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Abstract. In data envelopment analysis (DEA) each model for efficiency evaluation can be

formulated in two forms - the envelopment and the multiplier form that are in a primal-dual rela-

tionship. The general class of path-based DEA models, which also includes nonlinear convex models,

is formulated in the envelopment form. In general, models of this class do not project onto the

strongly efficient frontier, and hence a two-stage procedure is used to find a strongly efficient bench-

mark for the assessed unit. In this paper, we use the multiplier form of general path-based models

to formulate a single-stage optimisation procedure for finding a strongly efficient benchmark. We

illustrate the numerical tractability of the proposed approach on an environmental data set of 27 EU

countries.
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1. Introduction. Path-based models such as radial BCC input or output ori-

ented models ([1]), directional distance function models ([2, 3]) and hyperbolic dis-

tance function model ([5]) search for benchmarks by specifying various parametric

paths that run from the assessed unit to the boundary of the technology set. The

point at which the path leaves the technology set is called the projection of the assessed

units. Since the projection does not need to be strongly efficient, the so-called second

stage is formulated for these models, which provides strongly efficient benchmarks for

the assessed unit.

In the paper [11] a single-stage method was proposed to find a strongly efficient

benchmark for the assessed unit in terms of radial input or output BCC models. The

method combines the model of the first stage in its multiplier form with the tradi-

tional model of the second stage, which is formulated using a modified envelopment

model. In the case of BCC models, the envelopment models are linear and their du-

als are always known. Thus, the resulting single-stage model of [11] led to a linear

model. Path-based models are analysed in [9] using a general envelope scheme and

are formulated in the form of convex programmes. The dual (multiplier) form of these

models, derived in a recent work [12], makes it possible to modify the procedure from

[11] also to convex path-based models.

The article is organised as follows. Section 2 presents all the necessary material to
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dolina F1, Bratislava, 84248, Slovakia (jakub.hrdina@fmph.uniba.sk, trnovska@fmph.uniba.sk,

halicka@fmph.uniba.sk)

169



170 JAKUB HRDINA, MÁRIA TRNOVSKÁ, MARGARÉTA HALICKÁ

determine the main result of our article. Section 3 formulates the one-stage procedure

and analyses its properties. Section 4 illustrates the numerical tractability of the

proposed procedure on the example of the eco-data set of 27 EU countries. Section 5

concludes and discusses the advantages of the one-stage procedure.

2. Preliminaries. Consider a set of n observed decision making units DMUj

(j = 1, . . . , n), each consuming m inputs xij (i = 1, . . . ,m) to produce s outputs

yrj (r = 1, . . . , s). For each j = 1, . . . , n, the data of inputs and outputs of DMUj

can be arranged into column vectors xj = (x1j , . . . , xmj)
⊤ ∈ Rm of inputs and yj =

(y1j , . . . , ysj)
⊤ ∈ Rs of outputs. Finally, the input and output vectors of all DMUs

form m × n input and s × n output matrices X and Y , i.e., X = [x1, . . . ,xn] and

Y = [y1, . . . ,yn], respectively.

2.1. Technology set. Based on the given data set we define the technology set

T =
{
(x,y) ∈ Rm × Rs | Xλ ≤ x, Y λ ≥ y, λ ≥ 0, e⊤λ = 1

}
, (2.1)

which corresponds to variable returns to scale (VRS). Note that the common nonneg-

ativity of (x,y) is not imposed here. The input/output vectors of T will be called

units. By (xo,yo) we denote the unit under evaluation.

It is said that unit (x1,y1) dominates unit (xo,yo) if and only if x1 ≤ xo and

y1 ≥ yo. Moreover, unit (xo,yo) ∈ T is called strongly efficient if and only if there is

no other unit in T dominating (xo,yo), i.e. if (x1,y1) ∈ T dominates (xo,yo), then

(x1,y1) = (xo,yo). Obviously, a strongly efficient unit lies on the boundary of T .

The set of all strongly efficient units is called the efficient boundary of T and denoted

∂ST . The remaining part ∂WT of the boundary of T consists of the so-called weakly

efficient units.

2.2. Path-based model in the envelopment form. We follow up on the

paper [9] and consider the general scheme (GS) model applied to (xo,yo) ∈ T with

directions go = (gx
o , g

y
o ) ≩ 0 that may depend on (xo,yo):

(GS)o min θ (2.2a)

Xλ ≤ xo + (ψx(θ)− 1)gx
o , (2.2b)

Y λ ≥ yo + (ψy(θ)− 1)gy
o , (2.2c)

e⊤λ = 1, λ ≥ 0. (2.2d)

The real valued functions ψ, their domains (dom), and their images (im) satisfy the

following assumptions: 1. dom(ψx),dom(ψy) and im(ψx), im(ψy) are either (0,∞) or

(−∞,∞); 2. ψx is smooth, concave, increasing and ψy is smooth, convex, decreasing;

3. ψx(1) = ψy(1) = 1; The right-hand sides of (2.2b) and (2.2c) denoted as

ϕx
o(θ) := xo + (ψx(θ)− 1)gx

o and ϕy
o(θ) := yo + (ψy(θ)− 1)gy

o (2.3)

define a continuous path ϕo : θ 7→ (ϕx
o(θ),ϕ

y
o(θ)) in the input-output space Rm × Rs

parameterised by θ ∈ D = dom(ψx)∩dom(ψy). The path ϕo passes through the point

(xo,yo) ∈ T at θ = 1 and for decreasing values of θ it moves towards the boundary

of T . The path intersects the boundary ∂T at the projection point ϕo(θ
∗
o), where

θ∗o ≤ 1 is the optimal value in (GS)o and is called the efficiency score.
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The general scheme (2.2) includes the well-known models1 such as the BCC input

and output models [1], the hyperbolic distance function model (HDF) [5], where

ψx(θ) = θ, ψy(θ) = 1/θ, the general directional distance function model (DDF) [2],

where ψx(θ) = θ, ψy(θ) = 2 − θ, and also the so-called generalised distance function

model (GDF) introduced by [4].

2.3. Strongly efficient benchmarks and the two stages procedure. Note

that the projection belongs to the boundary of T , but it is not necessarily strongly ef-

ficient. However, the programme (2.2) may have multiple optimal λ∗, and the points

(Xλ∗,Y λ∗) are called the benchmarks for (xo,yo). Among them, there are also

strongly efficient benchmarks that can be computed using the standard two stages

procedure described and analysed for path-based models in [9]. The first stage iden-

tifies the optimal value θ∗o by solving (2.2), the second stage solves a modified envel-

opment programme that at the fixed optimal value of θ∗o maximises the sum of slacks.

In the context of the GS scheme the second stage programme is as follows:

max e⊤sx + e⊤sy (2.4a)

s.t. Xλ+ sx ≤ xo + (ψx(θ∗o)− 1)gx
o , (2.4b)

Y λ− sy ≥ yo + (ψy(θ∗o)− 1)gy
o , (2.4c)

e⊤λ = 1, λ ≥ 0, sx ≥ 0, sy ≥ 0. (2.4d)

It was shown in [9, Theorem 4.7] that for each optimal solution (λ∗, sx∗, sy∗) in (2.4),

the unit (Xλ∗,Y λ∗) is a strongly efficient benchmark for (xo,yo).

2.4. The multiplier form of the path-based models. The general scheme

for a path-based model is formulated in the envelopment form, where programme

(2.2) presents a convex optimisation problem. In [12] the Lagrangian dual for (2.2)

was derived, which represents the multiplier form of the path-based model. The dual

can be written as follows:

(DGS)o max 1− v⊤xo + u⊤yo − σ − F (u,v) (2.5a)

Y ⊤u−X⊤v ≤ σe, (2.5b)

u,v ≥ 0,where (2.5c)

F (u,v) := 1− v⊤gx
o + u⊤gy

o − inf
θ∈D

[θ − v⊤gx
oψ

x(θ) + u⊤gy
oψ

y(θ)]. (2.6)

Note that F (u,v) is a convex function, and its specific forms for praticular path-based

models are provided in [12]. The primal-dual relationship between (2.4) and (2.5) is

described in [12, Theorem 1] and its weak duality result will play an important role

in the formation of the single-stage model.

3. Single-stage model for finding a strongly efficient benchmark. In this

section, we propose a single-stage model, which is a generalisation of the approach

of [11] to the whole class of path-based models. Note that the approach of [11] was

developed for linear models and was described as follows: change the fixed optimal

value in the second phase programme to the variable and make it equal to the objective

1Some models must first be equivalently reformulated to fit the scheme.
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function of the multiplier first stage programme with simultaneous incorporating the

constraints of the dual. This procedure applied to the linear models led to a linear

model.

3.1. Single-stage model in terms of path-based models. Now, we have

to modify this procedure so that if the first stage programme is convex (not nec-

essarily linear), then the single-stage programme is also convex. First, we change

the fixed θ∗o in the second stage programme (2.4) to the variable θ and change the

equality constraints in (2.4) to inequalities. Then we make θ less than or equal to

the objective function of the dual (multiplier) first stage programme (2.2). Finally,

we incorporate the constrains of the dual (multiplier) first stage programme in the

resulting programme, which is now stated as follows:

max e⊤sx + e⊤sy (3.1a)

s.t. Xλ+ sx ≤ xo + (ψx(θ)− 1)gx
o , (3.1b)

Y λ− sy ≥ yo + (ψy(θ)− 1)gy
o , (3.1c)

e⊤λ = 1, λ ≥ 0, (3.1d)

1− v⊤xo + u⊤yo − σ − F (u,v) ≥ θ, (3.1e)

Y ⊤u−X⊤v ≤ σe, (3.1f)

sx ≥ 0, sy ≥ 0,u ≥ 0,v ≥ 0, . (3.1g)

Note that this model is a convex optimisation problem, since, by assumption, ψx(θ)

is a concave function, ψy(θ) is a convex function, and F (u,v) is convex.

It can be easily seen that if (sx, sy, θ,λ,u,v, σ) is feasible for (3.1), then (θ,λ) is

feasible for the primal (envelopment) model (2.2) and (u,v, σ) is feasible for the dual

(multiplier) model (2.5). The weak duality states 1−v⊤xo+u⊤yo−σ−F (u,v) ≤ θ.

Therefore, the constraint (3.1e) enforces strong duality.

3.2. Properties of the single-stage approach. The structure of the pro-

gramme (3.1) enables us to formulate a similar result to [11, Theorem 1].

Theorem 3.1. The combined vector (sx∗, sy∗, θ∗,λ∗,u∗,v∗, σ∗) is an optimal

solution of programme (3.1) if and only if (u∗,v∗, σ∗) is an optimal solution of

the first-stage programme (2.5), θ∗ is the optimal value of the programme (2.5) and

(sx∗, sy∗,λ∗) is an optimal solution of the second-stage programme (2.4) with θ∗o =

θ∗.

Proof. Let (sx∗, sy∗, θ∗,λ∗,u∗,v∗, σ∗) be optimal for (3.1). As stated above,

(θ∗, λ∗) is feasible for (2.2) and (u∗,v∗, σ∗) is feasible for (2.5), and due to the weak

duality between programmes (2.2) and (2.5), and constraint (3.1e) we have that

1− (v∗)⊤xo + (u∗)⊤yo − σ∗ − F (u∗,v∗) = θ∗.

Furthermore, from the weak duality property we find that (u∗,v∗, σ∗) is optimal for

(2.5), and (θ∗,λ∗) is optimal for (2.2) with θ∗ being the optimal value of both pro-

grammes. Note that from the optimality of (sx∗, sy∗, θ∗,λ∗,u∗,v∗, σ∗), it must hold

that Xλ∗ + sx∗ = ϕx
o(θ

∗) and Y λ∗ − sy∗ = ϕy
o(θ

∗), which implies that (sx∗, sy∗,λ∗)

is feasible for (2.4) with θ∗o fixed to θ∗. Furthermore, if (sx∗, sy∗,λ∗) were not op-

timal for (2.4) with θ∗o fixed to θ∗, there would exist a vector (s′x, s′y,λ′) feasi-

ble for (2.4) with e⊤s′x + e⊤s′y > e⊤sx∗ + e⊤sy∗. The same would hold for the
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combined vector (s′x, s′y, θ∗,λ′,u∗,v∗, σ∗), which would contradict the optimality of

(sx∗, sy∗, θ∗,λ∗,u∗,v∗, σ∗).

To show the converse, suppose that (u∗,v∗, σ∗) is optimal for (2.5) with an opti-

mal value θ∗, and (sx∗, sy∗,λ∗) is optimal for (2.4). Apparently,

1− (v∗)⊤xo + (u∗)⊤yo − σ∗ − F (u∗,v∗) = θ∗,

and thus (θ∗,λ∗) is optimal for (2.2), and the value θ∗o in (2.4) is fixed to θ∗. Hence,

the combined vector (sx∗, sy∗, θ∗,λ∗,u∗,v∗, σ∗) is feasible for (3.1). If this vector were

not optimal for (3.1), there would exist a vector (s′x, s′y, θ′,λ′,u′,v′, σ′), without loss

of generality we may assume that Xλ′+s′x = ϕx
o(θ

′) and Y λ′−s′y = ϕy
o(θ

′), feasible

for (3.1) with e⊤s′x+e⊤s′y > e⊤sx∗+e⊤sy∗. Moreover, (u′,v′, σ′) would be feasible

for (2.5) and (θ′,λ′) would be feasible for (2.2). Owing to (3.1e) we have

1− v′⊤xo + u′⊤yo − σ′ − F (u′,v′) = θ′,

and from the weak duality property, (u′,v′, σ′) would be optimal for (2.5) and (θ′,λ′)

would be optimal for (2.2). Obviously, θ′ = θ∗ and because (s′x, s′y,λ′) is feasible for

(2.4), there would be a contradiction to the optimality of (sx∗, sy∗,λ∗) in (2.4).

The optimal solutions of (3.1) allow us to construct a strongly efficient benchmark

for (xo,yo) and find out whether or not θ∗ overestimates the efficiency of (xo,yo).

Corollary 3.2. Let (sx∗, sy∗, θ∗,λ∗,u∗,v∗, σ∗) be any of the optimal solutions

of program (3.1) for (xo,yo). Then (Xλ∗,Y λ∗) is a strongly efficient benchmark for

(xo,yo). Moreover,

(a) sx∗ = 0 and sy∗ = 0 if and only if (xo,yo) is projected on ∂ST ;

(b) sx∗ = 0, sy∗ = 0, and θ∗ = 1 if and only if (xo,yo) is strongly efficient.

Note that the information we acquire from the single stage model (3.1) can be

obtained alternatively by solving the multiplier model (2.5) instead of the envelopment

model (2.2) of the traditional first stage and the second phase model (2.4). In this

procedure, we do not get the projection (ϕx
o(θ

∗),ϕy
o(θ

∗)) directly, but it must be

calculated by substituting the optimal value in (2.5) into the formulas (2.3).

4. Numerical application to the data set of 27 EU countries. To check

the numerical tractability of the single-stage model (3.1) and to compare the time

complexity of the single-stage approach with the two-step procedure, we have chosen a

set of real macroeconomic data from 27 EU countries. Data consist of 3 inputs: labour,

capital, and energy consumption; one desirable output: GDP; and 3 undesirable

outputs: Greenhouse Gas (GHG) emissions, Particulate Matter with a diameter of 10

micrometers or less (PM10), and Waste. Data extracted from the World Development

Indicators and the Eurostat database for the year 2020 are included in Table 4.1.

We conducted two studies on this data set. The first, which we call Case Study

I, does not use the environmental data listed in Table 4.1 under the heading of unde-

sirable outputs. In this study, we applied the DDF and HDF models with directions

gx
o = 0 and gy

o = yo to measure the output efficiency. With this selection of directions,

the model measures an ability of a particular country to maximise the output given

input levels consumed. The second study, Case Study II, uses the entire data set,

including the three undesirable outputs. The aim in this study is to design a model so
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Table 4.1

Data for 27 EU countries

Inputs Outputs Undesirable Outputs

Labour
Capital

Energy con-
GDP GHG PM10 Waste

force sumption

# Mil. 1000t Mil. 1000t CO2
Tonne Tonne

individuals EUR oil equiv. EUR equiv.

AT 4 638 300 95 140,2 24 872,9 380 888,5 73 910,8 26 788 68 906 034
BE 5 167 188 110 943,3 30 938,8 460 747,7 107 272,7 25 513 68 061 590
BG 3 311 854 11 750,2 9 499,7 61 607,7 48 044,9 44 525 116 387 350
HR 1 772 376 11 210,8 6 432,4 50 543,1 23 906,8 51 409 6 003 760
CY 651 740 4 666,5 1 525,9 22 086,6 8 579,9 1 765 2 221 809
CZ 5 375 292 57 290,8 23 766,2 215 805,4 113 719,5 37 402 38 486 186
DK 3 028 252 68 992,8 13 067,4 311 356,3 42 852,9 22 412 20 135 564
EE 700 236 8 174,8 2 725,5 27 430,0 11 407,1 12 664 16 170 358
FI 2 751 071 57 231,0 23 246,1 238 038,0 47 822,2 26 569 116 082 531
FR 30 379 167 539 458,0 127 822,1 2 317 832,0 392 328,7 247 518 310 373 987
DE 43 501 190 733 188,0 194 248,1 3 403 730,0 730 922,7 182 126 401 156 266
EL 4 643 796 19 939,9 14 470,3 165 015,7 75 464,5 56 342 28 358 897
HU 4 724 407 36 558,8 17 606,5 137 866,0 62 965,3 53 542 17 150 400
IE 2 432 234 157 893,7 10 854,5 375 249,6 59 056,3 30 287 16 192 033
IT 25 126 337 298 506,8 103 057,1 1 661 239,8 384 969,9 219 537 174 887 620
LV 988 585 6 752,1 3 798,2 30 109,5 10 496,2 26 298 2 852 792
LT 1 486 169 10 663,8 5 284,2 49 873,2 20 203,5 27 554 6 695 731
LU 322 041 10 771,4 3 270,8 64 524,3 9 029,9 1 672 9 215 222
MT 275 724 2 696,4 500,8 13 352,4 2 111,9 1 641 3 528 663
NL 9 502 134 172 937,0 41 872,5 796 530,0 164 787,1 27 652 125 138 771
PL 18 245 536 96 351,6 70 231,5 526 147,2 371 895,0 395 660 170 233 670
PT 5 166 305 38 509,8 15 156,6 200 518,9 58 149,9 56 956 16 601 514
RO 8 908 333 51 881,1 23 472,4 220 486,6 112 036,0 149 066 141 364 457
SK 2 712 322 18 210,2 9 611,1 93 444,1 37 233,8 24 024 12 775 926
SI 1 029 744 8 892,8 4 445,9 47 044,9 15 974,8 13 044 7 518 375
ES 22 838 137 228 532,0 72 322,6 1 119 010,0 272 244,4 211 698 105 624 359
SE 5 462 300 120 694,3 31 019,2 480 556,4 46 214,0 35 267 151 823 910

that it would measure the so-called output eco-efficiency, i.e. to measure an ability of

a country to maximise the output and minimise the undesirable outputs given inputs

levels consumed.

4.1. Models modifications for eco-efficiency measurement. Various pro-

cedures can be used when environmental factors such as smoke pollution or waste

are required to be included in the efficiency measurement. Overviews of these proce-

dures are provided, for example, in [8, 14, 13]. One approach allows handling these

undesirable outputs (also called bads) as inputs (see e.g. [10]). For the output eco-

efficiency measurement, it is necessary to choose a model that allows simultaneous

increase of desirable outputs and reduction of undesirable outputs. Any path-based

model can be used for these proposals when a zero-direction vector is selected for

traditional inputs and positive-direction vectors are selected for undesirable outputs

and traditional (desired) outputs.

In Case study II we will deal with the undesirable outputs as inputs to assess the

output eco-efficiency using the DDF and HDF models. For these purposes, we need to

introduce the notation, which takes into account this new type of factors included in

the analysis, and describe the modifications of the models, which reflects the approach

we have chosen for the Case study II.

We will use the following notation in the environmental assessment: p is the

number of undesirable outputs; bj ∈ Rp is the vector of undesirable outputs for the
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DMUj , j = 1, . . . , n; B ∈ Rp×n is the matrix whose columns are vectors of undesirable

outputs of all DMUs. Moreover, we introduce the following p-dimensional vectors

corresponding to the bads: w is the shadow weight; sb is the slack variable; gb is the

direction vector. Since undesirable outputs are treated as inputs, we must choose the

real function ψb(θ), which enters the definition of a path for bads, the same as for

inputs.

With these notations, both the single-stage model (3.1) as well as the two steps

models (2.5) or (2.2), and (2.4) presented in the previous sections can be modified

and applied directly to path-based models to find strongly efficient benchmarks. The

modification of the single-stage model is as follows:

max e⊤sx + e⊤sb + e⊤sy (4.1a)

s.t. Xλ+ sx ≤ xo + (ψx(θ)− 1)gx
o , (4.1b)

Bλ+ sb ≤ bo + (ψx(θ)− 1)gb
o, (4.1c)

Y λ− sy ≥ yo + (ψy(θ)− 1)gy
o , (4.1d)

e⊤λ = 1, λ ≥ 0, (4.1e)

1− v⊤xo −w⊤bo + u⊤yo − σ − F (u,w,v) ≥ θ, (4.1f)

Y ⊤u−X⊤v −B⊤w ≤ σe, (4.1g)

sx ≥ 0, sb ≥ 0, sy ≥ 0,u ≥ 0,w ≥ 0,v ≥ 0. (4.1h)

For our numerical experiments, we selected the DDF model, where ψx(θ) =

θ, ψy(θ) = 2 − θ and the HDF model, where ψx(θ) = θ, ψy(θ) = 1/θ. For these

two models, explicit forms of the function F (u,v) were derived in [12, Table 5] and

their modifications for the environmental assessment read:

F (u,v,w) =

{
0, if v⊤gx

o + u⊤gy
o +w⊤gb

o = 1

+∞, otherwise,

for the DDF model, and

F (u,v,w) = (
√
u⊤gy

o +
√
1− v⊤gx

o −w⊤gb
o)

2,

for the HDF model. The directional vectors are chosen as gx
o = 0, gb

o = bo, g
y
o = yo.

To solve optimisation programmes, we applied the CVX Matlab-based modelling

system [6, 7] on the normalised data.

4.2. Results and disscusion. In both case studies, the application of HDF to

the single stage model numerically failed. It was probably caused by the structure of

this nonlinear model, where the inequality (3.1e), or (4.1f) causes the failure of Slater

condition, important for the interior point methods. Therefore, in the case of HDF

(and probably also other nonlinear models), it is necessary to use the standard two-

phase method, which is reliable even for the nonlinear models (see numerical results

[12] and [9]). The application of the DDF model, the single stage method provided the

same results as the two-stage methods in both case studies. The single stage method,

however, reduced the computational time to 57% in average. Numerical results can

be found in Table 4.2 for the Case study I and in Table 4.3 for the Case study II.
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Table 4.2

Efficiency score and shares of the efficient units on the benchmark of the inefficient unit eval-

uated using the output oriented DDF model in Case Study I.

Efficient countries

Score DK FR DE EL IE IT LU MT

AT 0.861 0.96 0 0.04 0 0 0 0 0
BE 0.953 0.88 0 0.05 0 0.07 0 0 0
BG 0.491 0 0 0 0.53 0 0 0 0.47
HR 0.384 0 0 0 0.34 0 0 0.33 0.33
CY 0.747 0 0 0 0.04 0 0 0.15 0.81
CZ 0.437 0 0 0 0.30 0 0.15 0.55 0
EE 0.181 0 0 0 0.04 0 0 0.59 0.37
FI 0.864 0.68 0 0 0 0 0.02 0.29 0
HU 0.272 0 0 0 0.62 0 0.07 0.31 0
LV 0.476 0 0 0 0.16 0 0 0.16 0.68
LT 0.504 0 0 0 0.25 0 0 0.44 0.30
NL 0.996 0.83 0 0.15 0 0 0.02 0 0
PL 0.906 0 0 0 0.73 0 0.27 0 0
PT 0.841 0 0 0 0.28 0 0.09 0.63 0
RO 0.506 0 0 0 0.74 0 0.12 0.14 0
SK 0.619 0 0 0 0.47 0 0.01 0.52 0
SI 0.730 0 0 0 0.17 0 0 0.41 0.42
ES 0.914 0.38 0 0.04 0 0 0.57 0 0
SE 0.938 0.82 0 0.06 0 0.12 0 0 0

Table 4.3

Efficiency score and shares of the efficient units on the benchmark of the inefficient unit eval-

uated using the eco-modified DDF model in the Study Case II. The efficient countries France, Ger-

many and Spain do not contribute to the efficient benchmarks of the inefficient units.

Efficient units except FR, DE and ES

Score CY DK EL IE IT LU MT NL PT SE

AT 0.896 0 0.56 0 0 0 0.07 0 0.21 0 0.16
BE 0.959 0 0.56 0 0.08 0 0.02 0 0.35 0 0
BG 0.619 0 0 0.34 0 0 0.40 0.26 0 0 0
HR 0.867 0.80 0 0.01 0 0 0 0 0 0.19 0
CZ 0.673 0 0.44 0 0 0.06 0.49 0 0 0 0
EE 0.491 0 0.02 0 0 0 0.30 0.67 0 0 0.02
FI 0.864 0 0.68 0 0 0.02 0.30 0 0 0 0
HU 0.739 0.35 0.32 0 0 0 0 0 0 0.32 0
LV 0.969 0.97 0.03 0 0 0 0 0 0 0 0
LT 0.866 0.71 0 0.03 0 0 0.12 0 0 0.14 0
PL 0.906 0 0 0.73 0 0.27 0 0 0 0 0
RO 0.637 0 0 0.16 0 0.14 0.70 0 0 0 0
SK 0.896 0.71 0 0.12 0 0.02 0 0 0 0.15 0
SI 0.9 0.55 0 0.06 0 0 0.36 0 0 0.03 0

The efficient countries are listed in the top row of both tables. The inefficient

ones are listed in the vertical column together with their efficiency scores. Each row

also includes the values of the intensity coefficients λj for each inefficient unit, which

can be positive only for efficient countries in the two-stage as well as the single stage

model.

From Table 4.2 we can see that there are 8 efficient countries in Case study I,

of which only France does not contribute to the efficient benchmark of inefficient

countries. On the other hand, Luxembourg contributes to the benchmark of nine

inefficient countries. Eight countries have lower efficiency score than Slovakia, and

the benchmark for Slovakia is made up of 3 countries, of which Luxembourg and

Greece have the largest share.

From Table 4.3 we can see that in Case study II there were 13 eco-efficient coun-
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tries. The increase in the number of efficient units in Case study II compared to Case

study I is a natural consequence of the increase in the number of factors. In this case,

three efficient countries, namely France, Germany, and Spain, do not contribute to

the efficient benchmark of inefficient countries. On the contrary, Luxembourg is again

the largest contributor. Nine EU countries have lower eco-efficiency than Slovakia,

and the benchmark for Slovakia is composed of four countries, of which Cyprus has

the largest share. Estonia had the lowest score in both case studies.

Finally, let us note that this application was intended solely to verify the numerical

tractability of the proposed approach and to demonstrate the type of information

that can be read from the results. It cannot be considered a real analysis of the

environmental efficiency of EU countries.

5. Conclusion. We have found that the single stage method is not suitable

for nonlinear models. For linear models, the single-stage method is computationally

reliable and shows significant time savings compared to the two-stage method. In

order to demonstrate the latter in general, additional numerical experiments must be

conducted on different data sets.
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