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ADAPTIVE GAUSSIAN PROCESS REGRESSION FOR BAYESIAN
INVERSE PROBLEMS∗

PAOLO VILLANI† , JÖRG F. UNGER‡ , AND MARTIN WEISER†

Abstract. We introduce a novel adaptive Gaussian Process Regression (GPR) methodology
for efficient construction of surrogate models for Bayesian inverse problems with expensive forward
model evaluations. An adaptive design strategy focuses on optimizing both the positioning and
simulation accuracy of training data in order to reduce the computational cost of simulating training
data without compromising the fidelity of the posterior distributions of parameters. The method
interleaves a goal-oriented active learning algorithm selecting evaluation points and tolerances based
on the expected impact on the Kullback-Leibler divergence of surrogated and true posterior with
a Markov Chain Monte Carlo sampling of the posterior. The performance benefit of the adaptive
approach is demonstrated for two simple test problems.
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1. Introduction. The inverse problem of inferring the posterior probability of
parameters p ∈ Ω ⊂ Rd in a forward model y(p) from measurements ym ∈ Rm is
often addressed by sampling with Markov Chain Monte Carlo (MCMC) methods [8].
The large number of forward evaluations required for a faithful representation of
the posterior density renders this inapplicable in case of computationally expensive
forward models such as large finite element (FE) simulations. The forward model is
thus often replaced by a fast surrogate model when sampling the posterior. Here, we
focus on the efficient construction of Gaussian Process Regression (GPR) surrogates.

Surrogate models are learned from values y(pi) at specific evaluation points pi as
training data. The accuracy of the resulting surrogate depends on the number and
position of the sample points. Constructing an accurate surrogate model can become
computationally expensive when a large number of evaluations is required. Conse-
quently, strategies for selecting near-optimal evaluation points have been proposed
for various settings [15]. A priori point sets [7, 14] are effectively supplemented by
adaptive designs [4, 9, 11, 21] selecting the most beneficial evaluation points pi.

When using FE simulations for computing training data, the evaluations of y(pi)
are affected by discretization and truncation errors. The trade-off between accuracy
and cost has been investigated using different low and high fidelity models [13], and
by an adaptive choice of evaluation tolerances [16, 18, 19] in different settings. Multi-
fidelity and multi-level sample allocation and model selection [3, 6, 17] face closely
related problems, but focus on computing unbiased linear estimators by sampling.

The contribution of the present work is the extension of previous work on goal ori-
ented adaptive surrogate model construction from a pure offline training for maximum
posterior point estimates [18] to a representation of the whole posterior distribution
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by MCMC sampling. The quantity of interest is the Kullback-Leibler divergence of
true and surrogated posteriors. In contrast to [18], we consider an interleaved pos-
terior sampling and surrogate training approach, and integrate the surrogate model
inaccuracy by a marginal likelihood instead of a linearized error propagation analysis.

2. Gaussian Process regression. Gaussian process regression is a regression
technique which allows to approximate any function, naturally fits the Bayesian frame-
work, and provides an uncertainty estimate of its prediction.

We consider a forward model y : Ω → Rm on a bounded domain Ω ⊂ Rd,
which cannot be evaluated directly, but can be approximated through a numerical
procedure yτ with arbitrary precision in exchange of computational work: We assume
that for any τ > 0, we obtain an evaluation yτ (p) ∼ N (y(p), τI), with cost Wτ .
Thus, we can interpret the exact forward model as the limit of increasingly accurate
numerical approximations: y = limτ→0 yτ . Given a design D = (pi, τi)i=1,...,s defining
evaluation points pi and tolerances τi > 0, the numerical model yτ provides training
data D(D) = (pi, yi)i=1,...,s with yi = yτi(pi) ≈ y(pi) of accuracy τi.

Given training data D, we are interested in a prediction of ys+1 ≈ y(ps+1) for any
ps+1 ∈ Ω. To perform GPR, we assume y to be a realization of a Gaussian process G
with prior mean µ0 : Ω→ Rm and covariance kernel k : Ω×Ω→ Rm×m. We assume
µ0 to be constant and equal to zero, while k will be specified later.

The GPR posterior covariance block matrix is Γ = (K−1+T−2)−1 ∈ Rm(s+1)×m(s+1)

with prior covariance blocks Kij = k(pi, pj) and formally likelihood covariance T =
diag(τ1I, . . . , τsI,∞I). The GPR posterior mean is Ȳ = Γ(K−1M0 + T−2Y ) with
Y = (y1, . . . , ys, 0). Then, the GPR prediction is the marginal normal distribution
ys+1 ∼ N (Ȳs+1,Γs+1,s+1). As ps+1 ∈ Ω is arbitrary, this defines mean ȳ : Ω → Rm

and covariance Γ : Ω→ Rm×m on the whole parameter space. We refer to [15, 18] for
a more detailed exposition.

A surrogate model yD ≈ y can be defined either as the deterministic mean ydD = ȳ,
or as a stochastic process taking the covariance Γ into account, i.e. ysD ∼ N (ȳ,Γ).
Note that the latter case is not identical to the marginalized Gaussian process, since
spatial correlations are partially neglected for reasons of computational efficiency.

3. Bayesian surrogate-based parameter identification. We assume mea-
surements ym to be random variables generated by a linear additive Gaussian noise
model

ym = y(p) + η (3.1)

with η ∼ N (0,Σl). For simplicity, we consider a diagonal covariance structure Σ =
diag(σ1, . . . σn), corresponding to independent noise components. The conditional
distribution of the measurements is then ym | p ∼ N (y(p),Σl), and

π(ym | p) = (2π)−m/2 det(Σl)
−1/2 exp

(
− 1

2
∥ym − y(p)∥2

Σ−1
l

)
is the likelihood of the problem. Evaluating the likelihood requires evaluating the
forward model y, which we assume to be computationally expensive.

To reduce costs, we replace y by a GPR surrogate yD based on some training data
D. We postpone the question of how to build training designs to the next section. For
simplicity, we consider a surrogate with independent output components, i.e. diagonal
covariance Γ(p).



216 P. VILLANI, J.F. UNGER, AND M. WEISER

To evaluate the likelihood, we could substitute the forward model y with the mean
estimate ydD = ȳ, obtaining

πd
D(ym | p,D) = (2π)−m/2 det(Σl)

−1/2 exp
(
− 1

2
∥ym − ȳ(p)∥2

Σ−1
l

)
. (3.2)

This, from a decision-theoretic point of view, corresponds to the minimization of the
L1 loss [10], but ignores the uncertainty estimate given by the predictive variance Γ.
Substituting y by the stochastic surrogate ysD, which corresponds to marginalizing over
GP realizations, results in a different conditional distribution of the measurements
ym | p,D ∼ N (ȳ(p),Σl + Γ(p)) and in a marginal likelihood

πs
D(ym | p,D) = (2π)−m/2 det (Σl + Γ(p))

− 1
2 exp

(
−1

2
∥ym − ȳ(p)∥2

(Σl+Γ(p))−1

)
,

(3.3)
see, e.g., [2]. Note that the conditional distribution is still Gaussian due to the nor-
mality of both the noise and the GP. Moreover, the likelihood πs

D is closely related to
the L2 loss [10, 20]. Including the GP variance into the likelihood can be important
for avoiding overconfident yet wrong posterior approximations by surrogated forward
models, see Fig. 3.1 for an illustration.

By adopting a Bayesian point of view, we express prior belief on the parameter
by assigning a prior distribution π(p). Then, by Bayes’ theorem, we obtain a true
posterior distribution

π(p | ym) =
π(p) π(ym | p)

π(ym)
, (3.4)

corresponding to the true likelihood π(ym | p) and an approximate posterior

π(p | ym, D) =
π(p) πD(ym | p,D)

π(ym | D)
, (3.5)

corresponding to the surrogated likelihood with πD being either πd
D or πs

D as given
in (3.2) and (3.3), respectively.

In both cases, the normalizing constant π(ym) or π(ym | D), respectively, will
not be computationally available, as it requires integration over the parameter space
Ω: fortunately, it is not needed for posterior sampling by Markov-Chain Monte Carlo
(MCMC) methods.

4. Posterior-oriented surrogate model. As in [20], we do not aim at build-
ing a surrogate which is globally accurate on the whole parameter space Ω, but at
finding a design D for evaluating training data D such that the approximate poste-
rior is accurate, i.e. π(p | ym) ≈ π(p | ym, D). Repeatedly selecting training points
randomly sampled from π(p | ym, D), updating yD, and then iterating is sufficient for
convergence of π(p | ym, D) to π(p | ym) in the Hellinger metric [2]. Here, we also aim
at finding a design D which incurs a small computational cost of evaluating training
data D.

We measure the deviation of the surrogated and the true posterior densities by
the Kullback-Leibler (KL) divergence

DKL (π(· | ym) | π(· | ym, D)) = Eπ(p|ym)

[
log

π(p | ym)

π(p | ym, D)

]
=

∫
Ω

π(p | ym) log
π(p | ym)

π(p | ym, D)
dp. (4.1)
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Fig. 3.1. Impact of the plug-in likelihood (3.2) and marginal likelihood (3.3) on the posterior
for an illustrative inverse problem problem with forward model y(p) = p2sin(p) and uniform prior
on parameter space [0, 1]. The marginal likelihood (3.3) is wider due to including the GP variance,
and avoids overconfident posteriors.

Since computing the KL divergence requires evaluating the full model, we derive
a numerical approximation which relies on the surrogate only. Using the marginal
likelihood πs

D from (3.3) and the posteriors (3.4) and (3.5), their logarithmic ratio
can be written as

log
π(p | ym)

π(p | ym, D)
= log

π(ym | p)
πs
D(ym | p,D)

− log
π(ym)

π(ym | D)
.

The first term, the logarithmic ratio of true and surrogated likelihood, equals

log
π(ym | p)

πs
D(ym | p,D)

=
1

2

(
log

det (Σl + Γ(p))

det (Σl)
− ∥y(p)− ym∥2

Σ−1
l

+ ∥ȳ(p)− ym∥2
(Σl+Γ(p))−1

)
.

As Σ−1
l − (Σl + Γ(p))

−1 ⪰ 0, we can upper bound the difference between norms by

−∥y(p)− ym∥2
Σ−1

l

+ ∥ȳ(p)− ym∥2(Σl+Γ(p))−1

≤ −∥y(p)− ym∥2
Σ−1

l

+ ∥ȳ(p)− ym∥2
Σ−1

l

= −∥y(p)− ȳ(p)∥2
Σ−1

l

− 2 (ȳ(p)− ym)
T
Σ−1

l (y(p)− ȳ(p)) .

By assuming that y is a realization of G, E
[(
y(i)(p)− ȳ(i)(p)

)2]
= Γ(i,i)(p) and

therefore ∥y(p)−ȳ(p)∥2
Σ−1

l

≈ tr
(
Σ−1

l Γ(p)
)
hold. Defining v = Σ−1

l

√
diag (Γ(p)) ∈ Rm,
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we obtain

−∥y(p)− ym∥2
Σ−1

l

+ ∥ȳ(p)− ym∥2(Σl+Γ(p))−1 ≲ − tr
(
Σ−1

l Γ(p)
)
+ 2 |ȳ(p)− ym|T v,

where the above absolute value and square root are to be taken element-wise and
≲ means ”approximately less than or equal”. We therefore define the local error
quantity

eD(p) :=
1

2

(
log det(I +Σ−1

l Γ(p))− tr
(
Σ−1

l Γ(p)
)
+ 2 |ȳ(p)− ym|T v

)
(4.2)

≳ log
π(ym | p)

πs
D(ym | p,D)

as an approximate upper bound on the log ratio of true and surrogated likelihood.
By optimistically assuming that the normalization factors are similar independent

of the training data D, and thus log π(ym)
π(ym|D) ≈ 0, we substitute (4.2) into (4.1) and

obtain the global error quantity

E(D) =

∫
Ω

eD(p)π(p | ym) dp. (4.3)

To create a nearly optimal surrogate model, we aim at evaluating training data
D(D) minimizing E(D) under a computational work constraint, by prescribing a de-
sign D, i.e. selecting evaluation points and tolerances. By denoting the computational
work needed to realize D by W (D), for a given budget W we aim at solving the op-
timization problem

min
D

E(D(D)) subject to W (D) ≤W. (4.4)

We subsequently write E(D) instead of E(D(D)).

5. Sequential design of experiments. It is far from trivial to predict a priori
how design choices impact the error quantity E, especially when a large budget W is
available or the initial surrogate is unreliable. Fortunately, an exact solution of (4.4)
is not needed – an approximate solution will do, even if it yields a slightly less efficient
design. We follow [18, 19] and adopt a greedy sequential approach, where the budget

W =
∑J

j=1 ∆Wj is partitioned and sequentially spent.
We start from an initial design D0 and then, for j = 1, . . . , J , aim at solving

min
Dj≤Dj−1

E(Dj) s.t. W (Dj | Dj−1) ≤ ∆Wj . (5.1)

We write D ≤ Dj−1 for any design D which refines Dj−1 in the sense that it includes
all evaluation points pi contained in Dj−1 with lesser or equal tolerances τi. We write
W (D | Dj−1) = W (D)−W (Dj−1) for the work needed to obtain D from Dj−1.

Even this sequential formulation is highly non-linear and non-convex. An accu-
rate solution would require a considerable amount of computational work, possibly
exceeding the savings in computational budget possible with a better design. Conse-
quently, we adopt the heuristic approach of separating the selection of new candidate
evaluation points from the optimization of the evaluation tolerances. In the latter, we
also decide about the actual inclusion of the new points in the training set.

We note that structurally similar optimization problems need to be solved in
multi-fidelity and multi-level Monte Carlo methods for computing unbiased linear
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estimators by sampling correlated approximate models of different accuracy [3, 17]
and in relaxation approaches for the design of experiments [12]. Transferring the
solution methods developed for these settings to the problem considered here could
be very helpful, though a direct translation is challenging due to the nonlinearity of
the work model W , see also [18].

Candidate points. We choose points where spending computational budget is
likely to reduce the error most. In order to do so, we look at the sensitivity of the
global error E with respect to a reduction of training error at a candidate position
p′ [19]. This is given by

dE(D)
dW (p′)

=

∫
Ω

deD(p)

dW (p′)
π(p | ym) dp

=

∫
Ω

deD(p)

dΓ(p)

dΓ(p)

dτ(p′)

∣∣∣∣
τ=τ ′

dτ(p′)

dW (p′)

∣∣∣∣
τ=τ ′

π(p | ym) dp, (5.2)

where the linearization tolerance τ ′ is the current surrogate model standard deviation

at point p′. We adopt (5.2) as a utility function and select local minimizers of
dE(Dj−1)

dW
as next candidate points.

The optimization problem is solved approximately via a multistart pattern search.
Quadrature is performed by Monte Carlo integration on a set of samples Sj represent-
ing the target posterior, to be defined in Sec. 6 below. This results in the numerical
utility function

dE(Dj−1)

dW (p′)
≈ 1

|Sj |
∑
p∈Sj

deDj−1(p)

dW (p′)
.

If more than cj local maxima are found, the best cj ones are selected as candidates;
if less are found, all of them are included. A larger number of candidates allows more
points to be considered, but results in a harder accuracy optimization problem.

Evaluation tolerances. Let Dj =
{
(pji , τ

j
i ) | i = 1, . . . , sj

}
be the training design

at step j. By the selection of candidate points, sj ≥ sj−1 and pji = pj−1
i for i =

1, . . . , sj−1 hold.

Optimal tolerances τ ji are given by the solution of (5.1) as a function of the
tolerances. In order to be able to solve the problem, we ignore the shifts in the
mean ȳ as they cannot be predicted before evaluating the model. Consequently, we
only consider the impact of evaluation tolerances on the predictive variance and, for
evaluation tolerances τ j = (τ j1 , . . . , τ

j
sj ), write E(τ j). As already spent computational

budget cannot be recovered by forgetting previously acquired information, we impose
the constraint τ ji ≤ τ j−1

i for i = 1, . . . , sj−1.
This results in the problem

min
τj∈Tj

E(τ j) subject to Wτj |Dj−1
≤ ∆Wj , (5.3)

with Tj = {(τ1, . . . , τsj ) ∈ (R+ ∪ {+∞})sj | τi ≤ τ j−1
i for i ≤ sj−1} being the set of

admissible tolerances. If after optimization τ ji = +∞ holds for some i > sj−1, p
j
i is

excluded from the training set.
Before we can numerically solve the problem, we need to notice that computa-

tional costs are not available before the evaluation is performed, such that we need
to resort to a priori work models. Following [18, 23], we make use of established a
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priori asymptotic estimates for finite elements of degree r in space dimension l and
an optimal solver such as multigrid, and define

W (τ) = τ−l/r. (5.4)

This estimate is asymptotic for τ → 0. Consequently, despite being inaccurate for
low-accuracy evaluations, it is usually accurate for the expensive high-accuracy ones.

Problem (5.3) is solved by multistart gradient descent with projection and back-
tracking linesearch. The integral in E is approximated again by Monte Carlo integra-
tion on the samples Sj , resulting in a numerical objective

E(τ j) ≈ 1

|Sj |
∑
p∈Sj

eτj (p).

To implement gradient descent with projection, we adopt the coordinate change

τ j =
(
τ1, . . . , τsj

)
7→
(
τ
−l/r
1 , . . . , τ−l/r

sj

)
= W j ,

such that the constraint in (5.3) becomes linear, transforming the set of admissible
tolerances T j into a simplex and enabling efficient projection.

6. Solution of the inverse problem. The previous sections established the
inverse problem (3.4) and the sequential approach (5.1). Similar to [22], we combine
them to an interleaved strategy given as pseudocode in Alg. 1.

Both the global error quantity (4.3) and the utility function (5.2) require integra-
tion with respect to the posterior π(p | ym). We perform the integration through an
MCMC sampling of the posterior, which is is at the same time the ultimate goal of
the inversion. We start with an empty sample chain S0 = ∅. At iteration j, we draw
a number nj of samples form π(p | ym, Dj−1), append them to Sj−1, and remove the
oldest hj < nj elements of the chain, as they have been drawn from a less accurate
posterior approximation. This results in the sample set Sj , which is the current best
available approximation of the posterior and is used to evaluate the integrals involved
in the training problem (5.1) at step j.

The decisions about number of samples, number of candidates and budget frac-
tioning are to be made according to the characteristics of the problem: for instance,
in a problem with extremely expensive model evaluations, the costs of sampling are
irrelevant and one can discard and redraw a full set of samples at each iteration; in
other settings it will be more convenient to exploit the interleaved approach and keep
part of the samples from previous iterations, as we do in the experimental section.

When the computational budget is exhausted, the training of the surrogate model
terminates. A last round of samples is added to the chain, obtaining the final set of
samples from the posterior.

7. Numerical experiments. We present two illustrative experiments based on
a Python implementation of Alg. 1, where GPR is implemented with PyTorch. We
adopt a separable Gaussian kernel with diagonal output structure [1]. The hyper-
parameters are tuned by marginal likelihood maximization using PyTorch’s Adam
optimizer, with the kernel’s correlation length scale constrained to [0, 0.15]. As a
benchmark, the results are compared with a non-adaptive space filling approach,
Latin Hypercube Sampling, and the position-adaptive-only training strategy given
by candidate point selection according to (5.2), i.e. all candidates are accepted and
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Algorithm 1 Surrogate-based Bayesian inversion

Require: D0 initial design, W budget
1: S0 ← ∅
2: WD ← 0
3: j ← 1
4: while WD ≤W do
5: decide: nj samples to draw, hj samples to remove
6: remove hj samples from Sj−1

7: draw nj samples S from π(p | ym, D)
8: Sj ← Sj−1 ∪ S
9: decide: ∆Wj iteration budget, cj number of candidates

10: obtain cj candidates by maximizing (5.2)
11: optimize accuracies τ j by solving (5.3), update D and D
12: evaluate forward model for decreased tolerances
13: WD ←WD +∆Wj

14: j ← j + 1
15: end while
16: draw nj samples S from π(p | ym,D)
17: Sj ← Sj−1 ∪ S

evaluated with a fixed accuracy. For comparing the approaches, the approximation
errors (4.1) are computed numerically with MCMC sampling through the emcee En-
semble sampler [5] utilizing the true forward model. The implementation used for
these examples is available at Zenodo1.

7.1. 1D analytical experiment. The first experiment is performed on a one-
dimensional parameter space, with m = 2 measurements. We consider an analytical
forward model y : ]0, 1[→ R2 given by

y(p) =

[
1

2
p+

1

2
p2 exp

(
1

3
sin(12p− i)

)]
i=0,1

.

This mimics the evaluation of a FE model on a 2D domain with quadratic elements,
i.e. l/r = 1. The discretization error is simulated via a zero mean Gaussian noise and
the measurement likelihood is Σl = 10−4diag( 169 , 4

9 ). A budget of 500 is considered:
at each iteration two candidate points are considered and a budget of 20 is assigned
to each point. With the work model (5.4), this results in a default tolerance of 0.05
per point in the non-adaptive strategies and a total of 12 iterations.

The number nj of new samples added into Sj is gradually increased from 200

samples at the first iteration to 2000 in the last, according to nj = 200 + 1800
(

j
12

)2
.

Similarly, the number of discarded samples ranges from 200 to 1000, with h1 = 0 as

in the first iteration the chain is empty, and hj = 200 + 800
(

j
12

)2
for j > 1.

The obtained accuracies in terms of the Kullback-Leibler divergence between true
posterior π(p | ym) and surrogated posterior π(p | ym, D) are shown in Fig. 7.1.
Optimizing evaluation tolerances provides a significant performance improvement over
both other strategies.

1https://zenodo.org/doi/10.5281/zenodo.11066159

https://zenodo.org/doi/10.5281/zenodo.11066159


222 P. VILLANI, J.F. UNGER, AND M. WEISER

Fig. 7.1. Kullback-Leibler divergence of surrogated posterior and true posterior for different
training designs over the computational work spent in the 1D example.

7.2. 2D analytical experiment. The second experiment considers a param-
eter space of two dimensions and m = 3 measurements. The forward model y :
]−0.5, 0.5[2 → R3 is again analytical, given by

y(p) =

[
sin(10k)(p1 − p2) exp

(
sin(8p2)

3

)
+ cos(10k)(p1 + p2) exp

(
sin(8p1)

3

)]
k∈{0,2,3}

. (7.1)

Fig. 7.2. Reduction of surrogate standard deviation of the y1, i.e. k = 0, component (left) and
change of posterior distribution (right) between iterations 7 and 9. The computational work for each
point is represented by its size. New points are added and some of the old points are refined. The
true parameter used for creating the artificial measurements ym is indicated by a green star.

The underlying model is assumed to be a quadratic FE scheme on a 3D domain,
i.e. l/r = 1.5. The discretization error is again simulated via zero mean Gaussian



GAUSSIAN PROCESSES FOR INVERSE PROBLEMS 223

noise and the measurement likelihood is Σl = 10−4diag(1, 1, 4). A working budget of
3600 is considered: at each iteration, 3 candidate points are considered and a fixed
budget of 100 corresponding to a fixed tolerance τ = 0.046 is assigned to each point
in the non-adaptive strategies for a total of 12 iterations.

The number of new samples added into Sj is gradually increased according to
nj = 200+⌊26.4j2⌋. Similarly, the number of discarded samples is hj = 200+⌊12.5j2⌋
for j > 1. The error reduction by adding new points and decreasing tolerances is
illustrated in Fig. 7.2 for a single iteration. The performance in terms of the Kullback-
Leibler divergence between true and surrogated posteriors over computational work
is shown in Fig. 7.3. Again, a substantial performance improvement is achieved by
optimizing evaluation tolerances in addition to the evaluation positions.

Conclusions. When learning GPR surrogate models with numerically simulated
training data as a replacement for the true forward model in posterior sampling, sig-
nificant reductions of computational effort can be achieved with adaptive approaches.
With numerical forward models that allow exploiting accuracy-work trade-offs, such
as finite element simulations, the goal-oriented adaptive selection of simulation toler-
ances appears to be particularly effective.

The sequential extension of the design D implicitly provides a hierarchy of GPR
surrogate models of different accuracy and evaluation complexity, which could also
be an interesting building block for multi-fidelity Monte Carlo methods. In that
use case, however, the quantity of interest defining the error model and acquisition
function would need to be defined differently.
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