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DEM SIMULATIONS OF SETTLING OF SPHERICAL PARTICLES
USING A SOFT CONTACT MODEL AND ADAPTIVE TIME

STEPPING

PAVEL STRACHOTA∗

Abstract. We present a simple and flexible Discrete Element Method (DEM) model for simulat-
ing the dynamics of spherical particle systems. The aim is to utilize commonly available ODE integra-
tors that are usually inappropriate for DEM, in particular the Runge-Kutta-Merson and Dormand-
Prince solvers with adaptive time stepping. This is achieved by using a novel soft contact model
with repulsive and frictional forces smoothly varying in time, which allows the time step adaptivity
algorithms to work properly. The model parameters are calibrated so that a realistic random close
packing can be obtained from simulations of particle settling at the bottom of a container. A ref-
erence minimal implementation in MATLAB and a complete implementation in C with OpenMP
parallelization are introduced and their computational performance is assessed.
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1. Introduction. Discrete Element Method (DEM) [12, 20] is a class of methods
for simulating dynamics of complex systems of discrete bodies subject to mutual
collisions and interactions. Our motivation for using DEM was the need of creating
a porous bed made of settled spherical particles in order to perform simulations of
water freezing and thawing inside the porous structure at pore scale [17, 24]. For this
purpose, a realistic geometry and volume of the pores needs to be obtained, which
corresponds to random close packing [21] of the spheres. This requirement precludes
the use of collision averaging techniques such as the multiphase particle-in-cell method
[1, 13, 14] including its recent improvements [2, 6, 22].

In this paper, we present a simple and flexible DEM model able to utilize common
ODE integrators with readily available implementations, in particular the Runge-
Kutta-Merson [7] and Dormand-Prince [5] solvers with adaptive time stepping. This
class of solvers is known to be inappropriate for DEM [10, 12, Chap. 2]. However,
we propose a soft contact model with repulsive and frictional forces smoothly varying
in time, which allows the time step adaptivity algorithms to work properly. A refer-
ence minimal implementation in MATLAB and a complete implementation in C with
OpenMP parallelization [8] are introduced. The model parameters are calibrated and
parallel performance is investigated.

2. Particle dynamics model. The studied system involves n identical spherical
particles with unit mass and radius r. For each i ∈ {1, 2, . . . , n}, denote the position
of the center of the i-th particle at the given time t ≥ 0 by xi (t), its velocity by
vi (t), and the particle’s angular velocity by ωi (t). Note that for brevity, the time
dependence will be dropped in the rest of the text. The particles are located in
a convex container bounded by m planar walls with outward pointing unit normal
vectors nk for k ∈ {1, 2, . . . ,m}.
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Repulsive force. Consider two particles repelled from each other by a force
acting along the connecting line of the particle centers. Let its magnitude depend
solely on the distance (gap) l between the particle surfaces. As the particles approach
each other, their kinetic energy transforms into potential energy, which is released
again as the particles separate. Any such repulsive force strong enough to prevent
particles from running through one another can therefore be used to approximate
perfectly elastic collisions where the total energy and linear momentum are conserved.
In addition, to use adaptive time stepping in the numerical solution, this force needs
to be smooth enough with respect to the positions of the particles. Finally, it must
become negligibly small as soon as the particle surfaces get far away from each other.

To satisfy the above requirements, we propose the magnitude F of the repulsive
force in the form

F [l] = F0 exp (−κl) (2.1)

where F0 is the repulsion at contact and κ is the stiffness exponent. This is very
different from the usual soft contact models [9, 15] which only assume nonzero forces
once the particle surfaces start to penetrate each other (i.e., l < 0).

Next, we allow for collisions described by the coefficient of restitution e ∈ [0, 1]
[11], where e = 0 means perfectly inelastic collisions and e = 1 means perfectly elastic
collisions. Generally, only a fraction (equal to e2) of potential energy accumulated
during the approach of the surfaces is recovered to kinetic energy as the surfaces
separate. To model this, the mutual repulsive force during separation (unloading)
phase is reduced by the factor e2 as follows:

If di,j = ∥xi − xj∥ is the mutual distance of the centers of the particles i, j , its
time derivative evaluates to the projection of the mutual velocity into the direction
from xj to xi, i.e.,

ḋi,j =
1

di,j
(xi − xj) · (vi − vj) . (2.2)

The sign of (2.2) determines whether the particles are approaching each other (loading
phase) or separating from each other (unloading phase). Then the repulsive force
acting on the i-th particle imposed by collision with the j-th particle is given by

F rep,i,j = F [di,j − 2r] ρ
[
−ḋi,j

] 1

di,j
(xi − xj) , (2.3)

where

ρ [v] = e2 +
1

2

(
1− e2

)
(1 + tanh (ψv)) (2.4)

is a rebound function ensuring a smooth transition from the full force to the reduced
force upon particle separation. Essentially, ρ [v] ≈ e2 for v < 0 and ρ [v] ≈ 1 for v > 0.
ψ is the dissipation "focusing" coefficient. The model given by equations (2.3)–(2.4)
is a smooth nonlinear analog of the widely used Walton-Braun elastoplastic model
[9, 12, 15, 20, 23].

Similarly, the repulsive force acting on the i-th particle imposed by collision with
the k-th wall at the distance di,k from the particle center is given by

F rep,i,nk
= −F [di,k − r] ρ [vi · nk]nk. (2.5)
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Frictional force. We employ the Coulomb friction model, i.e., the frictional
force is independent of the mutual tangential velocity of the surfaces. The magnitude
of the frictional force is assumed to be proportional to the magnitude of the repulsive
force [15, Sect. 4.1]. In accordance to this, consider the force acting on the i-th
particle imposed by friction against the j-th particle in the form

F fr,i,j = −φF [di,j − 2r] Σ [∥ti,j∥]
ti,j
∥ti,j∥

, (2.6)

where φ is the friction coefficient and the mutual tangential velocity of the particle
surfaces is calculated as

ti,j = (vi − vj)−
ḋi,j
di,j

(xi − xj)−
r

di,j
(ωi + ωj)× (xi − xj) . (2.7)

The frictional force needs to be regularized for tangential velocities near zero, which
is achieved by using a continuously differentiable factor (a “limiter” inspired by [19])

Σ [v] =

{
3v2

v2
min

− 2v3

v3
min

v < v0,

1 v ≥ v0,
(2.8)

where vmin is the minimum velocity magnitude for which the friction reaches its full
strength.

Similarly, for friction between the i-th particle and the k-th planar wall, we have

F fr,i,nk
= −φF [di,k − r] Σ [∥ti,nk

∥] ti,nk

∥ti,nk
∥
, (2.9)

ti,nk
= vi − (vi · nk)nk + rωi × nk. (2.10)

Frictional torque. Besides linear acceleration, the frictional forces impose torque
on the spheres. The torque acting on the i-th particle imposed by friction against the
j-th particle is

τ i,j = − r

di,j
(xi − xj)× F fr,i,j (2.11)

and the torque imposed by friction against the k-th planar wall is

τ i,nk
= rnk × F fr,i,nk

. (2.12)

Equations of particle dynamics. In total, the equations of motion of the i-th
particle read

ẋi = vi, (2.13)

v̇i =

n∑
j=1
j ̸=i

(F rep,i,j + F fr,i,j) +

m∑
k=1

(F rep,i,nk
+ F fr,i,nk

) + g, (2.14)

Iω̇i =

n∑
j=1
j ̸=i

τ i,j +

m∑
k=1

τ i,nk
, (2.15)

where g = (0, 0,−g)T m s−2 is the gravitational acceleration and I = 2
5r

2 is the
moment of inertia of a homogeneous sphere with unit mass. The evolution of the
system of spherical particles is governed by the system of ordinary differential equa-
tions (ODE) (2.13)–(2.15) for i = {1, 2, . . . , n} together with the initial conditions
xi (0) = xi,ini, vi (0) = vi,ini, ωi (0) = ωi,ini.
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3. Numerical solution. In the following, we discuss and compare three variants
of the model:

1. The basic variant only considers the repulsive forces, which is equivalent to
assuming φ = 0 in (2.6) and (2.9).

2. The friction variant considers repulsion and friction, but not the rotation
of the spheres. It is equivalent to setting I → +∞ in (2.15) together with
ωi,ini = 0.

3. The complete model referred to as friction+rotation.
The implementation has been carried out in MATLAB (the basic variant only) and
in C (all variants). For the solution of the ODE system (2.13), the MATLAB built
in ODE solvers with adaptive time stepping have been employed. For a very small
number of particles (tens of particles), stiff solvers with implicit time integration such
as ode15s are suitable. Otherwise, implicit methods are too demanding and explicit
solvers based on higher order Runge-Kutta methods [5] such as ode45 (Dormand-
Prince) should be used instead. In that case, a user-defined restriction on the maxi-
mum time step size may be necessary in order to prevent collision events being missed.
In the C variant of the code, the Runge-Kutta-Merson (RKM) [7] solver implemen-
tation proposed in our earlier work [18] has been used, leveraging OpenMP [8] for
multi-threaded parallelization. In the evaluation of the right hand side of (2.13)–
(2.15), the parallel for loop over i ∈ {1, 2, . . . , n} is employed.

With any of the above options, the time step is automatically adjusted to resolve
the collision events with sufficient accuracy. Note that smoothness of the stiffness co-
efficient (2.1), the rebound function (2.4), and the limiter (2.8) is a key prerequisite for
the time step adaptivity algorithms to work properly. Due to the particle interaction
exponentially decaying with distance, the system (2.13)–(2.15) can be solved as is.
However, to speed up the computation, interactions of surfaces beyond a maximum
interaction distance lmax can be skipped, provided that F [lmax] is sufficiently small
so as not disturb time step adaptivity.

4. Simulations. In this section, the properties of the proposed DEM model will
be demonstrated and the settings of the model parameters will be justified.

Single sphere bouncing calibration. In Fig. 4.1, the results of a bounce test
with a single particle and different values of the coefficient of restitution are shown.
The particle is dropped from the height of h0 = 16 m with zero initial velocity. The
final time of the simulation is T = 10 s and the remaining parameters are the same
as in Tab. 4.2. The x3 coordinate represents the height of the center of the spherical
particle, so the radius of the sphere is irrelevant.

It can be observed that the simulation led to very accurate results. For e =
√
2/2,

the kinetic energy of the sphere and hence the elevation of the highest point reached
after each rebound is halved. The choice of the numerical solver (ode15s or ode45 in
MATLAB, RKM in C) plays a negligible role as long as reasonable accuracy settings
are applied (odeset(’RelTol’,1e-10,’AbsTol’,1e-8)). The stiffness exponent κ in
(2.1), however, must be chosen carefully. If κ is small, the contact becomes softer and
the particle position drops below zero. This leads to a slightly delayed rebound, as
shown in Tab. 4.1. If κ is large, the simulation approximates hard contact accurately,
but some numerical issues arise in simulations with many spheres (see below). Based
on the above facts, the value κ = 150 has been chosen for the subsequent simulations.
For this setting, choosing F0 in (2.1) within the range between 1 and 100 produces
almost identical results.
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Table 4.1: Time trebound until a single sphere released from the elevation of h0 = 16m
rebounds back to the maximum height. Comparison of simulations using different
values of the stiffness exponent κ with the analytical solution for a hard contact
trebound = (1 + e)

√
2h0/g.

e = 1 e =
√
2/2

κ Analytical Simulated Error [%] Analytical Simulated Error [%]
30

3.6122
3.6409 +0.79

3.0832
3.108 +0.84

150 3.6184 +0.17 3.0883 +0.17
500 3.6134 +0.03 3.0858 +0.08

Figure 4.1: Trajectory of a single bouncing sphere dropped from the initial height of
16 m, with three different values of the coefficient of restititution e.

Simulations of spheres settling. In Fig. 4.2, the simulations of 200 falling
spheres used to form a fixed porous bed for the simulations of freezing and thawing
in [17] are shown, using all three variants of the solver (see Sect. 3). The parameters
for the simulation are in Tab. 4.2. The initial configuration of the spheres (Fig. 4.2a)
is organized in a randomly perturbed grid pattern to allow for easy alignment of the
spheres as they stack at the bottom. Fig’s 4.2b–4.2d display the final (almost) steady
state, which was attained prior to the final time. No particle jittering or similar
numerical instability effects occurred.

In Fig. 4.3, we assess the resulting configuration with respect to the volume
fraction εs occupied by the spheres in the bottom part of the container. For the basic
model without friction (Fig. 4.2b), the spheres gradually slide to a partially organized
and partially random pattern. As a result, εs stabilizes at a value over 0.7, while the
maximum theoretical value of εs for spheres arranged in a regular lattice is around
0.74 [21]. On the other hand, εs should be around 0.64 for a closed random packing.
This can be achieved by incorporating friction and rotation of the spheres (Fig. 4.2d
shows the result for φ = 0.2 and Fig. 4.3 includes the results for two values of φ).
Friction without rotation produces unrealistic results (Fig. 4.2c).
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Table 4.2: Parameters for the simulations of the settling of spheres

Parameter Value Meaning

r 0.1 m radius of the spherical particles
n 200 particle count
e 0.4 coefficient of restitution
φ 0.2 friction coefficient
g 9.81 ms−2 gravitational acceleration
T 8 s final time

F0 10 N repulsion at contact
κ 150 stiffness exponent
ψ 10 dissipation focusing coefficient
vmin 0.01 ms−1 friction regularization threshold
lmax 0.1 m maximum interaction distance of surfaces
∆tini 0.1 s initial time step
δ 0.1 error tolerance in the R-K-Merson solver [18]

As for the effect of different choices of κ in this simulation, small values around
κ = 30 result in mutual penetration of the spheres and εs being too large. Large values
around κ = 500 lead to slight but unrealistic vibrations that prevent the spheres from
settling down completely even without friction, causing εs to be too small.

Computational costs. All simulations were performed on a system with AMD
EPYC 7543 32-Core Processor, 3200 MHz DDR4 memory, running CentOS 7.8. MAT-
LAB R2023b and gcc 11.3 were used for the C and MATLAB variants, respectively. In
MATLAB, the simulation with 200 spheres using the basic model took over 2 hours
with 37399 right hand side evaluations (using ode45), which illustrates the serious
performance limitations of this platform. In contrast, the same (parallel) simulation
implemented in C took only around 2 seconds with 72190 r.h.s. evaluations (using
RKM). Adaptive time stepping for the different model variants is illustrated in Fig.
4.4. Parallel efficiency of the C implementation of the full model with friction and
rotation and parameters according to Tab. 4.2 is shown in Fig. 4.5

5. Conclusion. We demonstrated DEM simulations of spherical particle dynam-
ics based on a novel soft contact model suitable for commonly available ODE solvers
with adaptive time stepping. The model parameters were first calibrated for a single
bouncing particle and subsequently for obtaining realistic random close packing at the
bottom of a container. The proposed algorithms have a notably simple implemen-
tation which is publicly available (see below). At the moment, no advanced contact
search algorithms [16] for performance optimization were employed. However, paral-
lel implementation allows to perform simulations with hundreds of particles within a
couple of minutes on a multi-core CPU. Generalization of the algorithm to unequal
sphere sizes and masses is easily possible. Generalization to non-spherical shapes can
be achieved by including rolling resistance [3] or by using a multi-sphere model [4].

Data availability. The public GitHub repository
https://github.com/radixsorth/PorousFreezeThaw
provides the following materials under MIT License:

https://github.com/radixsorth/PorousFreezeThaw


DEM SIMULATIONS OF SETTLING OF SPHERICAL PARTICLES 231

(a) t = 0 s, initial configuration

(b) t = 10 s, basic model

(c) t = 10 s, friction model

(d) t = 10 s, friction+rotation

Figure 4.2: The initial and final state of the simulation of 200 falling spheres, creating
the porous bed used for simulations of water freezing and thawing in [17]. The dimen-
sions of the rectangular base of the container are 1 m × 1 m. Simulation parameters
are in Tab. 4.2. The steady state was reached prior to the final time T .
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Figure 4.3: Evolution of the solids volume fraction εs in a cubic subdomain [0, 1]
3 at

the bottom of the vessel. Comparison of three model variants and two values of the
friction coefficient φ. In each case, 10 simulations with different randomly perturbed
initial conditions were performed. The ranges of the obtained values of εs and the
averages are shown. Simulation parameters are given in Tab. 4.2 and the initial
condition can be seen in Fig. 4.2a.
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Figure 4.4: Number of successful time steps of the RKM solver as a function of the
physical time. Different behavior of the time step adaptivity is observed for the three
variants of the DEM simulation. Simulation parameters are given in Tab. 4.2.



DEM SIMULATIONS OF SETTLING OF SPHERICAL PARTICLES 233

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

5

10

15

20

25

30,00 %

40,00 %

50,00 %

60,00 %

70,00 %

80,00 %

90,00 %

100,00 %

Speedup 200 Efficiency 200
Speedup 400 Efficiency 400

Number of CPU cores

S
pe

ed
up

E
ff

ic
ie

nc
y

Figure 4.5: Speedup and parallel efficiency for OpenMP-parallelized simulations with
200 and 400 falling spheres. The wall time of the reference simulation on 1 CPU core
was 4 min 22 s for 200 spheres and 35 min for 400 spheres. All values are obtained
as averages from 3 consecutive runs.

• source code of the DEM spherical particle dynamics simulator
• 3D visualizations of the particle collision simulation results

In addition, it also includes the source code of the freezing and thawing simulator and
files associated to the results presented in [17].
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