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CRACK PROPAGATION MODELLING USING XFEM, BUILDING
MATERIALS APPLICATIONS

VLADISLAV KOZÁK∗

Abstract. The paper shows some results of a computational modelling focused on the occur-
rence of damage in heterogeneous materials, mainly with brittle matrix, especially on the issue of
modelling crack formation and propagation. The attention is paid to the application of the finite
element method to the buildings materials in order to find critical parameters determining behaviour
of materials at damage process with reference to the history of several approaches to solving this
problem. The applications of damage mechanics and possible approaches to model the origin of a
crack propagation through modifications in FEM systems are presented and some practical applica-
tions are tested. Main effort is devoted to cement fibre composites and the search for new methods
for their more accurate modelling, especially ahead of the crack tip. Modified XFEM method and
its suggested modifications as to proper modelling of the real stress distribution close to crack tip
are shown.

Key words. Quasi-brittle materials, nonlocal approach, cohesive modelling, computational
modelling, extended finite element method (XFEM).
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1. Introduction. The question of ensuring the safety of structural components
and predicting their service life is increasingly associated with the development of new
devices and components. In the case of constructions, it may be directly dependent
on the occurrence of defects that may arise during the production stage or through
their lifetime. One of the concepts used in construction and safety assessment is a set
of theories and methods known in fracture mechanics. This scientific field, combining
continuum mechanics with material engineering, describes the behaviour of defects
in structures. It is a complex defect-stress-material relationship. To understand the
relationships end extend lifetime, it is necessary to modernize construction practices
and also use new numerical methods (at least new modifications).

The aim of fracture mechanics is to describe or predict the behaviour of bodies
containing defects. In many cases, cracks can lead to total failure of the structure due
to fracture. There are two basic approaches for deriving the conditions in the moment
of initiation of unstable crack propagation. The first one uses the weakest link theory,
the second model considers the accumulation of damage during loading. Failure of
structural materials is understood as a continuous process in which the stages of plastic
deformation, nucleation and initiation of cracks is intermingled. The final stage in
the development of failure of bodies, which is the subject of investigation of fracture
mechanics, is the propagation of cracks (unstable or stable). The goal of the presented
works is how to find out the mutual relations between physical regularities and the
physical laws themselves, often based on experiments such as the non-destructive
identification of complex structures can be, see [47].

Currently, there are many ways how the problem of simulating crack propagation
can be solved using FEM. Among the first and oldest are the modelling of stable
crack growth using the node release method, where starting criterion is necessary to
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define. Modelling of crack propagation by the node release method is possible only
in the case of a 2D problem, where effective plastic deformation is displayed, similar
approach of [4] is based on the continuous remeshing. The second one old approach
is the method of “disappearing” elements, within its framework are also included the
various models using damage [25].

After this introductory Section 1, in Section 2 we shall continue with brief com-
ments to mathematical and physical background, to obtain the basic orientation in
various physical, mathematical and computational approaches. Then in Section 3 we
will get to know the basic principles of extended finite element method, let’s get a
little familiar with the idea of cohesive modelling Section 4 and the idea of so-called
smeared models will be presented in Section 5, whose nonlocal evaluation relies on
[16], upgraded by [17].

However, this can cover only the initiation and propagation of microfractured
zone, not the creation and development of particular macrocropic cracks and their
systems. Coupling of both such processes will be sketched in Section 5, with the crucial
reference to [28] and [29] based on the detailed description of cohesive interfaces. The
application of these procedures is devoted to Section 6, emphasizing the similarity of
such modelling to ceramic composites.

Section 5 will demonstrate how the potential removal of non-physical simplifica-
tions modifies all formulations of Sections 3, 4, 5, resulting in still unclosed mathemat-
ical and computational problems. Let us notice that the development of algorithms
in [47] coming from [33], [40], [19], [8] and form a separate research area in two last
decades; e. g. the review article [12] contains 317 relevant references. The concluding
Section 7 contains the brief summary of presented results together with some research
priorities for the near future.

2. Physical and Mathematical background. Complicated material struc-
ture of numerous materials for engineering applications, including cement-based com-
posites, crucial in building practice, does not allow reliable prediction of their be-
haviour under mechanical, thermal, etc. loads using the conventional simplified meth-
ods of classical fracture mechanics, coming from [20] and precisely described in [6],
[41], [43] and [44]. This was the strong motivation for the development of some more
advanced approach, based on the cohesive zone modelling (CZM).

Fig. 2.1. J integral representing the fracture energy.

The aim of physical and mathematical analysis of [6] was i) the adequate predic-
tion of strains and stresses in both cracked and uncracked structures, involving those
with various notches, ii) the admissibility of a non-negligible size of fractured zones in
comparison with other dimensions, iii) the incorporation of an initial crack in brittle
materials, as needed for linear elastic fracture mechanics. CZM can be understood
as the general framework for interfaces: it relies on the evaluation of cohesive forces



CRACK PROMAGATION MODELLING USING XFEM 237

occurring when particular material elements are being pulled apart. CZM guarantees
the validity of formal mathematical continuity conditions, despite physical separa-
tion, which suppresses any stress singularity, limiting it to the cohesive strength of
the material. However, the constitutive behaviour of a fracture must be character-
ized by certain traction-separation curve, whose experimental identification has to
be performed for each material individually: namely the amount of fracture energy
dissipated in the work region depends on the shape of the considered model, whereas
the length of the fracture process zone decreases with the ratio between the maximum
stress and the yield stress. As documented by [7] and [51], CZM is able to provide
good predictions for some steels, for different notched samples of a glassy polymer
and even for concrete, i.e. beyond the scope of purely brittle fracture [27].

Fig. 2.2. Traction–separation law for (a) plastic behaviour of materials, (b) modified plastic
behaviour of materials, (c) elastic bilinear response, (d) composites with fibres. TN here is the
peak of (normal) stress, δN is the displacement in the direction of the crack growth, Γ0 is the energy
which can be represented by the fracture toughness, Γ0a and Γ0b are the mean energies for composites
reinforced by fibres.

Using the classical approach is necessary to pay attention to [24]. More gen-
eral isotropic models need to respect bi-modularity, i. e. degradation in tension vs.
compression, as analysed by [23] and [21], corresponding to principles of classical
thermomechanics, more in [50] and [31], [13] and [38]. It should be noted that the
origins of these ideas can be found in [32] and [4], [35], respectively in [51]. Partial
existence, uniqueness, convergence, etc. results can be found in [22], [48] and [49], in
contrast with the serious non-existence examples of and [14].

The area under the traction-separation curve, whether in the normal or tangential
direction, gives us the energy J given by relevant integral [41, 42, 44] as in Fig. 2.1.
A schematic overview of traction-separation models for some materials can be seen in
Fig. 2.2.

From a mathematical point of view, the complete system of partial differential
equations of evolution, both in its classical differential form and in its variational or
weak integral form, relies on the conservation principles of classical thermomechan-
ics, supplied by appropriate constitutive equations, as presented by [50]. Since such
formulations work with function spaces of infinite dimension; thus, most computa-
tional approaches to real engineering problems need some discretisations both in the
Euclidean space, 3-dimensional in general, and on certain time variables, even for
a seemingly static, simplified evaluation of fracture development. The conservation
principles contain both the total strain tensor ε and the stress tensor σ, both repre-
sented by symmetric square matrices of order 3. Since the values of components σij

of σ with i, j ∈ {1, 2, 3} depend on the choice of a Cartesian coordinate system, for
the following considerations, it is useful to introduce also three invariants of σ (inde-
pendent of the choice of Cartesian coordinates) σI , σII and σIII ; the first (linear) one
is σI = σ11 + σ22 + σ33. Most computational tools ϵ are decomposed into four com-
ponents, denoted as ϵe, ϵp, ϵc and ϵθ, referring to elastic, plastic, creep and thermal
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ones; moreover, an appropriate incorporation of the damage process is expected.
In particular, in the simplified small deformation theory for isotropic materials,

using the standard Kronecker symbol δij = 1− sgn |i− j|, for purely elastic deforma-
tion, the following equation

εij = εeij =
1 + ν

E
σij −

ν

E
σIδij (2.1)

can be written for all i, j ∈ {1, 2, 3}; this relation is the famous empiric Hooke’s
law, containing a couple of material parameters (E, ν): E is the Young’s modulus
and ν is the Poisson’s ratio. To derive ε for ε ̸= εe, unlike (2.1), some appropriate
decomposition of ε must be suggested: in most computational tools, ε is considered
as a simple sum of εe, εp, εc and εθ.

3. Extended finite element method - XFEM. There is no doubt that the
FEM is widely used mainly in the area of solving differential equations. However, the
FEM mesh may not always be ideal for modelling crack propagation. And this is one
of the most significant interest in solid mechanics problems. First models were based
on the weak (strain) discontinuity that could pass through finite element mesh using
variational principle, [36]. Other authors and investigators considered strong (dis-
placement) discontinuity by modifying the principle of virtual work statement (which
is also the case for models with the traction separation law), [2], [26], including stabil-
ity and convergence of such problems and improvement of the precision of numerical
procedure, [45].

Fig. 3.1. The path through FEM mesh using XFEM, CTE - crack tip enrichment, HE - heaviside.

In the strong discontinuity approach, the displacement consist of regular and
enhanced components, where the enhanced components yield via jump across discon-
tinuity surface, [2]. A modification of the basic equation is needed, for the relationship
between displacements ue(x) on particular points x of the e-th element (3-dimensional
vectors of functions in general) and displacements at selected element nodes ui, uti-
lizing some standard shape functions Ni(x), i. e.

ue(x) =
∑
i∈EA

Ni(x)u
i ; (3.1)

where EA denotes the set of nodes corresponding to the standard e-th element.
For the extended finite element method (XFEM), some more terms must be added

to slightly modified displacements inside element end displacements at element nodes
of (3.1). The second term realizes the technique of penetration into the element and
the movement of the crack, the third criterion the failure (decohesion) and the possible
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direction of movement according to the preferred criteria. So the previous equation
for the case of crack growth for 2-dimensional modelling (not limited to one element)
is modified into the form

uh(x) =
∑
i∈EA

Ni(x)u
i +

∑
j∈CB

Nj(x)Hj(x)aj +
∑
k∈CC

Nk(x)

4∑
m=1

Φm
k (x)cmk (3.2)

including certain specialized shape functions Ni(x), Nj(x) and Nk(x) for intrinsic
version of XFEM, same shape function for extrinsic version, where EA, CB , CC are
the sets of points corresponding to Fig. 3.1 and H(x) is the Heaviside function realised
by discontinuous function with values 0 and 1. The setting with m = 4 is used for
two-dimensional crack propagation, function Φk represents the initiation criterion.

4. XFEM - strategy for enrichment function. The standard FEM is based
on the approximation properties of polynomials. If the solution shows a pronounced
non-polynomial behaviour, such as weak or strong discontinuities, the standard FEM
approximation may represent very poor performance. In fact, the standard FEM is
not able to adequately represent the discontinuity or singularity in a suitable way,
for example, at the crack tip area. A number of methods have been developed to
overcome these difficulties; however, the enrichment of approximation space is one
of the most efficient techniques that can be used to capture the weak or strong dis-
continuities. The enrichment can be attributed to the degree of consistency of the
approximation, or to the capability of approximation to reproduce a given complex
field of interest. The principal of enrichment is basically equivalent to the principal
of increasing the order of completeness that can be achieved intrinsically or extrinsi-
cally. However, the enrichment aims to increase the accuracy of the approximation
by including information of the analytical solution. There are basically two ways of
enriching an approximation space; enriching the basic vector known as the “intrinsic
enrichment” and enriching the approximation known as the “extrinsic enrichment”.
Intrinsic enrichment is an idea to enhance the approximation space u(x) by including
the new basis functions in order to capture a certain condition of a complex field,
such as discontinuity or singularity. The partition of unity, see [3], is a concept for
enriching the approximation extrinsically by adding the enrichment functions to the
standard approximation.

Fig. 4.1. The enrichment function realization, Heaviside function is created using ϕ(x). Where
x∗ is the closest point projection of x onto the discontinuity Γd, nΓd

is the normal vector to the
interface at point x∗, ∥x− x∗∥ specifies the distance of point x to the discontinuity Γd.

A numerical technique for tracking of moving interfaces is called the level set
method, where interfaces are modelled using functions allowing for a natural treatment
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of merging interfaces, intersection with boundaries, and so on. Consider a domain ΩA

and ΩB . The interface between these domains is denoted by Γd. The most common
level set function is in our description the signed distance function, which is defined
in Fig. 4.1.

5. Some problems as to correct application of XFEM. When applying
the extended method to a specific problem in the field of solid mechanics, we solve a
number of sub-problems. These can be characterized by the following scheme:

• Using the correct crack initiation criterion:
(a) maximum tangential stress (Erdogan), [18], resp. [20],
(b) minimum strain energy density criterion (Sih) [43]
(c) crack opening criterion (Li) [30],
(d) for small stress intensity factor K interpolation methods.

• Realization of microscopic behaviour of composite with fibres (e.g. bridging
effect), [1, 5, 54].

• The fundamental question is the determination of the real stress in front of
the crack. These are some stress averaging (e.g. Eringen non-local approach)
[16, 14, 15], smeared models (e.g. Jirásek) [23], [52], spatial crack solution
(e.g. Bažant microplane model) [7].

Fig. 5.1. Non-local approaches.

Initiation and development of visible cracks of macroscopic size, described as
internal interfaces with possible discontinuities in u, v and a, do not agree with the
smeared damage approach (as non-local access can be classified in the smeared group),
but the incorporation of this process may be necessary, due to certain values of non-
local strain or stress invariants: such criteria as strange energy density, crack driving
force, special nonlocal integrals, related to the stress and strain at possible crack tip.
The development of such models is connected e. g. with [39], [28] and [30].

6. Buildings and ceramics materials. A sample with a cement matrix and
steel fibres was selected for computational modelling, see Fig. 6.1 and Fig. 6.2. Nu-
merical results show the surface propagation of cracks in the damaged body depending
on the location fibre and material properties. The reinforcing effect of the fibres plays
a significant role in the direction of crack propagation. The attention is paid in par-
ticular to Eringen’s model for generating the multiplicative damage factor, related
quasi-static analysis, the existence of weak solution of the corresponding boundary
value and initial value problem with a parabolic partial system differential equations.

The proposed procedure thus combines the possibilities of several approaches for
modelling crack propagation in fibre composites. The XFEM method is primary, the
stress in front of the crack is recalculated according to the non-local approach, in the
entire body according to the exponential or power law of violation, [9, 10, 11, 39]
which implies some degree of averaging (especially as to stress) ahead of the crack.
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Two dimensional relatively simple body with an a priori crack of a circular shape
(fulfilling the plane strain condition) has been chosen as a illustrative example. A
uniform load was applied to the surface of this a priori crack, and thus the formation of
the following cracks emanating from this stress concentrator is assumed using modified
XFEM. The basic calculation system was the commercial software Abaqus 2018, into
which a user subroutine in the Fortran 90 language was implemented, realizing the
modelling of matrix damage using exponential law, based on the planar element CPE4.
The following basic input data corresponding to reinforced cement paste were used
for this task: the Young’s modulus E = 3.2 GPa, the Poisson’s constant ν = 0.3 and
the tensile strength 10 MPa. For approximately 20 mm long and 3 mm thick circular
steel fibres, the Young’s modulus E = 190 GPa and the same Poisson’s constant ν =
0.3 were used. The results of modelling are described in the following Fig. 6.3 due to
the well-tried so-called Mazars’ model, [31]. The Fig. 6.4 can serve as an example of
a pure Eringen model.

Mazars damage model is based on a strain formulation and generally is used for
the physically nonlinear analysis of concrete structures. The main objective is mod-
ification of damage model, in which both tension and compression damage evolution
laws are regularized using a classical fracture energy methodology. Its hypothesis is
founded on the base of an elastic damage isotropic behaviour. This model assumes the
premises that damage occurs only due to positive strains in the principal directions,
which indirectly promotes “smeared crack grow”; only one scalar damage variable is
defined, this is due to the damage model being isotropic; represents the material as
totally damaged, and it is limited in the interval; no permanent strains are admitted,
and the unloading path is linear, therefore no hysteresis loops are presented.

Fig. 6.1. Fibres in cement pasta.

Fig. 6.2. Xray image, fibres in matrix.

Moreover, regardless of [51], some particular theoretical results as to dynamic
response are available, as an estimation technique via crack tip velocity by [10, 52,
53, 38, 45], or the proof of local well-possessedness for a model problem by referring
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to again.

Fig. 6.3. Maximum principal stress for Mazars’ exponential model. Coloured maps represents
the scale from 8.2× 106 to 8.0× 105 MPa.

Fig. 6.4. Maximum principal stress for Erinden’s non-local approach. Coloured maps represents
the same scale as previous Figure 6.3.

7. Conclusion. A cement matrix reinforced with metal fibres was chosen for the
following numerical tests. In practice, the most important case is cement composite
containing short and intentionally or quasi-randomly oriented steel fibres, sometimes
ceramic or polymer fibres with primary suppression of some stress components, while
a more detailed mathematical formulation is expected. We have sketched several types
of approaches to the evaluation of damage in these composite materials and structures,
but the influence of averaged stress distribution ahead the crack tip is presented. New
trends in numerical modelling and simulation reflecting the development of advanced
materials, structures and technologies and the long-time experience of their designers,
based on standard laboratory experiments and observations, is needed.

The article contains a link to the theoretical foundations of the issue presented
in [50], the reader can find them in the same 22nd Algoritmy Proceedings. However,
in several parts of this paper still unclosed problems are mentioned, especially on
modelling based on thermodynamic principles. Its numerical approach relies on a
modified XFEM where one can use as a criterion for the formation of a crack, the
cohesive traction separation. The results in the case of implementation of the nonlocal
constitutive stress-strain relation of the integral type are very perspective. Then
attention is paid in particular to Eringen’s model for generating the multiplicative
damage factor, related quasi-static analysis. In the first step the XFEM is used, then
the stress in front of the crack tip is recalculated according to the non-local approach,
in the entire body according to the exponential law of violation. As already mentioned,
the algorithm is ready for the case of dynamic response, but financially demanding
experiments must be carried out in advance.
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