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DERIVATION OF A CURVATURE-DEPENDENT
KURAMOTO-SIVASHINSKY EQUATION

SHUNSUKE KOBAYASHI* AND SHIGETOSHI YAZAKI f

Abstract. A curvature-dependent Kuramoto—Sivashinsky equation is derived as a model of
flame spreading motion on a cylinder. We start from a three-phases (gas-solid-gas) reaction-diffusion
system defined on a cylinder and reduce it to a two-dimensional system by averaging over the thick-
ness. This two-dimensional model includes curvature dependence diffusion coefficients. Matched
asymptotic expansion is conducted on the two-dimensional model to construct a traveling wave
solution and determine the interface corresponding to the flame front. Finally, a linear stability
analysis of the travelling wave solution and geometric arguments to the motion of the front lead to
a curvature-dependent Kuramoto—Sivashinsky equation, which is a generalization of a known result
obtained by Kagan & Sivashinsky [3].
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1. Introduction. The goal of this paper is to derive the following curvature-
dependent Kuramoto—Sivashinsky equation:

ft+(a(/€) *ac)frz+4fmmmr+%f12 :07 (11)

where (k) is a prescribed function of the curvature of a given accordion folded paper
(see Fig. 1.1, below) and a, is a parameter. Here and hereafter, we put F; = 9F /0t
F. = OF /0x, Fy, = 0°F/02?, and so forth.

It is well known that in solid combustion, the flame spreading rate depends on the
shape of the combustible material ([4, 8, 9]). In particular, an experiment reported
in [8] involves burning paper folded in an accordion manner, standing vertically, and
igniting it from the top down, parallel to the direction of the folds (Fig. 1.1). From
this experiment, we can observe that the flame spreading rate depends on the number
of folds (i.e., the fold width). These observations suggest the possibility of controlling
the flame spreading rate through the shape of the paper, which motivates this study.

This paper aims to derive a combustion model that depends on the curvature
of the region. The Kuramoto—Sivashinsky (KS) equation ([1, 2]) is well-known as a
mathematical model for gas combustion. It has also been derived by [3] as a model
for flame fronts on a thin solid fuel, which is contained in a narrow space between two
parallel plates and burns against a forced oxidizing convective flux. The accordion
region has angles, making it analytically challenging. Formulating it on a general one-
dimensional graph is also technically difficult. Therefore, in this paper, we extend the
methodology of [3] to a cylindrical region and investigate how the curvature of the
region appears in the KS equation.

This paper is organized as follows. In the next section, we prepare a 3-dimensional
reaction-diffusion system on the cylinder, which leads to a three-layer gas-solid-gas
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FiGc. 1.1. Schematic figure of the accordion folded paper. The gray (resp. white) color part
indicates the burned (resp. unburned, i.e., the paper) region and the interface between them is the
combustion flame front (the red curve). The flame front moves downward (red arrows), while the
buoyancy flow goes upward (black arrow).

system (Fig. 2.1). We consider the case where ignition occurs from above, and the
flame front propagates downward. In this scenario, the buoyant flow opposes the
direction of the frame spread, similar to the setup described in [3]. To reduce the
model to a 2-dimensional one, we adopt depth-averaging across the width of each
phase and approximation of diffusive-thermal equilibrium in §3. §4 is devoted to
constructing a planar traveling wave with matched asymptotic expansions and to
derive the dispersion relation, which determines the coefficients of the linear terms of
(1.1). In §5, by semi-heuristic argument from a geometric point of view, we derive
the curvature-dependent KS equation (1.1) and the coefficient of the nonlinear term
of it. Finally, a summary of the presence paper and a future work are given in §6.

2. Reaction-diffusion system on cylinder. Put O = R+ (ds +d,), I+ =
R+d; and denote the 3-phases (gas-solid-gas) cylindrical domain (see Fig. 2.1) as the
union of Q4 = {(z,7,0);x € R, I <r <04, -7 <0 <7}, Qp, ={(z,1,0); z €
R, O_<r<I_, —n<0<7}, Qs={(z,r,0);zeR, I_<r<Iy —m<6<m}
Iy, ={(z,r,0);x € R, 0<0 < 2m, r=04+},T, ={(z,r0);x R, 0<0<
2, r=I1} Ty, ={(z,r,0); 2 €R, 0<0<2m, r=1_} and I'y, = {(z,r,0); z €
R, 0 <0 < 2w, r=0_}. The set of governing equations is

F1c. 2.1. A schematic picture from the top view of the cylindrical domain.

PgCq Lyt +u-Varoly,) =AAgroTg, (x,7,0)
Ci,t +u- v;c,r,GCi = DAw,r,GCia (33 T, 0)
pscsTs,t = )\sAw,r,OTsa .13 T, 9)

€, t>0 (i=1,2),
EQQN t>0 (12172),
e, t>0,

where T,, = T,,(z,7,0,t), C; = Cy,(x,7,0,t), Ts = Ts(x,7,0,t), u = (u,0,0) (u>0),
Viro = (0, cos 0 0, —r~1sin 0 9y, sin 0 0, +r~1 cos § 9y and Agro= 2 +0%+r~10,.+
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r~20%. Here, the subscript labels g; (i = 1,2) and s stand for gaseous and solid phases,
respectively.
The law of conservation of heat and the mass on I', (i = 1,2) are

/\ngl,r - /\STS,T = 7QW(T97 Cs), PgDCLr = W(TS, Cs) on Fsl,
_)\ngz,r + /\sTs,r = _QW(TS> CS)) _pgDC2,r = W(Tsa Cs) on I,

where W(T,C) = AC exp (=T, /T') with positive constants A and T,,. We assume the
continuity for temperature on I'y, as

Ty (x,7,0,t) = Ts(z,7,0,t) onl, (i=1,2). (2.2)

(2.1)

Furthermore, we denote the values on I'y, and I'y, (i =1,2) as

Cs,(z,0,t) = Ci(x,7,0,t), T (x,0,t) =Ts(z,7,0,t) onT,,,

Cy,(x,0,t) = Ci(z,1,0,t), T, (x,0,t) =Ty (x,7,60,t) onTy,.
We give the adiabatic boundary condition at the walls

Tyr =0 Cip =0 onTy (i=1,2), (2.3)
and the upstream/downstream boundary conditions
To, =Ty, Ts=T,, C;=C, atx=-o00 (i=12),
Ty,2=0, Tez=0, Cijp,=0 atz =00 (1=1,2).

The unknown functions 7" and C stand for the temperature and the volumetric
mass fractions of the deficient gaseous reactant (oxygen), respectively. In the above
system, A is the thermal conductivity, D is the molecular diffusivity, p is the constant
density, c is the specific heat, @) is the heat release, W is the reaction rate with
the Arrhenius temperature dependence, A is the pre-exponential factor, T, is the
activation temperature, d is the width of the gaseous/solid layer, and u = (u,0,0) is
the prescribed constant flow-field. For T,, and C,,, the subscript « means the unburned
(initial) state of the system prior to ignition.

3. Reduction to a 2-dimensional system. We first approximate the model
to a 2-dimensional, say T; and C;, where the hat indicates quantities depth-averaged
across the width of each phase. For this purpose, we approximate the transversal
r-profiles of the temperature and concentration by second-order polynomials adapted
to the conditions (2.2) and (2.3):

Ty, (w,7,0,t) = Ty, (2,0,t) + (Ts, (x,0,1) — Ty, (x,60,1)) H. (i =1,2),
Ci(z,r,0,t) = Cy,(x,0,t) + (Cs, (x,0,t) — (x 0,t)) HS (i=1,2),
Ewm&ﬂ:n@R%w+%&—)+@v—>2

WhereH _1+(R+d )/dgv H92 :1_(R_d5_r)/d97 ¢1 :(Tsl_TS2)/(2d8)a
and ¢y = (Tsl + Ty, — 2T5(x, R, 0,t))/(2d2).

Let

T, = g:ﬁql + %T C; = %C% + %C& (i=1,2),
“1:2<d;1 (I)i+2>7 u2:2<odglgl_+2>7 3 =2 2dsl f
1 2izslog%+’ ”2_225 é—*-%, 3_IR;+_Zl 7T
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From these expressions, we obtain the r-averaged system as follows:

pgcgdg (Tl’t T UTl’w) = /\ d Tl ax T 7 91,99 + = et (Tsl - Tgl)
I, o d,

1 d — —
+ - (ul -2+ Ig> (T, 00 — Tgl,ee)}
g +

A A A Pedy A Pkl A A
4y (Cos+uCi) =D [pgdgcl,m + 5 Coan + P2 (O = )

g\ - _
+ % (,u1 2+ I) (Cs1,00 — Cgl,00)1|7
9 +

R . iz
%%%(n¢+th:A[dnﬂf+la_mw+d(T —T,,)

1 d _ _
+ 4 (Mz —-2- Ig> (Ts,,00 — Tg2,99)],

Pgd Pgh2 = =
I,gog, g2,00 + ng(C& - 092)

Pg dg A A
rg _9_ 29 o
+ d, (MQ I) (Cs, .00 ng,ae)],
2

d ds
pscsds T@,t(R) + i¢2,t =X dsTs,:cac (R) + - Ts,9«9 (R)
3 1,

Pyl (C'z,t + UéQx) =D [Pg g

_ _ 43
+§(T91 +T,, — 2T5(R)) + ?5(252,."51 +ds(v191 + V201,00 + V3¢2,99)} .

Hence, combining the aboves and (2.1), and using the approximation of diffusive-

thermal equilibrium with setting Ty, = Ty, = T4(R) = T, Cs, = Cy, = C, we can
obtain the two-dimensional reaction-diffusion-advection system for 7" and C:

(pgcng + pscchS) T, + pgcnguTm = ()\QJQ + )\SJS) Tow + ()\ d + A d ) vo + QW,
pgdgCi + pgdyuCy = DpydyChry + ngJgCW - W,

(3.1)
where we put ¢ = Rf and
B B 1 . 2 2 . 2
dg: u1+lu2dga dszidsa dg: ( i + i > s = R ds.
fo1 2 M3 il Oy 2l O- psl Iy

Note that by formally taking the limit for fixed R such as R — oo, we can transform
(3.1) into the system of flat case ((26)—(27) in [3]).

4. Traveling wave solution and dispersion relation equation. We apply
the following non-dimensionalization based on [3] to (3.1):

psCsds Agdy + Aods Agdy + Aods Agdy + Aods
= T DE = K DT] = 7 ) Dth =
PgCqdy PgCqdg PgCqly PgCqdy
Dth to— ﬁmlr Ta(Tb - Tu) ch

. = ;e = , =22 2 T,=T, )
Uy 2, g sz b + Cg
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The scaled spatiotemporal coordinates, temperature, concentrations, flow field, and
Lewis number is given by

T o t T —T, C u Dy
=, n=— =— 0=— " ®=— —=U, Le= "
¢ lr’77 ZT’T t,’ T, —T,’ .’ uy » €

leads to the scaled version of the model (3.1) as follows:

2(1+m) De 1 D, 1
S — _ S5 __ _ q)
6m ®T+U®f D L6®§£+ D Le@nn+w( 76)7
2 1
where
d B(O —1) Al, T, T,
3, w(®,0) exp (7(@_1)+1 ; oo exp =7 )7 T

Due to the nonlinearity of the reaction rate w, the system (3.1) is still difficult
for theoretical treatment. Therefore, we turn to the conventional high activation
energy limit which replaces the reaction rate term with a concentrated (Dirac delta
function) source on a flame front. The strength A© of the source, or equivalently,
the magnitude of the jump of the fluxes across the front, will be computed by an
asymptotic analysis on the parameter 5! in section 4.2.

We consider the regions both within and outside the boundary layer by matched
asymptotic expansions. The difference in the solution’s derivatives at the two extremes
of the boundary layer then yields jump conditions.

To construct the planar travelling wave and calculate the linear stability, we carry
out a so-called near-equidiffusive approximation. The approximation is based on the

assumption that the Lewis number deviates slightly from unity such that Le = 1 — 2%

B

(as B — o0) with @ = O(1). We also assume that % =1- 2% and — 2
We suppose that the equation of the front may be written locally as £ = F(n, 1),
and define the moving coordinate such that £ = & — F(n,7), F(n,7) = V14 §F(n, 7).

The unknown parameter V' corresponds to the planar flame’s propagating speed and
will be defined later. Then, we have

D"I_
D =

2(1+m) (0= 0y) A0 + (ay — ) Oge) + Adr,

Bsm

A 2
(0r — O:F,) +UO; = A + s
2 B

and the boundary condition is

(dA® + (1 — d)®gz) — Ao

@(—OO, 7777-) = Oa ‘I’(—OOJ%T) = la @é(+oov77a7) = 07 ‘Dg(‘f'ooﬂ% T) =0.
Here, the Laplacian A in (é, n,T) coordinate is expressed as
Af =+ F2) fee — Foy(fep + frg) = Fonfe + fan

and 0p(€) = /1 + F? 8(€) is the surface d-function.
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4.1. Outer problem. We seek outer expansion of the form

ou . d@ . )

_ o0 _ 50 _ (0

@—9()+2_Elw(f?€0), ®7¢()+221W(€#0)7 FfF()ﬂLElWa
j= j= j=

and formulate the outer problem in terms of the leading order temperature (), &(©)
and the quantity U0 := @U) + (). We assume m = O(f) and ©,® € C? in both
outer regions. Furthermore, we assume max {ds,d,}/R = o(87'/2), which leads to
1 —d=0(B~"). Then, from the zeroth order, we have

vel = AV, el = AV, (4.1)

where we put AU f = (1+ (Frgj))Q)féé —Fygj)(fén + /) —F,%)fé—i—fm. We also obtain
the following from the O(371) terms:

(1)
_e0 (0 (0) (1) _ A0) (1) ©) (1)) (1), _ Fnn' 50
G)é FY+ 0] —|—U\I/é FANSEA —|—F77 FT7 \Iléé Fn \Ilén — \I/é (4.2)
+aAOwO _ oznA(O)@(O) — (e — a,,)@é%)

with the boundary conditions
0@ =0, @ =1
00 =1 oUW =0
o =0, oY =0
5 )
The planar flame front propagating to the negative £ direction corresponds to the

1-dimensional stationary traveling wave solution to (4.1) and (4.2) with §F = 0,
namely,

@m):{eXp(Ué) (€<0) (b(o):{l—eXP(Ué) (€<0) 3
>0)’ 0 £>0) ‘

—~

We note that () 4+ &) = 1. As remarked in [6, 7], we have U\Iléo) = AOgO from

(4.1), and hence, we can set U0 = 1, provided that the initial conditions are chosen
to satisfy ©|;—o + ®|;—0 = 1+ O(8~1). This assumption implies VO)|,_y =1, so that
U0 =1 by the boundary condition ¥(®) =1 at f = t+00. Then the following follows
from (4.2):

(4.4)

)

o _ [[VIT+ et =) ené) (E<0)
v/u (£ >0)
which coincides with the Kagan & Sivashinsky’s result [3] with defined V = UlogU.

4.2. Inner problem. To derive the jump condition across the flame front, we
introduce the stretched coordinate ( = 5¢ and seek inner expansions, in the form

@:1+229(j)ﬁ*j’ q)zgzd)(j)ﬁfj, F:ZF(j)ﬂ’j, A:ﬂ2ZA(j)B’j.

Jj=1 Jj=1 Jj=0 Jj=0
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The inner problem to leading order is then given by

(1+ (F©)2)6L) + A®gMe20™ =g, (4.5)
(1)
(1+ (F)2)gl — A@pMe2™ =, (4.6)

From the matching condition (5%, ¢inner)(¢ — +o00) = (@0‘““,(1)0‘““)(5 — +0),
we have

o =W (0", ¢ =0 as¢— +oo (4.7)

00 3" (07)
o0 =Moo )+ *4—"¢, oW =W )+t~

5 5 ¢ as(— —00,(4.8)

where we put F(0F) = F| ¢—o+- In particular, the zeroth-order matching is insured
by requiring ©°"¢*(0%) = 1 and ®°"**"(0*) = 0. This implies the continuity of @)
across the reaction sheet as expressed in [[@(O)ﬂgt = 0, where [[F]]gir =F(0%) —F(07)
denotes a jump in the value of F across the sheet.

We now put (1) = ) + (1), Then, ) satisfies 0 = (1 + (F,go))Q)wé?7 which

follows from (4.5) and (4.6). We hence solve as ") = a¢ + b, where a = 0 and
b=0W(0%) are determined from (4.7). Therefore, by substituting the relation

6 () =0 (0") —01(¢) as ¢ — oo
into (4.5), we obtain a single equation for (1) as follows:

(1+ (FO)2)05) + A@ 0 (07) — 01()) exp(20)) = 0. (4.9)

We now multiply (4.9) by 921) and integrate with respect to & from £ = —o0 to £ = 0o
to obtain
).

CRINEE / " @(0%) - 0O ).
0

(=—o0 Mmoo

1 (D)2

0 2

Hence, using (4.7) and (4.8), we obtain

02
0= _# (@g’) (0—)>2 + A0 2007

Therefore, since ©©) =1 (€ > 0) and &) = 0 (€ > 0) for j > 0, we obtain the result

2A(0)

WY — — |

exp (w<1>(0+)) . (4.10)

For the planar traveling wave, the above yields U = v2A(© exp(V/U), and hence,
A = % in the case of V = UlogU. Hereafter, we put V = UlogU.

Summarizing our discussions so far, we can derive the following equation, which
represents a closed problem for the zeroth order temperature ©() the first order
enthalpy ¥, and the zeroth order flame position F(?:

U6, = A®,
) ) (4.11)
~O¢Fy + 0, + UV = AW — {0,A0 + (ag — a,)04 |
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applicable for é # 0, subject to the boundary conditions
@(*OO,’I],T) = Oa W(*OO/I?,T) = 07 6(5 > F) = 17 \I/é(+OO, 7777-) =0 (412)

and the jump conditions

[e15" =0, [v]§" =o, (4.13)

1+ F2[0]5 = —exp(¥(07)), (4.14)
g + aan o+

[w 0 = 09" (4.15)
&0 1+F2 5780

applicable at f = 0. Here, we drop the superscripts. The jump condition (4.13) means
the continuity of © and ¥ which follows from the matching relation, (4.14) follows
readily from (4.10), and (4.15) can be derived by integration of (4.2) from £ = 0~ to
€ = 0%. Note that we used the continuity of ©©, © ¥(© and ¥ and hence of
their partial derivatives with respect to 7 and 7 to derive (4.15).

4.3. Linear stability analysis. We now calculate the linear stability of the
planar travelling (4.3)—(4.4) by considering the perturbation of the form ([6])

(0,9, F) = (0, ¥, vr) +-e(6 + 0, v+ ful, f),

where ¢ is a small amplitude of the perturbation. Substituting the above into (4.11)
and (4.12), and linearizing on ¢ gives the problem

Ugé = oéé + 07777,
—Veé + 60, + Uwé = ’(/J55 + wnn — (0459&: =+ Oznenn)
subject to the boundary conditions

0=0, =0 atf=—oo0,
0(6>0)=0, ¥s=0 atf=o0

and the jump conditions

H@]] =2Uf, W]] = o He]]a (416)
[6:] = UQU f —¢(07)), (4.17)
[[1/)5]] = Qg [[95]] + QU(O%U — V)f (4.18)

at é = 0. It should be noted that the jump conditions have been approximated by
using Taylor expansions for €.
We seek nontrivial solutions such as (6,v, f) = e‘””k"(é(f), 1[)(5), 1), where w €
C is a growth rate of the amplitude, and k is a wavenumber. By using (4.16) and
(4.17) we have
- . A —A)E-1 - s
6— {AGXP(/\+§) (f <0) = B+AP((+)\+_>\)_€)2 exp(A+§) (£<0)

! >0 C exp(r_) E>0)

)
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where

P
U+ VTP A2

2

boo=2w-a

At P=a\i — Vi +w—Ka,.

The jump condition (4.18) leads, after simple manipulations, to the dispersion relation

w=k*(a, —ag) — (U — V)A_ + (1 - AU+) Ay — A2

In the long-wavelength limit (kK < 1) and near the stability threshold such as k ~
Vg — g~ R~Y/2 where a. = 1+ log U, the expansion above can be written as

4

- k<L (4.19)

w = (o — a.)k?
and it implies the following linear evolution equation for the flame front f(n,7):

4
f‘r + (O‘n - O‘C)ffm - mfvmrm =0. (4-20)

We note that the dispersion relation (4.19) and the equation (4.20) reduce to the
dispersion relation derived by [3] and the linear KS equation when o, = a¢ = a, i.e.,
R — oo, respectively.

It indicates that the time evolution of perturbations along the n direction depends
on a, rather than ag¢, and the effect of the curvature of the cylinder appears in the
second-order derivative terms.

5. Nonlinear effect. The following argument extends Kuramoto’s idea [5] on a
plane to a surface. The system (4.11) is invariant under the transformation n — —n,
and hence, this invariance is inherited by an evolution equation that the perturbation
f should satisty, say f, = F(f, fy, fun,--.). Furthermore, since the perturbation f
is along the traveling wave solution with velocity V', the evolution equation f; = F
should be invariant when the transformations f + f+co and t — t —V ~lcq are acted
simultaneously. Therefore, F have to take the following form:

F = aa fom + aafomn + a6 Fymmmm + -+ + 01(f0)* + b2 (Fyn)® + bs Sy fomn + -+ -

That is, F consists only of terms where the total order of derivatives is even, and it
does not include any terms involving f.

Scaling with ay = ¢ (|| < 1) such that f = ef, 7 = ¢'/2p and 7 = 27, we can
choose the leading terms of F as follows:

fT = a2f7m + a4f7777777] + bl(fn)za (51)

where we drop tildes. Combining the above with (4.20), we have as = —(a;; — )
and a4 = 4/U>.

The coefficient b; is determined semi-heuristically by constructing a special solu-
tion. (5.1) has a special solution f = vn + byv?7 , which corresponds to a traveling
wave with slope ¢ = arctanv. Then, we find that by = —U/2 + O(v?) for || < 1
provided that the traveling speed perpendicular to the line £ = f is determined by
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the relation (V + by?) cos p = U, log U,,, where U,, = U -n and n is the unit normal
to the interface directed towards the reacted material. Meanwhile, if the traveling
speed perpendicular to the line £ = f is given by V, then we have by = —V/2. Thus,
the coefficient of the nonlinear term differs depending on geometric considerations;
therefore, we put by as a parameter Vj.

By using the scaling 7 = Un, t = U?r, f = Vo f and dropping hats, we end up
with the curvature-dependent KS equation (1.1).

6. Concluding remarks. Starting from the three-dimensional model of the
cylinder, we reduced it to a two-dimensional model by averaging thickness. Using
the assumption of diffusive-thermal equilibrium, the strong temperature dependence
of the reaction rate, and the strong disparity between the densities of the solid and
gaseous phases, we derive the traveling wave’s dispersion relation. We note that
the dispersion relation equation accounting for the curvature effect is novel. From
the model’s symmetric properties, we determine the possible terms of the evolution
equation, and from a geometric point of view, we heuristically determine the coefficient
of the nonlinear term.

In a forthcoming paper, we intend to apply (1.1) to simulate combustion phenom-
ena on an accordion folded paper and analyze the flame spreading rate’s dependence
on the combustible material’s shape.

Acknowledgments. This work is partially supported by JSPS KAKENHI Grant
Number 24K16964 (SK), and MIMS, CMMA and the Interdisciplinary Research Sup-
port Program for Life Sciences and Mathematical Sciences. The authors are grateful
to H. Iijima and M. Kimura for their stimulating discussions. The authors also would
like to thank the anonymous referees for their valuable comments.

REFERENCES

[1] Y. KuramMOTO AND T. TSUZUKI, Persistent propagation of concentration waves in dissipative
media far from thermal equilibrium, Progr. Theor. Phys., 55 (1976), 356-369.

[2] G. I. S1vASHINSKY, Nonlinear analysis of hydrodynamic instability in laminar flames—I, Acta
Astron., 4 (1977), 1177-1206.

[3] L. KAGAN AND G. I. SIVASHINSKY, Pattern formation in flame spread over thin solid fuels,
Combust. Theor. Model., 12:2 (2008), 269—281.

[4] R. KIMURA AND H. TORIKAI, Flame spreading over an accordion folded paper, The Proceedings
of the 55th Symposium (Japanese) on Combustion (2017), 456-457.

[5] Y. KuraMoTO, Chemical Oscillations, Waves, and Turbulence, Dover Publ. (2003).

[6] S. B. MARGOLIS AND B. J. MATKOWSKY, Nonlinear Stability and Bifurcation in the Transition
from Laminar to Turbulent Flame Propagation, Combustion Science and Technology, 34
(1983), 44-77.

[7] B. J. MATKOWSKY AND G. I. SIVASHINSKY, An asymptotic derivation of two models in flame
theory associated with the constant density approzimation, SIAM. J. Appl. Math., 37
(1979), 686-699.

[8] T. MiyamoTo AND H. TORIKAL, Effect of folding width on a flame spreading rate for accor-
dion folded paper, The Proceedings of the Thermal Engineering Conference 2020 (2020),
ROMBUNNO.E224.

[9] C. QiaN, H. IsHipA AND K. SA1TO, Upward Flame Spread along PMMA Vertical Corner Walls
Part II: Mechanism of “M” Shape Pyrolysis Front Formation, Combustion and Flame, 99
(1994), 331-338.



