1

i

with ωn
i and αn

i from Remark 3.
The schematic representation of the resulting stencil can be seen in Figure 3.1. It

is worth remarking on the use of the value Φn+1
i−1 at the “future” time point tn+1.

Direct scheme Inverse scheme

Point needed for prediction

Fig. 3.1. Stencil of the general scheme (3.1) for u(x) > 0.



COMPACT SCHEMES FOR ADVECTION EQUATION 155

4. Numerical experiments. In the following section, we provide a set of nu-
merical experiments using the numerical schemes described in this paper. In all
examples, we use the fast sweeping method to solve the resulting system of linear
equations as discussed in Remark 1.

In all the numerical experiments described in this section we use the exact solution
in the boundary and initial conditions. Furthermore, we calculate the accuracy of the
solution using the norms

EN
I := τh

N∑
n=0

I∑
i=0

|Φn
i − ϕ(xi, t

n)| , E∞ := max
i,n

|Φn
i − ϕ(xi, t

n)| ,

with ϕ being the exact solution. The implementation was done in Julia [2].

4.1. Advection with constant velocity. In the following numerical experi-
ment, we solve equation (1.1) with a given constant velocity u(x) = 1 and a special
periodic exact solution ϕ(x, t) whose lengthy definition can be found in [13, 10, 8],
consult also the graph of ϕ(x, 1) at the top of Figure 4.1. The function ∂xϕ(x, t) has
three moving discontinuities; see the plot of ∂xϕ(x, 1) at the bottom of Figure 4.1.

The computational domain is x ∈ [−1, 1] and t ∈ [0, 1]. We compute the solution
with the Courant number C = 3 and compare the result of two solutions, one obtained
using the direct numerical scheme (1.4) with (1.10) and one using the proposed inverse
scheme (2.7) with (2.8). For the direct scheme, we use the classical time-marching
loop, and for the inverse scheme, a space-marching loop is used, as described in
Remark 3. The results can be seen in Figure 4.1 and Table 4.1. Although the direct
scheme gives slightly more accurate numerical solutions, it clearly has an oscillatory
approximation of its space derivative.

To evaluate this behavior, we compare the accuracy of the space derivative ap-
proximation of both numerical solutions in the final time T = 1 using the norms
ÊI := h

∑
xi∈Ωδ

|ΨN
i − ψ(xi, t

N )| and Ê∞ := maxxi∈Ωδ
|ΨN

i − ψ(xi, t
N )|. Here, Ωδ is

the interval x ∈ [−1, 1] that excludes small fixed intervals (x̄k − 0.02, x̄k + 0.02) for
three points x̄k of discontinuities in ∂xϕ(x, 1). The results can be found in Table 4.2
where a better accuracy can be clearly observed for the inverse scheme.

Direct scheme Inverse scheme

I N EN
I EOC E∞ EOC EN

I EOC E∞ EOC
400 40 4.23E-02 4.86E-01 6.47E-02 7.28E-01
800 80 1.57E-02 1.43 2.94E-01 0.72 2.05E-02 1.66 4.22E-01 0.79
1600 160 6.12E-03 1.36 1.81E-01 0.70 6.80E-03 1.59 2.46E-01 0.78
3200 320 2.42E-03 1.34 1.12E-01 0.69 2.29E-03 1.57 1.44E-01 0.77

Table 4.1
Accuracy results for the numerical approximations of ϕ with non-smooth initial condition and

constant velocity computed with the direct scheme (1.4) and the inverse scheme (2.7).

4.2. Advection with variable velocity. Next, we test the proposed general
scheme (3.1) on examples with variable velocity.

Firstly, we solve equation (1.1) with u(x) = 2 + 3/2 cos(x) and with the initial
condition given as ϕ0(x) = cos(x). The exact smooth solution has the following
analytical form:

ϕ(x, t) = cos

(
2 arctan

(
√
7 tan

(
√
7

(
t− 4 arctan(tan(x/2)/

√
7)√

7

)
/4

)))
.
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Solution at the final time 

Solution gradient at the final time 
Exact
First order

Direct scheme
Inverse scheme

−1 −0.5 0 0.5 1

−5

−4

−3

−2

−1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−20

−10

0

10

Fig. 4.1. Solutions at the final time T = 1 of the advection equation (1.1) with constant
velocity and non-smooth initial condition using I = 3200 computed with the direct scheme (1.4) and
the inverse scheme (2.7). For a comparison, the numerical solution obtained with the first order
scheme is also included.

Direct scheme Inverse scheme

I N ÊI EOC Ê∞ EOC ÊI EOC Ê∞ EOC
800 80 8.72E-01 12.461 8.90E-01 8.693
1600 160 4.19E-01 1.06 6.650 0.91 2.73E-01 1.71 4.943 0.81
3200 320 2.09E-01 1.00 7.370 -0.15 7.14E-02 1.93 1.623 1.61
6400 640 7.45E-02 1.49 3.738 0.98 2.31E-02 1.63 5.15E-01 1.66
12800 1280 2.78E-02 1.42 2.163 0.79 9.49E-03 1.28 3.10E-01 0.73

Table 4.2
Accuracy results for the numerical approximation of ψ = ∂xϕ with non-smooth initial condition

and constant velocity computed with the direct scheme (1.4) and the inverse scheme (2.7).

The final time was set to T = π/
√
3 and the computational domain was x ∈

[−π/2, 3π/2]. The results of this experiment can be found in Table 4.3 and they
confirm the second-order accuracy of the general scheme (3.1) for this example.

General scheme

I N EN
I EOC E∞ EOC

100 10 4.87E-02 1.08E-01
200 20 9.56E-03 2.35 2.20E-02 2.30
400 40 1.83E-03 2.38 4.27E-03 2.36
800 80 3.51E-04 2.39 8.58E-04 2.32
1600 160 7.11E-05 2.30 1.76E-04 2.29

Table 4.3
Accuracy results for numerical experiment with the initial condition ϕ0(x) = cos(x) and the

variable velocity u(x) = 2 + 3/2 cos(x) computed with the general second-order scheme (3.1).

Secondly, we use u(x) = 1+3/4 cos(x) and the non-smooth initial condition given
as follows:

ϕ0(x) = 2 arcsin(sin(x+ π/2))/π. (4.1)
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The exact solution to the described example is

ϕ(x, t) =
2

π
arcsin

(
cos

(
2 arctan

(√
7 tan

(√
7/8

(
t− 8 arctan

(
tan (x/2)√

7

)
/
√
7

)))))
.

The computational domain is x ∈ [−π/2, 3π/2] and t ∈ [0, 8π/
√
7]. The chosen settings

lead to Courant numbers Ci that range from approximately 0.43 to 3. The results can be
seen in Figure 4.2 and Table 4.4. Again, the direct scheme gives slightly better accuracy for
the approximation of ϕ, but exhibits oscillatory behavior for the approximation of ∂xϕ.

−1 0 1 2 3 4
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−0.5

0

0.5

1

−1 0 1 2 3 4

−0.5

0

0.5

Solution at the final time 

Solution gradient at the final time 
Exact
First order

Direct scheme
Inverse scheme

Fig. 4.2. Numerical solutions at the final time T = 8π/
√
7 of the advection equation with

variable velocity and the initial condition (4.1) computed with the direct scheme (1.4) and the general
scheme (3.1).

Direct scheme General scheme

I N EN
I EOC E∞ EOC EN

I EOC E∞ EOC
100 10 8.86E-01 5.00E-01 1.79E+00 4.75E-01
200 20 3.45E-01 1.36 3.14E-01 0.67 6.69E-01 1.42 2.92E-01 0.70
400 40 1.26E-01 1.46 1.87E-01 0.74 2.37E-01 1.49 1.73E-01 0.75
800 80 4.43E-02 1.50 1.10E-01 0.77 8.35E-02 1.51 1.02E-01 0.76
1600 160 1.57E-02 1.50 6.52E-02 0.75 2.94E-02 1.50 6.08E-02 0.75

Table 4.4
Accuracy results for numerical experiment with the initial condition (4.1) and the variable

velocity u(x) = 1 + 3/4 cos(x) computed with the direct scheme (1.4) and the general second-order
scheme (3.1).

5. Conclusion. In this paper, we introduced a novel non-traditional second-order ac-
curate finite-difference scheme tailored to solve the representative advection equation (1.1).
Our primary objective was to explore alternative strategies for avoiding non-physical oscilla-
tions in the gradient of numerical solution without resorting to the limiting in time towards
the first-order accurate scheme.

Using the inverse Lax-Wendroff procedure, we derived the inverse scheme (2.7) that
incorporates numerical values at future time points. Together with the WENO parameters
(2.8), the scheme is second-order accurate for smooth solutions, and it is essentially non-
oscillatory in general for the maximal Courant number larger than one. Applying this scheme
using the marching in space and the fast sweeping method, the numerical values are obtained
explicitly.
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Furthermore, to apply the inverse scheme using the traditional marching in time, we
extended it with the predictor-corrector approach (2.10) by using the predicted values com-
puted with the first-order accurate method. A similar approach is used to define extended
backward differentiation formulae in [3] to solve ODEs numerically. Finally, we introduced
the general second-order accurate scheme capable of delivering results without any oscilla-
tions across all Courant number values without limiting to the first-order scheme.

The numerical schemes are formulated in one dimension and applied in several numeri-
cal experiments with the sole purpose of demonstrating some advantages when considering
discretization methods with predicted values of the solution at future time points. We plan
to investigate such types of numerical scheme in more general cases, not necessary derived
only with the inverse Lax-Wendroff procedure.

REFERENCES
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