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PATH-BASED DEA MODELS WITH DIRECTIONS DEFINED USING

THE ANTI-IDEAL POINT ∗

MÁRIA TRNOVSKÁ† , MARGARÉTA HALICKÁ† , AND JANA SZOLGAYOVÁ†

Abstract. Data envelopment analysis (DEA) is a non-parametric technique for relative efficiency

evaluation. It formulates models in the form of optimisation problems where the objective function

can be interpreted as an efficiency measure and the optimal value is the efficiency score. Path-

based DEA models represent a subclass of models where the efficiency score is found by following

a parametric path running towards the boundary of the technology set. In this paper, we focus on

models where the parametric path is characterised by a direction vector defined using the anti-ideal

point. We show that these models possess several desirable properties and are applicable even in

the presence of negative data. The results are illustrated with both a simple example and numerical

experiments on real environmental data sets from 27 European countries.
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1. Introduction. This article follows on from two recently published papers

([11, 14]) analysing the properties of path-based models over general data. In [11],

the models are formulated through a general scheme that includes several well-known

models, such as input or output radial models, directional distance function (DDF)

models, and the hyperbolic distance function (HDF) model. The paper provides theo-

retical tools allowing us to analyse the properties of individual models. The properties

of the path-based model are determined by real-valued functions and direction vec-

tors that together define the paths. The paper [14] analyses super-efficiency scores of

path-based models, which may not be well defined for standard directions. It proposes

a new direction vector defined using the anti-ideal point (AIP-direction) and shows

that super-efficiency models defined using this direction are not only well defined but

also possess several desirable properties. In this contribution, we complete the anal-

ysis and examine the path-based efficiency models defined using the AIP-direction.

Here, in particular, analyses of the well-definedness, boundedness, and monotonicity

of scores require special attention. We also illustrate the results with both a simple

example and numerical experiments on real environmental data sets from 27 European

countries.

The article is organised as follows. Section 2 presents all the necessary materials

to determine the main result of our article. Section 3 analyses the individual proper-

ties of the super-efficient score with the AIP-directions and compares them with the
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properties of other directions. Section 4 illustrates the results with a simple exam-

ple and a real environmental data set of 27 EU countries. Section 5 concludes and

discusses the advantages of the AIP-directions.

2. Preliminaries. Consider a set of n observed decision making units DMUj

(j = 1, . . . , n), each consuming m inputs xij (i = 1, . . . ,m) to produce s outputs

yrj (r = 1, . . . , s). For each j = 1, . . . , n, the data of inputs and outputs of DMUj

can be arranged into the column vectors xj = (x1j , . . . , xmj)
T ∈ Rm of inputs and

yj = (y1j , . . . , ysj)
T ∈ Rs of outputs. Finally, the input and output vectors of all

DMUs form them×n input and s×n output matricesX and Y , i.e., X = [x1, . . . ,xn]

and Y = [y1, . . . ,yn], respectively.

2.1. Technology set. Based on the given data set we define the technology set

T =
{
(x,y) ∈ Rm × Rs | Xλ ≤ x, Y λ ≥ y, λ ≥ 0, eTλ = 1

}
, (2.1)

which corresponds to variable returns to scale (VRS). Note that the common non-

negativity assumption of (x,y) is not imposed here. The symbol e denotes a vector

of ones. The input-output vectors (x,y) ∈ Rm×Rs will be called units or points. By

(xo,yo) we denote the unit under evaluation.

A unit (x1,y1) dominates the unit (xo,yo) if and only if x1 ≤ xo and y1 ≥ yo. A

unit (x1,y1) strictly dominates the unit (xo,yo) if and only if x1 < xo and y1 > yo.

Moreover, a unit (xo,yo) ∈ T is called strongly efficient if and only if there is no

other unit in T that dominates (xo,yo), i.e. if (x1,y1) ∈ T dominates (xo,yo), then

(x1,y1) = (xo,yo). Obviously, a strongly efficient unit lies on the boundary of T . The

set of all strongly efficient units is called the efficient boundary of T . The remaining

part of the boundary of T consists of the so-called weakly efficient units.

2.2. Path-based models. For (xo,yo) ∈ T and a direction go = (gx
o , g

y
o ) ≩ 0

that may depend on (xo,yo), we define ϕo : θ 7→ (ϕx
o(θ),ϕ

y
o(θ)) by prescription:

ϕx
o(θ) := xo + (ψx(θ)− 1)gx

o and ϕy
o(θ) := yo + (ψy(θ)− 1)gy

o . (2.2)

Here, the real functions ψ with their domains (dom), and their images (im) satisfy the

following assumptions: 1. dom(ψx),dom(ψy) and im(ψx), im(ψy) are either (0,∞) or

(−∞,∞); 2. ψx is smooth, concave, increasing, and ψy is smooth, convex, decreasing;

3. ψx(1) = ψy(1) = 1. Note that (2.2) defines a continuous path in the input-output

space Rm × Rs parametrised by θ, where θ ∈ D = dom(ψx) ∩ dom(ψy).

By the general scheme (GS) model applied to (xo,yo) ∈ T with directions go =

(gx
o , g

y
o ) ≩ 0 that may depend on (xo,yo), we understand

(GS)o min{θ | (ϕx
o(θ),ϕ

y
o(θ)) ∈ T }. (2.3)

According to [11], assumptions 1.-3. imposed on the functions ψx and ψy, the assump-

tion on directions go = (gx
o , g

y
o ) ≩ 0, and (xo,yo) ∈ T guarantee the well-definedness

of the programme (GS)o as well as other useful properties of the path ϕo: the path

ϕo passes through the point (xo,yo) ∈ T at θ = 1 (i.e., ϕo(1) = (xo,yo)), and for

decreasing values of θ it moves toward the boundary of T gradually passing through

points that dominate one another. Finally, the path leaves T at some ϕo(θ
∗
o) ∈ ∂T ,
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where θ∗o ≤ 1, and θ∗o is the optimal value in (GS)o. The optimal value θ∗o is called

the efficiency score for (xo,yo). The point (ϕx
o(θ

∗
o),ϕ

y
o(θ

∗
o)) on the path ϕo is called

the projection of (xo,yo) in the GS model.

It is easy to see that the BCC input and output models [2], the general hyperbolic

distance function model (HDF-g) [11, 6] as well as the general directional distance

measure model (DDF-g) [3] can be equivalently rewritten in the form of the general

scheme (2.3). The scheme also includes the so-called generalised distance function

model (GDF) introduced by [5]. The corresponding parameterizations are shown in

Table 2.1.

Table 2.1

Parameterization of the standard path-based models.

Model ϕx
o(θ) ϕy

o(θ)

BCC-I [2] xo + (θ − 1)xo yo

BCC-O [2] xo yo + ( 1θ − 1)yo

DDF-g [3] xo + (θ − 1)gy
o yo + (2− θ − 1)gy

o

HDF-g [11, 6] xo + (θ − 1)gx
o yo + ( 1θ − 1)gy

o

GDF [5] p ∈ [0, 1] xo + (θ1−p − 1)xo yo + (θ−p − 1)yo

2.3. Super-efficiency measurement. The scheme (2.3) is well defined for the

evaluation of unit (xo,yo) ∈ T , providing the efficiency score θ∗o ≤ 1. This scheme

can also be applied to units (xo,yo) /∈ T to assess its super-efficiency. Note that

in this case, the programme (2.3) may not be well defined (it may be infeasible) and

the well-definedness of particular path-based super-efficiency models must be assessed

individually. For this purpose, Theorem 1 of [14] can be used, which formulates the

necessary and sufficient conditions of feasibility. If a super-efficiency path-based model

is feasible, then the corresponding super-efficiency score satisfies θ∗o ≥ 1.

2.4. Directions. Although the data in X and Y may contain negative values,

directions go = (gx
o , g

y
o ) must be nonnegative and nonzero even though they may

depend on the assessed unit (xo,yo). The directions considered in this study are

listed in Table 2.2. For a description of the input part of the direction, we have

used virtual input vectors xmin and xmax, defined for i = 1, . . .m as xmin
i = minj xij

and xmax
i = maxj xij . The notation ymin and ymax is introduced analogously for

the output vectors. The points (xmin,ymax) and (xmax,ymin) are called ideal (IP)

and anti-ideal (AIP) points, respectively. In Table 2.2 we can see several possible

directions choices. The direction (G3) is based on the ideal and anti-ideal points, and

the direction (G2) on the current unit and the ideal point. The absolute values in the

(G2) directions are due to super-eficiency purposes. The direction (G6) (also called

the AIP direction) designed primarily for the super-efficiency needs in [14] is based

on the current unit and anti-ideal point.

Next, we analyse the properties of the score for the path-based models with direc-

tion (G6) and compare it with the ones with the other directions (G1)–(G5). We will

focus on the well-definedness, unit invariance, translation invariance, boundedness,

and monotonicity of the efficiency score.
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Table 2.2

The directions (G1)–(G5) are commonly encountered choices of directions go. The direction

(G6) is a relatively new one. Here β = 1 if im(ψy) = (−∞,∞) (DDF-g model) and β ≥ 1 if

im(ψy) = (0,∞) (HDF-g model).

Notation gxio, i ∈ {1, . . . ,m} gyro, r ∈ {1, . . . , s} Reference

(G1) |xio| |yro| [4], [12], [11]

(G2) |xio − xmin
i | |ymax

r − yro| [13], [11]

(G3) xmax
i − xmin

i ymax
r − ymin

r [13]

(G4) 1
n

∑
j |xij |

1
n

∑
j |xij | [1], [11]

(G5) 1 1 [4]

(G6) max{xmax
i − xio, 0} max{β(yro − ymin

r ), 0} [14]

3. Analysis of models with AIP directions (G6). The general feature of

the path-based model is that efficiency scores equal to 1 show weak efficiency, but

not necessarily strong efficiency of the assessed unit; in addition, projection points

may not be strongly efficient, indicating that efficiency scores are overestimated. This

means that the so-called properties of indication and strong efficiency of projections

are not satisfied, see [11]. It can be seen from [10] that (under mild assumptions) the

strong efficiency property is equivalent to strict monotonicity of the efficiency score.

Therefore, even the property of strict monotonicity is not satisfied for this class of

models, which means that improving the input or output may not lead to a higher

efficiency score. Other desirable properties of models with the AIP directions (G6)

must be examined individually.

3.1. Well-definedness. The AIP directions were developed in the work [14]

for the purpose of super-efficiency assessment. In the super-efficiency models, the

assessed unit is outside the interior of the technology set, the AIP directions are non-

zero, and the corresponding super-efficiency models are well defined. On the other

hand, in the efficiency assessment where (xo,yo) ∈ T , the AIP directions (G6) may

be zero for certain virtual units from T and so the corresponding efficiency models

are not well-defined. For this reason, we will analyse the models only for units from

the reduced technology set:

T + = {(xo,yo) ∈ T | xo ≤ xmax,yo ≥ ymin, (xo,yo) ̸= (xmax,ymin)} (3.1)

For points (xo,yo) ∈ T +, the formula defining (G6) directions simplifies to

(G6) : gxo = xmax − xo, and g
y
o = β(yo − ymin), where β ≥ 1. (3.2)

Note that the restriction to the set T + will not affect the applicability of these direc-

tions in practice, since the efficiencies are evaluated only for units that generate the

technology set. Except for the highly improbable case (xo,yo) = (xmax,ymin), such

units belong to T + and therefore the efficiency scores are well-defined. For the case

(xo,yo) = (xmax,ymin) we define θ∗o = −∞ provided im(ψy) = R, or θ∗o = 0 provided

im(ψy) = (0,∞).

3.2. Unit and translation invariance. The path-based models with (G6) di-

rections satisfy the sufficient conditions for unit- and translation- invariance pro-
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vided in [11, Theorem 7] and [11, Theorem 8], respectively, and hence are unit- and

translation-invariant.

3.3. Boundedness. If (xo,yo) ∈ T , then automatically θ∗o ≤ 1 (since θ = 1 is a

feasible solution). On the other hand, satisfying the property θ∗o ≥ 0 depends on the

domains of ψx and ψy. With dom(ψx) = (0,∞) or dom(ψy) = (0,∞), which only

occur for nonlinear ψx and ψy, one has θ∗o > 0 for any choice of go. However, with

linear ψ one has dom(ψ) = R, and hence this property may fail. In fact, linear models

with (G6) directions generally do not meet the sufficient condition for boundedness

provided in [11, Theorem 6]. On the other hand, [11, Theorem 6] allows us to specify

the units for which the score is not negative.

Proposition 3.1. Consider a DDF-g model with directions (G6) and denote

(xc,yc) = 1
2 (x

min,ymax) + 1
2 (x

max,ymin). Then for all units (xo,yo) ∈ T+ that are

not strictly dominated by (xc,yc), it holds θ∗o ≥ 0.

Proof. Assume that (xo,yo) ∈ T+ is not strictly dominated by (xc,yc). That

means that either there exists i such that xio ≤ xc
i < xmax

i or there exists r such

that yro ≥ yc
r > ymin

r . The first condition is equivalent to the existence of i such

that gx
io = xmax

i − xio > 0 and xmin
i + (xmax

i − xio) − xio ≥ 0 and the second

condition is equivalent to the existence of r such that gy
ro = yro − ymin

r > 0 and

yro + (yro − ymin
r ) − yM

r ≥ 0. The two conditions correspond to the ones in [11,

Theorem 6], which guarantee the property θ∗o ≥ 0.

3.4. Monotonicity. The monotonicity property of a DEA model states that the

efficiency score of the dominated unit is not greater than the efficiency score of the

dominanting unit.

Proposition 3.2. The path-based models with (G6) directions satisfy the prop-

erty of monotonicity.

Proof. According to [11, Theorem 9] it suffices to prove that for any (xo,yo) ∈ T
the corresponding paths ϕx

o(θ) and ϕy
o(θ) are component-wise increasing in xo and

yo at any fixed θ ≤ 1. It is straightforward to prove that these conditions are met.

Actually, for ϕx
o we obtain the following:

ϕx
o(θ) = xo + (ψx(θ)− 1)(xmax − xo) = (2− ψx(θ))xo + k1, (3.3)

where k1 involves terms independent of xo. Since ψ
x is increasing and ψx(1) = 1 we

obtain (2 − ψx(θ)) > 0 for all θ ≤ 1 and therefore ϕx
o increases at each component.

Similarly, for ϕy
o we obtain the following:

ϕy
o(θ) = yo + (ψy(θ)− 1)β(yo − ymin) = (1− β + ψy(θ)β)yo + k2, (3.4)

where k2 involves terms independent of yo. Since ψ
y is decreasing and ψy(1) = 1 we

obtain (1− β + ψy(θ)β) > 0 for θ ≤ 1.

3.5. Super-efficiency. The super-efficiency of path-based models with (G6) di-

rections was analysed in detail in [14]. It was shown that the super-efficiency model

is well defined for all (xo,yo) /∈ T , that the score is bounded above by 2, and has

the properties of unit and translation invariance and monotonicity. These properties

were compared to the properties of the super-efficiency DDF-g and HDF-g models

with directions (G1)–(G5) in [14, Table 3] and the models with (G6) directions were

the only ones that met all the above-mentioned characteristics.
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3.6. Comparison with the other directions. The results of our analysis for

(G6) directions applied to the DDF-g and HDF-g models are compared with the

properties of these models with (G1)–(G5) directions in Table 3.1. Here the results

for the (G1)–(G5) directions are obtained from [11] and [14]. We can see that the

efficiency score for the non-linear HDF-g model has the best properties precisely with

(G6) directions - it satisfies all the observed properties. In the case of linear models,

the disadvantage of the (G6) directions is that, unlike the (G1)–(G3) directions, they

do not provide the scores bounded from below. However, the advantage is that they

have better super-efficiency properties.

Table 3.1

Properties of the DDF-g model and the HDF-g model (in brackets) with respect to different

choices of directions (G1)–(G6). ✓∗ – the property is satisfied for positive directions; ✓∗∗ – the

property is satisfied for positive data but not for general data;

Direction/Property (G1) (G2) (G3) (G4) (G5) (G6)

θ∗o ∈ [0, 1] ✓∗∗(✓) ✓(✓) ✓(✓) ✕(✓) ✕(✓) ✕(✓)

unit invariance ✓(✓) ✓(✓) ✓(✓) ✓(✓) ✕(✕) ✓(✓)

translation invariance ✕(✕) ✓(✓) ✓(✓) ✕(✕) ✓(✓) ✓(✓)

monotonicity ✓∗∗(✓) ✓(✓) ✓(✓) ✓(✓) ✓(✓) ✓(✓)

WD of super-efficiency ✓∗(✓∗∗) ✓∗(✕) ✓∗(✕) ✓∗(✕) ✓(✕) ✓(✓)

4. Illustrative and numerical examples.

4.1. Illustrative example. Consider a single input and single output VRS tech-

nology generated by 7 units: A = (2, 2), B = (3, 6), C = (7, 10), D = (4, 1), E=(8, 3),

F=(9, 5) and G=(4, 4) shown in Figure 4.1. Units A,B,C are strongly efficient, and

the projections of inefficient units D,E, F,G to the frontier of T in the DDF-g and

HDF-g models with AIP directions are outlined by the dot-dashed red lines. Ineffi-

cient units D and F have one component of the AIP directions zero, and their weakly

efficient projections do not differ in the DDF-g and HDF-g models. The efficiency

scores shown in the following table are in agreement with our theoretical results pro-

vided in Proposition 3.1: The units E and F are strictly dominated by unit (xc, yc)

and their DDF-g efficiency scores are negative.

DMUo A B C D E F G

DDF-g efficiency (AIP directions) 1 1 1 0.6 −1.66 −0, 25 0.74

HDF-g efficiency (AIP directions) 1 1 1 0.6 0.22 0, 44 0.75

4.2. Numerical example. For our numerical experiments, we have chosen a

data set of 27 EU countries provided in Table 4.1. The data contain three inputs:

labour, capital, and energy consumption; one desirable output: GDP; and two unde-
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Figure 4.1. The projections of inefficient units D,E, F and G to the frontier of T by DDF-g

and HDF-g models with (G6) directions in Example 4.1.

sirable outputs: CO2 including LULUCF and PM2.51. Note that the first undesirable

output also contains one negative value in our data set.

The data are extracted from the World Development Indicators and the Eurostat

database, for the year 2021. We applied the DDF-g and HDF-g models with AIP

directions (with β = 1) both to the data set without undesirable outputs and to the

entire data set. In the environmental case study, we used the approach for modelling

undesirable outputs (for an overview of approaches, see, e.g. [9, 16, 15]), which allowed

us to deal with undesirable outputs as inputs. To solve optimisation programmes,

we used the CVX Matlab-based modelling system [7, 8] on normalised data. The

numerical results are given in Table 4.2.

Observe that the results in the DDF-g and HDM-g models (rounded to three

decimal places) are almost the same. However, the DDF-g model is a linearisation of

the HDF-g model around the evaluated unit, and thus the similarity of the results is

a consequence of the distribution of inefficient units near the efficient boundary. Ten

countries were identified as efficient in the standard models, 13 in the environmental

models, and the super-efficiencies 2 were also calculated for efficient countries in all

models. Germany showed the highest values in all models. An increase in the number

of efficient countries and an increase in the score values in the environmental models

compared to the standard models is a natural consequence of the increase in the

number of input-output factors from 4 to 6. In addition, all countries have quite high

1The indicator CO2 including LULUCF refers to carbon dioxide emissions including Land Use,

Land-Use Change, and Forestry. It can take negative values when there is a net removal of carbon

dioxide from the atmosphere due to the land-use changes and forestry activities. The PM2.5 indicator

refers to the concentration of particulate matter with a diameter of 2.5 micrometers or smaller in

the air.
2The super-efficiency of an efficient unit was calculated with respect the modified technology set,

where the efficient unit was removed from the set of units generating T .
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Table 4.1

Input and Output variables data for 27 EU countries

Inputs Outputs

Labour
Capital

Energy
GDP

CO2 incl.
PM2.5

force consumption LULUCF

DMU (# individuals)
(Million (1000 tonnes (Million (Thousand

Tonne
EUR) of oil equiv.) EUR) tonnes)

AT 4 689 420 104 663,3 26 487,8 405 241,4 55 477,8 13 943

BE 5 259 744 121 509,3 33 173,5 507 929,6 95 240,5 18 163

BG 3 268 751 11 616,6 10 164,4 71 060,1 32 757,1 30 572

HR 1 724 587 12 303,7 6 887,6 58 455,1 11 486,9 27 030

CY 666 826 4 850,2 1 585,0 24 927,6 6 789,9 991

CZ 5 274 427 61 964,2 25 315,2 238 249,5 105 661,3 24 391

DK 3 070 703 75 837,1 13 815,1 342 961,7 31 942,8 11 976

EE 702 973 9 090,4 2 789,7 31 169,0 12 955,1 4 840

FI 2 774 226 59 196,0 24 805,3 250 664,0 35 855,1 14 271

FR 31 271 173 612 198,0 138 965,3 2 502 118,0 297 194,0 189 218

DE 43 386 527 770 497,0 197 569,3 3 617 450,0 675 066,2 83 388

EL 4 574 730 24 164,9 14 911,9 181 500,4 51 902,7 35 524

HU 4 920 977 41 941,5 18 793,6 153 963,3 41 323,2 37 802

IE 2 551 560 96 941,3 11 061,6 434 069,7 43 826,3 12 675

IT 25 087 249 373 419,8 114 384,2 1 822 344,5 308 306,1 149 106

LV 956 869 7 461,4 3 980,3 33 348,9 8 209,6 17 760

LT 1 479 760 12 259,4 5 662,4 56 478,1 7 631,9 7 194

LU 333 257 13 156,8 3 440,4 72 360,9 7 815,9 1 214

MT 281 266 3 107,5 525,0 15 327,3 1 606,8 380

NL 9 653 277 184 405,0 43 215,0 870 587,0 144 394,9 14 196

PL 18 519 217 96 897,0 74 185,6 576 382,6 309 731,8 297 282

PT 5 190 888 43 639,5 15 772,0 216 053,2 33 228,1 45 490

RO 8 200 518 58 596,2 25 279,8 241 611,3 27 860,6 116 136

SK 2 777 251 19 254,6 10 508,3 100 255,7 27 500,8 18 609

SI 1 045 561 10 581,6 4 767,6 52 278,8 9 917,6 10 087

ES 23 384 158 245 709,0 78 607,5 1 222 290,0 185 287,5 135 005

SE 5 514 678 138 383,8 32 156,1 540 734,0 -4 765,1 15 907

efficiencies, none is dominated by a central point.

5. Conclusion. We have analysed the properties of path-based models with the

AIP direction that was originally proposed to guarantee the feasibility and hence also

the well-definedness of the super-efficiency DEA models. We have shown that even

the DEA models for standard efficiency evaluation, defined using the AIP direction,

have good properties. Thus, they can be used when measuring changes in productivity

over time using the Malmquist or Luenberger indicator, where it is important to apply

the same model to assess decision-making units from the inside as well as from the

outside of the technology set. The advantage is that path-based models with the AIP

direction can also be applied to negative data, which we demonstrated on the example

of the eco-efficiency analysis of 27 EU countries.
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Table 4.2

Efficiencies, super-efficiencies and ranking for the standard and environmental DDF-g and

HDF-g models with the AIP directions applied to 27 EU countries. The scores greater than one

refer to the super-efficiency scores of strongly efficient units.

Standard models Environmental models

DDF HDF DDF HDF

DMU Score Rank Score Rank Score Rank Score Rank

AT 0.975 23 0.975 23 0.992 20 0.992 20

BE 0.984 20 0.984 20 0.985 24 0.985 24

BG 1.001 8 1.001 8 1.001 12 1.001 12

HR 0.997 14 0.997 14 0.998 18 0.998 18

CY 1 9 1 9 1 13 1 13

CZ 0.901 27 0.901 27 0.959 26 0.959 26

DK 0.997 16 0.997 16 1.003 11 1.003 11

EE 0.991 18 0.991 18 0.992 21 0.992 21

FI 0.99 19 0.99 19 0.991 22 0.991 22

FR 0.967 25 0.968 25 1.15 2 1.162 2

DE 1.31 1 1.449 1 1.31 1 1.449 1

EL 0.945 26 0.945 26 0.947 27 0.947 27

HU 0.98 22 0.98 22 0.983 25 0.983 25

IE 1.037 2 1.037 2 1.037 4 1.037 4

IT 1.008 4 1.008 4 1.01 7 1.01 8

LV 0.998 12 0.998 12 0.998 15 0.998 15
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