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GRAPH-LAPLACIAN IN BIODIVERSITY MODELLING BY
NATURAL NUMERICAL NETWORKS∗
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Abstract. This paper explores the graph-Laplacian operator and its application in image clas-
sification tasks, focusing on its effectiveness in capturing local variation and structural properties
of data. We investigate its mathematical formulation, practical implementation, and usability in
biodiversity modelling, extending Laplace operator application from the physical domain to graph
structures. Our research proposes a novel methodology for identifying and classifying natural riparian
forests with high biodiversity value from optical satellite imagery. We combine graph-Laplacian anal-
ysis with relevancy maps generated by the Natural Numerical Network to distinguish between natural
and planted riparian forests. Furthermore, we explore graph-Laplacian as a statistical characteristic
of Sentinel-2 optical bands in constructing the Natural Numerical Network. Numerical experiments
and case studies highlight the applicability of the graph-Laplacian operator in environmental science,
describing its potential in biodiversity modelling and protected habitat identification.
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1. Introduction. The main aim of this paper is to explore the graph-Laplacian
operator and its application in image classification tasks due to its effectiveness in cap-
turing local variation and structural properties of data. In this paper, we investigate
the mathematical formulation, practical implementation, and usability of the graph-
Laplacian in biodiversity modelling. The graph-Laplacian extends the concept of the
well-known Laplace operator in the context of the finite volume method in the 2D
physical domain to graph structures, offering a potential tool for understanding com-
plex data representations. The primary objective of this research is to propose a novel
methodology for identifying and classifying natural riparian forests with high biodi-
versity value from satellite imagery using a combined approach of graph-Laplacian
analysis and relevancy maps generated by the Natural Numerical Network (NatNet).
Thus, natural riparian forests will be distinguished from planted riparian forests with
low biodiversity value, which should not be part of the European Natura 2000 pro-
tected network [4]. Monitoring natural riparian forests and distinguishing them from
planted riparian forests is essential because planted ones should not be a part of the
Natura 2000 network. Additionally, we explore the graph-Laplacian as a statistical
characteristic in constructing the graph structure of NatNet, enriching the spectrum
of metrics used in data analysis and classification tasks, improving classification out-
comes and delineating specific clusters with greater accuracy. Through numerical
experiments and case studies, we highlight the applicability of the graph-Laplacian
operator in environmental science.
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2. Natural Numerical Network. Inspired by work in ODE and PDE-based
deep learning methods, particularly from [7, 3], the Natural Numerical Network was
introduced as a novel supervised deep learning approach working on directed graphs
[9]. NatNet is based on a forward-backward diffusion model on directed graphs, dis-
cretised numerically for image classification. It focuses on attraction-repulsion strate-
gies, similar to those in high-dimensional data visualisation [2], and uses a nonlinear
forward-backward diffusion equation for supervised classification as introduced in [8].

Let G be a directed graph consisting of a non-empty finite set V (G) of vertices
and a finite set A(G) of ordered pairs of distinct vertices, called arcs or directed edges
[1]. The number of vertices in G is denoted by NV . For any arc (u, v) = euv, u is the
tail, and v is the head, signifying departure from u and arrival at v [1]. Hereafter,
we consider a semi-complete directed graph G, where every pair of vertices in V (G)
is connected by an arc.

Let X : G× [0, T ] → Rk represent the Euclidean coordinates of vertex v ∈ V (G)
at time t ∈ [0, T ], given by X(v, t) = (x1(v, t), . . . , xk(v, t)). The dimension of the
feature space Rk is denoted by k. The diffusion of X(v, t) on the graph G is described
by the partial differential equation (PDE):

∂tX(v, t) = ∇ · (g∇X(v, t)), v ∈ V (G), t ∈ [0, T ],(2.1)

where g represents the diffusion coefficient [6]. Equation (2.1) is considered together
with the initial condition X(v, 0) = X0(v), v ∈ V (G). Boundary conditions are
unnecessary due to the semi-completeness of the graph G.

The diffusion coefficient g depends on the distance between vertices v and u in
the graph G, leading to a nonlinear diffusion model. Specifically, g(euv) is formulated
as:

g(euv) = ε(euv)
1

1 +
∑k

i=1(Ki l2i (euv))
, Ki ≥ 0, i = 1, . . . , k,(2.2)

where Ki are weights for each coordinate li(euv), i = 1, . . . , k, of the vector l(euv) =
(l1(euv), . . . , lk(euv))

T = X(v, ·) − X(u, ·), allowing control over diffusion speed in
each feature space direction. A large sum in the coefficient results in slowing down
diffusion, encouraging point stability, while a small sum accelerating diffusion, causing
rapid movement of the points.

The value of ε(euv) in the diffusion coefficient depends on the type of diffusion.
For forward diffusion, ε(euv) is a positive constant, fostering clustering. Contrarily,
backward diffusion uses a small negative ε(euv), causing repulsion between different
clusters. This forward-backward diffusion combination allows for supervised learning.

The basic model behaviour can be described on points divided into clusters.
Points inside a cluster are attracted by forward diffusion, which means that only
forward diffusion is applied to the edges connecting the points from the same clus-
ter. On the edges connecting the points from different clusters, backwards diffusion
is applied, thus, different clusters repel through backward diffusion. Moreover, when
a new observation is added to the network, only forward diffusion is applied to links
affecting the new vertex, attracting it to existing clusters. The network dynamics
determine the cluster membership of the new observation.

To reduce the influence of forward diffusion on a new observation w ∈ V (G), the
diffusion coefficient can be modified as:

g(evw) = max(ε(evw)
1

1 +
∑k

i=1(Ki l2i (evw))
− δ, 0), ε(evw) > 0,(2.3)
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where δ controls the ”diffusion neighbourhood,” restricting attraction only to points
with sufficiently large diffusion coefficients.

To discretise equation (2.1), we utilise i) the balance of diffusion fluxes (inflows
and outflows) at each vertex v ∈ V (G) and ii) the approximation of diffusion fluxes
towards vertex v along its edges.

We introduce the diffusion flux approximation, depending on the difference in
function values X at vertices v and u, as

X (v, euv, t) = geuv
(X(u, t)−X(v, t)),(2.4)

for each directed edge euv, where geuv denotes the diffusion coefficient on edge euv.
Positive X (v, euv, t) represents diffusion inflow, while negative X (v, euv, t) indicates
outflow. The diffusion flux balance at vertex v is then expressed as

∂tX(v, t) =
∑

u∈V (G) :
euv∈A(G)

X (v, euv, t).(2.5)

Substituting the diffusion flux approximation (2.4) into the balance equation (2.5)
results in the discrete version of graph PDE (2.1):

∂tX(v, t) =
∑

u∈V (G) :
euv∈A(G)

geuv (X(u, t)−X(v, t)),(2.6)

for more details see [8].

If geuv
= 1 and X (v, euv) =

(X(u)−X(v))
deuv

, where deuv
is a distance between vertices

v and u, then the sum on the right hand side of (2.5) is called graph-Laplacian. It is
expressed by the following formula

∆X(v) =
∑

u∈V (G) :
euv∈A(G)

(X(u)−X(v))

deuv

.(2.7)

Let us note that we do not consider deuv
in the denominator in (2.6) because the

distance of vertices v and u is included in diffusion coefficient geuv
and its influence is

thus already taken into account. However, the definition (2.7) is important and will
be used in the next section for graph-Laplacian of image intensity.

For time discretisation of (2.6), we use the semi-implicit approach [10], utilising
finite difference for time derivative approximation. Due to time-dependent changes in
diffusion coefficient geuv

(refer to (2.2) and (2.3)), we take its value from the previous
time step. For data classification in k-dimensional feature space, each time step yields
k systems of linear equations

(1 + τ
∑

u∈V (G) :
euv∈A(G)

gn−1
euv

)xn
i (v)− τ

∑
u∈V (G) :
euv∈A(G)

gn−1
euv

xn
i (u) = xn−1

i (v),(2.8)

i = 1, . . . , k, v ∈ V (G),

interconnected by diffusion coefficient gn−1
euv

, depending on all xn−1
i (v), xn−1

i (u), i =
1, . . . , k, given by

gn−1
euv

= ε(en−1
uv )

1

1 +
∑k

i=1(Ki l2i (e
n−1
uv ))

, Ki ≥ 0.(2.9)
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Fig. 3.1. A motivation for definition of the Laplace operator on the graph. For a detailed
description of the figure see equation (3.1).

The equations (2.8)-(2.9) represent basic NatNet dynamics, where points in clus-
ters move together while clusters themselves repulse. The addition of a new obser-
vation alters this dynamic. For a new observation w, the diffusion coefficient (2.9) is
modified to

gn−1
euw

= max(ε(en−1
uw )

1

1 +
∑k

i=1(Ki l2i (e
n−1
uw ))

− δ, 0),(2.10)

where ε(en−1
uw ) > 0, Ki ≥ 0, δ > 0 are given constants, see also (2.3).

3. The Graph-Laplacian for images. Let us consider a scalar function f(x)
defined over a bounded domain Ω ⊂ R2, where x ∈ Ω denotes a point in this domain.
The Laplace operator ∆f provides a measure of the local variation of f(x) across
the domain. In the context of image processing, understanding the behaviour of the
Laplacian across its pixels is crucial for our task.

The mean value of the Laplacian in a finite volume (pixel) V , see Fig. 3.1, can be
expressed by applying Green’s theorem in terms of the gradient of the function f(x)
and the normal vector to the boundary of V :

1

m(V )

∫
V

∆f dx =
1

m(V )

∫
∂V

∇f · −→n dS ≈(3.1)

≈ 1

m(V )

∑
U∈N (V )

m(σV U )
f(xU )− f(xV )

dV U
,

where m(V ) denotes the 2D measure of the finite volume V , ∂V represents the bound-
ary of V , and −→n is the unit outer normal to ∂V . The N (V ) is the set of neighbouring
finite volumes U for which the 1D measure of the common face m(σV U ) is nonzero,
and dV U is the length of the line connecting the centres xV and xU of finite volumes
V and U .

Inspired by the physical Laplacian given by the formula (3.1), the graph-Laplacian
is defined by (2.7) in the previous section. Instead of finite volume V we consider ver-
tex v of the graph G and its neighbouring vertices u connected with v by an edge
evu. The equation (2.7) generalises the notion of the Laplace operator from physi-
cal applications to the more general topological structures such as graphs, enabling
its application to data represented as networks. When working with images, we can
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Fig. 3.2. Examples of 5× 5 neighbourhood (red squares) for the graph-Laplacian calculation in
the examined pixel (yellow square) and some edges connecting examined pixel represented vertex v
with neighbouring pixels/ vertices u. On the left, the resulting graph-Laplacian value is 27.64 because
the function of the image intensity of the green channel is smooth. On the right, it is 701.88, because
the function of the image intensity of the green channel has more extremes.

consider a squared neighbourhood of the pixel and consider the pixels in such neigh-
bourhood as vertices of the graph connected by the edges. The examples of the
squared neighbourhood are depicted in Fig. 3.2, where the yellow square represents
vertex v and the red squares represent the neighbouring vertices u. Some edges in
light blue and dotted dark blue colour connecting the vertices are also depicted in
Fig. 3.2. If we denote image intensity as f we can rewrite its graph-Laplacian into
the form

∆f(v) =
∑

u∈V (G)
evu∈E(G)

avu(f(u)− f(v))(3.2)

=
∑

u∈V (G)
evu∈E(G)

avu f(u)−
∑

u∈V (G)
evu∈E(G)

avu f(v),

where avu = 1
dvu

is a weight by which the values of f(u) in neighbouring vertices
are multiplied while the value f(v) is multiplied by the sum of all the weights with
the minus sign and dvu is the distance between vertices v and u. In our application,
we consider 5 × 5 pixel neighbourhood centred in the vertex (pixel) v, considering
all other pixels in such neighbourhood as vertices u. Then we get the matrix of the
weights multiplying the image intensities in the 5× 5 neighbourhood as follows

1√
8

1√
5

1
2

1√
5

1√
8

1√
5

1√
2

1 1√
2

1√
5

1
2 1 −

∑
u∈V (G)

evu∈E(G)

avu 1 1
2

1√
5

1√
2

1 1√
2

1√
5

1√
8

1√
5

1
2

1√
5

1√
8


.(3.3)

The graph-Laplacian concept can capture image variability, which is reflected in
its values. In the areas where the image intensity has many local extrema, the values
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of the graph-Laplacian should be higher. Meanwhile, we will obtain lower values for
graph-Laplacian in the areas with more uniform image intensity.

4. Numerical experiments. The following section explores the possibility of
applying graph-Laplacian. Two methodologies are examined, where the graph- Lapla-
cian combined with relevancy maps, or graph-Laplacian as part of the feature space
for NatNet.

4.1. Graph-Laplacian combined with relevancy maps. In the first numer-
ical experiment, we combine the aforementioned graph-Laplacian given by the (3.2)
with the relevancy map constructed by the trained NatNet. First, let us apply the
weight mask (3.3) to each pixel of the Sentinel-2 image. The Sentinel-2 European
Space Agency satellite produces the imagery in the 13 optical bands [5]. In this ex-
periment, we focus only on the band with 559nm, which is a green colour in the
spectrum. Subsequently, we compute the absolute value of the graph-Laplacian in
each image pixel and normalise it to the interval [0, 1].

The highest values of the graph-Laplacian occur in urban areas, attributed to the
presence of diverse structures such as buildings, streets, and parks in a relatively small
space. When attempting to differentiate between natural and planted forests, this led
to reduced accuracy as the high graph-Laplacian values in urban areas diminish the
contrast between graph-Laplacian values in natural and planted forests. It becomes
obvious that urban areas, and more broadly, any areas not corresponding to natural
forest habitats, must be excluded from the analysis. To achieve this, we utilise a
relevancy map generated by the Natural Numerical Network for the classification of
the riparian forest habitats.

The relevancy map, a grayscale image of the same dimensions as the Sentinel-2
image, highlights forested areas of the target habitat in pixels with a white colour,
where the relevancy acquires values close to 1. Non-habitat areas such as fields,
rivers, and cities appear black on the relevancy map, which means that the relevancy
of the appearance of the target habitat is close to 0. The pixels acquire a grey
colour on the relevancy map when the relevancy of the appearance of the target
forest habitat has a value between 0 and 1 (the colour in the pixels is darker grey
when the relevancy is closer to 0). The calculation of the relevancy coefficient of the
appearance of the target forest habitat and construction of the relevancy maps are
in detail described in the [8]. As depicted in the first row of Fig. 4.1, the alluvial
areas of the Danube River are shown on the Sentinel-2 image on the left, while the
relevancy map for the riparian forest from the Danube River alluvial areas is displayed
on the right. Additionally, segmented regions denoting natural riparian forests (yellow
curves) and planted riparian forests (red curves), provided by botany experts from
the Plant Science and Biodiversity Centre SAS using semi-automatic and automatic
segmentation methods [12, 11], are illustrated in all subfigures of Fig. 4.1. One can
see that the interior of the yellow segmented areas exhibits white colours, indicating
high relevancy for the riparian forest habitat. However, we also observe white colours
in the interior of the red segmented areas, suggesting that these areas are potential
candidates for the riparian forest due to the similar species composition of natural
and planted riparian forests. Since these areas are not natural, they must be excluded
from the Natura 2000 habitat identification.

Based on these observations, we propose a methodology that combines the rel-
evancy map with the mean value of graph-Laplacian (3.2) calculated in a m × m
neighbourhood centred at the examined pixel.
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Fig. 4.1. The comparison of the relevancy map created by the Natural Numerical Network
(upper row) and the Mean graph-Laplacian map (bottom row). The upper left and bottom left
images depict the Sentinel-2 image. The upper right image shows the relevancy map R(p), and the
bottom right image shows the Mean graph-Laplacian map M(p). The images also depict segmented
areas of natural forests (yellow segmented areas) and planted forests (red segmented areas).

• First, we calculate the relevancy map R(p) for riparian forest habitat, where
p is the examined pixel in the desired location as described in [8].

• Then, we set the graph-Laplacian value computed by (3.2) for all pixels p for
which R(p) ̸= 0, for other pixels we set the value to 0.

• Finally, the Mean graph-Laplacian map M(p) is created: to every pixel p, for
which R(p) ̸= 0, we set the mean value of graph-Laplacian in the neighbour-
hood m = 7, and we set 0 value otherwise.

The Mean graph-Laplacian map M(p) is depicted in the bottom right subfigure of
Fig. 4.1. Comparing two relevancy maps, the Mean graph-Laplacian map M(p)
shows a significant reduction of the high values of the relevancy for planted forests
in comparison with the relevancy map R(p). By application of the mean graph-
Laplacian, the values are either zero or very low in such areas, indicating considerable
success in capturing low biodiversity. Consequently, the interior of the red segmented
areas has a colour close to black. Contrarily, the mean graph-Laplacian effectively
captures the variability of the image intensity in the natural forests, with high values
in the interior of the yellow segmented areas, indicating substantial biodiversity in
those regions.

4.2. Graph-Laplacian as a feature in NatNet. In the second numerical
experiment, the graph-Laplacian operator is used as a statistical characteristic in
the construction of NatNet feature space. In [8, 9], the feature space was calculated
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Fig. 4.2. The subregion of Western Slovakia with segmented areas of Natura 2000 riparian
forest habitat (yellow curves) and planted monodominant forests (red curves). Together with the
segmented areas, representative squares are also plotted inside the segmented areas.

using statistical characteristics such as mean, standard deviation, and minimal and
maximal values in the representative squares of the segmented areas. The following
experiment aims to evaluate the efficiency of the graph-Laplacian operator as the
statistical characteristic and its impact on classification outcomes.

A dataset including segmented areas of natural and planted forests is constructed
to achieve this objective. The graph-Laplacian is computed by applying the pre-
scribed weight mask (3.3) to interior pixels in each desired area from all channels of
the Sentinel-2 satellite imagery. Because the segmented areas do not have the same
number of pixels, the representative squares of the size n = 7, 9, 11 are constructed
inside the segmented areas as depicted in Fig 4.2. Then, the mean graph-Laplacian is
calculated in representative squares in each desired area. It gives the feature vectors
forming vertices of the NatNet directed graph. This directed graph represents the ini-
tial position of the vertices for subsequent training processes of the NatNet described
in [8]. Notably, the training effectiveness is significantly high, achieving a success rate
of 100%, which enables the utilisation of the trained NatNets for generating relevancy
maps Q(p), where p is the pixel.

The methodology to use trained NatNet, which used the graph-Laplacian of each
channel of Sentinel-2, is proposed, and the goal is to highlight biodiversity hotspots,
the natural forests with a high biodiversity value. When we properly combine the
relevancy map R(p) calculated for the riparian forest habitat with the relevancy map
Q(p) computed by using the graph-Laplacian, we can achieve that goal:

• First, the relevancy map R(p) for the riparian forest habitat is computed.
Given that the dominant species in the riparian forest habitat often coincide
with those dominant in planted riparian forests, the relevancy map also high-
lights regions planted by commercially used riparian forests. This aspect is
shown in Fig. 4.3 upper right.
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Fig. 4.3. The comparison of the relevancy map created by the Natural Numerical Network
for the forested areas in the target habitat (upper right) and the relevancy map highlighting the
biodiversity hotspots of the target habitat(bottom right). The upper left and bottom left images depict
the Sentinel-2 image. The images also depict segmented areas of natural forests (yellow segmented
areas) and planted forests (red segmented areas).

• To model the possible areas of the biodiversity hotspots, planted forests, and
the transitive zones between natural habitats and other types of land coverage
have to be excluded. Then, the squared neighbourhood of size 5× 5 centred
in every pixel p in relevancy map R(p) is constructed, and the values in the
pixels inside the squares are studied.

• Suppose we found at least one pixel with a zero value in the relevancy map
R(p) inside the constructed square around pixel p. In that pixel p, the value
of the new grayscale Hotspots map H(p) = 0.

• If there are no pixels with zero values inside the square in the relevancy map
R(p), we set H(p) = Q(p).

Such a process leads to the construction of the grayscale Hotspots map H(p) depicted
in Fig. 4.3 bottom right, where we can observe a reduction of the high value of the
relevancy and only a few white parts highlighting the biodiversity hotspots remained.
This result demonstrates the success in effectively indicating biodiversity hotspots of
natural forests in the target habitat using the graph-Laplacian of Sentinel-2 optical
bands in NatNet.

5. Conclusions. This study demonstrates the potential of the graph-Laplacian
operator in biodiversity modelling through its combination with Natural Numerical
Networks. By extending the use of the Laplace operator to graph structures, the
proposed methodology effectively captures local variations and structural properties
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in ecological data. This approach enhances the accuracy of identifying and classifying
natural riparian forests with high biodiversity from satellite imagery. The application
of the graph-Laplacian as a statistical characteristic in the NatNet allows for differ-
entiation between natural and planted forests. The experimental results confirm the
usability of this method in highlighting biodiversity hotspots and its practical utility
in environmental science, specifically in the context of protected habitat identification
under the Natura 2000 network. The next step is to analyse graph-Laplacian values
in the interior pixels of the segmented areas and construct the quantity Relative High
graph-Laplacian, which will capture the diversity locally in segmented areas. This
information makes it possible to distinguish if the examined areas are natural forests
with a high value of Relative High graph-Laplacian. In the case of the planted forests,
the Relative High graph-Laplacian value should be low.
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