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FUZZY FRANKOT-CHELLAPPA METHOD FOR SURFACE
NORMAL INTEGRATION

S. HAJIGHASEMI∗ AND M. BREUß

Abstract. In this paper, we propose the Fuzzy formulation of the classic Frankot-Chellappa
method by which surfaces can be reconstructed using normal vectors. In the Fuzzy formulation,
the surface normal vectors may be uncertain or ambiguous. The underlying model yields a Fuzzy
Poisson partial differential equation, where it is imperative to give meaningful representations of
Fuzzy derivatives. The solution of the resulting Fuzzy model is approached numerically. To this
end, a fuzzy formulation for the discrete sine transform method is explored, which results in a fast,
accurate and robust method for surface reconstruction. In experiments we consider specifically the
robustness with respect to noisy surface normal vectors.
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1. Introduction. The integration of surface normals for the purpose of com-
puting the shape of the corresponding surface in 3D space is a classic problem in
computer vision [10]. Many methods have been proposed with the aim to devise an
approach that combines accuracy, robustness with respect to noise in the data and
computational efficiency, see e.g. [3, 4, 6, 7, 9, 14] as well as the survey paper [11]. It
appears evident that even nowadays it is still a challenging task to devise a method
that is highly accurate and offers at the same time robustness and computational
efficiency.

When it comes to computational efficiency, the classic method of Frankot and
Chellappa [7] is still among the most powerful methods. It relies on a finite difference
approximation of a Poisson equation which naturally arises in the problem formulation
of surface normal integration. The crucial part of the Frankot-Chellappa algorithm
is the use of a discrete sine transform for dealing with the surface normal data in the
Poisson model. However, it is well-known that the classic Frankot-Chellappa method
does not incorporate a mechanism that deals with noisy data, and also accuracy issues
may arise in the vicinity of steep surface gradients.

Fuzzy concepts apply human reasoning ability to knowledge-based systems. When
the assumptions of the problem have uncertainty, one consider a fuzzy interpretation
of parameters or data. Due to uncertainty e.g. due to noise in image acquisition
systems, in many aspects of image processing fuzzy processing may be desirable.

As indicated, the underlying problem formulation in the classic method from
Frankot and Chellappa a Poisson equation needs to be solved, for which the discrete
sine transform can be explored.

In this research, a fuzzy formulation of the classic Frankot-Chellappa model and
algorithm for surface normal reconstruction is presented. It turns out that the main
methodology from the classic scheme, namely exploring the discrete sine transform,
can be transferred to the fuzzy formulation in terms of the fuzzy sine transform.
Our fuzzy extension appears to be fast, accurate, and nearly robust to noisy data.
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The technique of fuzzy transform (F-transform for short) has been introduced by I.
Perfilieva et al in [12, 13]. Similarly to the classic sine transform it can be cast in two
ways, as a direct or an inverse transform. The authors of that work have proved that
the inverse F-transform has good approximation properties and is relatively easy to
use. As for the fuzzy formulation of the Poisson equation, fuzzy partial differential
equations (PDEs) have been introduced in the past. In 2018, the fuzzy Poisson
equation with Dirichlet boundary conditions has been discussed, proving uniqueness
and stability of a solution in [8]. We explore the use of this recent concept in the
current paper. As for a potential benefit of our developments, we study the possible
enhanced robustness of the fuzzy formulation to noise. This may be considered to
be sometimes a more delicate issue with the classic method that does not assume
uncertain data.

2. Fuzzy concepts. The purpose of this section is to present the necessary fuzzy
notions and concepts for use with this paper.

2.1. Fuzzy Numbers and Fuzzy Partition. We write A(x), a number in
[0, 1], for the fuzzy membership function evaluated at x. An α-cut of Ã, written [Ã]α,
is defined as {x ∈ X | A(x) ≥ α}, for 0 < α ≤ 1. The Triangular Fuzzy Number
(TFN) Ã is defined by three numbers a1 < a2 < a3, where the graph of A(x), the
membership function of the fuzzy number Ã, is a triangle with the base on the interval
[a1, a3] and vertex at x = a2. We specify Ã as (a1/a2/a3).

By cosidering the membership function of Ã is defined as:

A(x) =


x−a1

a2−a1
if a1 ≤ x ≤ a2

a3−x
a3−a2

if a2 ≤ x ≤ a3

0 otherwise

Given two TFNs Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) , their arithmetic addition
C̃ = Ã⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3) is a TFN:

C(x) =


x−(a1+b1)

(a2+b2)−(a1+b1)
if (a1 + b1) ≤ x ≤ (a2 + b2)

(a3+b3)−x
(a3+b3)−(a2+b2)

if (a2 + b2) ≤ x ≤ (a3 + b3)

0 otherwise

Also the gH-difference Ã⊖gH B̃ = Ẽ ⇔
{

Ã = B̃ ⊕ Ẽ

Ã = B̃ ⊕ (−)Ẽ
, Ẽ is a TFN.

Let us consider the fuzzy partition [12]: choose an interval [a, b] as a universe,
and assume that a function f is given at points p0, ..., pl−1 ∈ [a, b].

Below, we recall the definition of a fuzzy partition. Let a = x0 < ... < xn = b,
n ≥ 3 be fixed nodes within [a, b]. Fuzzy sets A1, ..., An−1 identified with their mem-
bership functions A1, ..., An−1 , defined on [a, b], establish a fuzzy partition of [a, b] if
they fulfill the following conditions for k = 1, ..., n− 1:

1) Ak : [a, b] → [0, 1], Ak(xk) = 1;

2) Ak(x) = 0 if x ̸∈ (xk−1, xk+1), k = 1, ..., n− 1;

3) Ak(x) is continuous;
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4) Ak(x) strictly increase on [xk−1, xk], k = 1, ..., n− 1;
and strictly decrease on [xk, xk+1], k = 1, ..., n− 1;

5)
∑n

k=1 Ak(x) = 1, ∀x ∈ [x1, xn−1].

The membership functions A1, ..., An−1 are called basic functions.
We say that the fuzzy partition given by A1, ..., An−1 , is an h-uniform fuzzy

partition if the nodes xk = a+hk, k = 0, ..., n are equidistant, h = (b−a)/n and two
additional properties are met:

6) Ak(xk − x) = Ak(xk + x), x ∈ [0, h], k = 1, ..., n− 1;

7) Ak(x) = Ak−1(x−h), Ak+1(x) = Ak(x−h), ∀k = 2, ..., n−1, x ∈ [xk−1, xk+1].

2.2. The F -transform. Consider the discrete F -transform [12]: the fuzzy sets
A1, ..., An−1 establish a fuzzy partition of [a, b] and f : P → R is a discrete real valued
function defined on the set P = {p0, ..., pl−1} where P ⊆ [a, b].

The following vector of real numbers Fn[f ] = [F1, ..., Fn−1] is the (direct) discrete
F -transform of f w.r.t. A1, ..., An−1 where the k-th component Fk is defined by

Fk =

∑l−1
j=0 Ak(pj)f(pj)∑l−1

j=0 Ak(pj)
, k = 1, ..., n− 1. (2.1)

The inverse discrete F -transform reads as:

fF,n(pj) =

n−1∑
k=1

FkAk(pj), j = 0, ..., l − 1. (2.2)

For h-uniform fuzzy partition A1, ..., An−1 of [a, b], there exists an even function
A : [−h, h] → [0, 1]:

Ak(x) = A(x− xk) = A(xk − x), ∀k = 1, ..., n− 1, x ∈ (xk−1, xk+1)

The points p0, ..., pl−1 are equidistant in the interval [a, b] and moreover pj =
a + jh/m; j = 0, ..., l − 1,, where m and l are connected by the following equality:
l = nm+1. Thus chosing points p0, ..., pl−1 it is assured that the nodes x0, ..., xn are
among them, i.e. for each k = 0, ..., n, there exists j such that xk = pj .

Similarity to the case of a function of one variable we can have F -Transform in
3D. Let a function f be given at nodes (pi, qj) ∈ [a, b]× [c, d], i = 1, ...,M, j = 1, ..., N ,
and A1, ..., Am , B1, ..., Bn where m ≤ M , n ≤ N , be basic functions which form fuzzy
partitions of [a, b] and [c, d], respectively. Suppose that sets P and Q of these nodes
are sufficiently dense with respect to the chosen partitions.

We say that the m × n-matrix of real numbers Fmn[f ] = (Fkl) is the discrete
F -transform of f with respect to A1, ..., Am and B1, ..., Bn if

Fkl =

∑M
i=1

∑N
j=1 Ak(pi)Bl(qj)f(pi, qj)∑M

i=1

∑N
j=1 Ak(pi)Bl(qj)

(2.3)

holds for all k = 1, ...,m, l = 1, ..., n.
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The elements Fkl , k = 1, ...,m, l = 1, ..., n, are called components of the F -
transform.

Let A1, ..., Am and B1, ..., Bn be basic functions which form fuzzy partitions of
[a, b] and [c, d] respectively. Let f be a function from C([a, b]× [c, d]) and Fmn[f ] be
the F -transform of f with respect to A1, ..., Am and B1, ..., Bn. Then the function

fF
mn(pi, qj) =

m∑
k=1

n∑
l=1

FklAk(pi)Bl(qj) (2.4)

holds for all i = 1, ...,M, j = 1, ..., N .

2.3. Fuzzy Partial Derivatives. A fuzzy-valued function f of two variables is
a rule that assigns to each ordered pair of real numbers, (x, y), in a set D a unique
fuzzy number denoted by f(x, y). The set D is the domain of f and its range is the
set of values that f takes on, that is, {f(x, y) | (x, y) ∈ D}.

We show the parametric representation of the fuzzy-valued function f : D → F
by f(x, y;α) = [f−(x, y;α), f+(x, y;α)], for all (x, y) ∈ D and α ∈ [0, 1].

Let (x0, y0) ∈ D. Then the first generalized Hukuhara partial derivatives ([gH −
p]-derivatives for short) of a fuzzy-valued function f(x, y) : D → F at (x0, t0) with
respect to variables x, y are the functions fxgH

(x0, y0) and fygH
(x0, y0) given by

fxgH
(x0, y0) = lim

h→0

f(x0 + h, y0)⊖gH f(x0, y0)

h

fygH
(x0, y0) = lim

k→0

f(x0, y0 + k)⊖gH f(x0, y0)

k

provided that fxgH
(x0, y0) and fygH

(x0, y0) in F where ⊖gH is the gH-difference.

3. Classic Frankot-Chellappa Surface Normal Integration. Let us briefly
recall the classic Frankot-Chellappa method. For a given normal field n⃗(u, v) =
[n1(u, v), n2(u, v), n3(u, v)]

⊤ with (u, v) ∈ IR2 and ∥n⃗(u, v)∥ = 1 the surface x(u, v) =
[x(u, v), y(u, v), z(u, v)]⊤ is sought, such that the vector n⃗(u0, v0) is orthogonal to the
surface x at the point (u0, v0). Therefore(

∂uz(u, v)
∂vz(u, v)

)
= ∇z =

(
−n1(u,v)

n3(u,v)

−n2(u,v)
n3(u,v)

)
=

(
p(u, v)
q(u, v)

)
= g(u, v)

Now, in order to numerically approximate a solution of this equation, one may try
to find a function z such that the distance between ∇z and g in the display space of
the surface is small. The necessary condition for z being a minimizer of the distance
∥∇z(u, v) − g(u, v)∥2 over all (u, v) ∈ Ω = [0,m] × [0, n] can be written as ∆z =
∂up + ∂vq that is a Poisson PDE. For approximation of partial derivatives, one may
consider

zu+1,v + zu−1,v + zu,v+1 + zu,v−1 − 4zu,v
h2

= fu,v

fu,v =
pu+1,v − pu−1,v

2h
+

qu,v+1 − qu,v−1

2h
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Now by using the inverse discrete sine transformation one may obtain

zk,l =
h2fk,l

2
(
cos
(
πk
m

)
+ cos

(
πl
n

)
− 2
)

Where f and z are the discrete sine transform of f and z and

fk,l =

m−1∑
u=1

n−1∑
v=1

fu,v sin(π
ku

m
) sin(π

lv

n
)

.

4. Fuzzy Poisson Equation. Numerous problems in industry lead to an equa-
tion with fuzzy partial differential equation in the following form:

∆z̃(u, v) = f̃(u, v) (4.1)

in which Ω is a regular area, ∆z̃(u, v) = ∂2z̃
∂u2 ⊕ ∂2z̃

∂v2 and f̃(u, v) is a fuzzy known

function. Since f̃(u, v) is a fuzzy function and coefficients in ∆z̃(u, v) are fuzzy, then
according to the extension principle z̃(u, v) is a fuzzy function too.

For the first-order derivatives based on u, v we have:

∂z̃

∂u
=

z̃u,v ⊖gH z̃u−1,v

h
,

∂z̃

∂v
=

z̃u,v ⊖gH z̃u,v−1

h

Here we assume the Ã is a symmetric triangular fuzzy number, and we write
Ã = (a1/a2/a3), when a2 − a1 = a3 − a2 = 0.01.

Now for a normal field ⃗̃n(u, v) = [ñ1(u, v), ñ2(u, v), ñ3(u, v)]
⊤ with (u, v) ∈ IR2,

we assume ñ1(u, v) as a symmetric triangular fuzzy number with vertex n1(u, v), also
for ñ2(u, v) with vertex n2(u, v), and ñ3(u, v) with vertex n3(u, v). (we can suppose
the fuzziness between 0 and 1 here is supposed 0.01)

We now consider the underlying PDE as a fuzzy partial differential equation:

∆z̃ =
∂p̃

∂u
⊕ ∂q̃

∂v
(4.2)

By replacing fuzzy second-order derivative in definitions in previous sections and
fuzzy Poisson equation ∆z̃ = f̃ , in a similar way as M. Abdi et al. in [1] has obtained
by discrete partial difference expressions, we will have:

∂2z̃

∂u2
=

1

h2
(z̃u+1,v ⊖gH 2z̃u,v ⊕ z̃u−1,v)

∂2z̃

∂v2
=

z̃u,v+1 ⊖gH 2z̃u,v ⊕ z̃u,v−1

h2

∂p̃

∂u
=

p̃u+1,v ⊖gH p̃u−1,v

2h
,

∂q̃

∂v
=

q̃u,v+1 ⊖gH q̃u,v−1

2h

By entering the derivatives in the Poisson equation, we reach its discrete formula:

1

h2
(z̃u+1,v ⊕ z̃u−1,v ⊕ z̃u,v+1 ⊕ z̃u,v−1 ⊖gH 4z̃u,v) =

p̃u+1,v ⊖gH p̃u−1,v

2h
⊕ q̃u,v+1 ⊖gH q̃u,v−1

2h

Then

z̃u+1,v ⊕ z̃u−1,v ⊕ z̃u,v+1 ⊕ z̃u,v−1 ⊖gH 4z̃u,v = h2f̃u,v (4.3)
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5. Summary of Fuzzy Frankot-Chellappa Method. In the following we
only consider problems with Dirichlet boundary conditions and write the right-hand
side more generally as a function f̃ , so that we are looking for a solution of ∆̃z = f̃ . For

this we use the inverse discrete sine transformation Fs{f̃u,v} =
ˆ̃
fk,l and F−1

s { ˆ̃fk,l} =

f̃u,v :

f̃u,v =
4

mn

m−1∑
k=1

n−1∑
l=1

ˆ̃
fk,l ⊙ (sin(π

ku

m
) sin(π

lv

n
)) (5.1)

First we solve it only with a homogeneous Dirichlet condition z̃u,v = 0 for (u, v) ∈
∂Ω = {0,m}×{0, n}, where Ω = [0,m]×[0, n], in order to later determine the solution
for problems with an inheterogeneous Dirichlet situation using the knowledge gained.

We again insert the inverse transform from (5.1) into the discrete formula (4.3),
leaving h undetermined:

4

mn

m−1∑
k=1

n−1∑
l=1

ˆ̃zk,l
h2

[(
sin

(
πk(u+ 1)

m

)
+ sin

(
πk(u− 1)

m

))
sin

(
πlv

n

)
+ sin

(
πku

m

)(
sin

(
πl(v + 1)

n

)
+ sin

(
πl(v − 1)

n

))
− 4 sin

(
πku

m

)
sin

(
πlv

n

)]
⊖gH

ˆ̃
fk,l sin

(
πku

m

)
sin

(
πlv

n

)
= 0.

Then, we have

2ˆ̃zk,l
h2

[
sin

(
πku

m

)
cos

(
πk

m

)
sin

(
πlv

n

)
+ sin

(
πku

m

)
sin

(
πlv

n

)
cos

(
πl

n

)
− 2 sin

(
πku

m

)
sin

(
πlv

n

)]
=

ˆ̃
fk,l sin

(
πku

m

)
sin

(
πlv

n

)
If u and k are not in {0,m} and v and l are not elements of {0, n}, we have

2ˆ̃zk,l
h2

(
cos

(
πk

m

)
+ cos

(
πl

n

)
− 2

)
=

ˆ̃
fk,l

⇔ ˆ̃zk,l =
h2 ˆ̃fk,l

2
(
cos
(
πk
m

)
+ cos

(
πl
n

)
− 2
) (5.2)

Where
ˆ̃
f and ˆ̃z are the discrete fuzzy sine transform of f̃ and z̃ and

ˆ̃
fk,l =

m−1∑
u=1

n−1∑
v=1

f̃u,v ⊙ (sin(π
ku

m
) sin(π

lv

n
))

.

6. Experimental Results. In this section, we investigate our method with
using fuzzy concepts. We consider experiments for surface reconstruction using normal
vectors, some of which are uncertain normal vectors or ambiguous, and observe if this
leads to better results in terms of accuracy or noise suppression due to noisy data.
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6.1. Comparison in Terms of Accuracy. Now, to compare the responses
obtained from the classical and fuzzy methods, we first use de-fuzzification, then we
calculate the difference of all points in the classical solution and compare the de-
fuzzified solution with the exact solution.

For every (u, v) ∈ ∂Ω = {0,m}×{0, n}, where Ω = [0,m]×[0, n] we use RMSE for
zu,v that is obtained by sine discrete transform and m(z̃u,v), the de-fuzzified solution
from z̃u,v , is obtained by fuzzy sine discrete transform. The de-fuzzification method
that is used here is m(z̃) = 0.5(z− + z+).

In Table.1 we compare exact function, discrete sine transformation approxima-
tion and the obtained result from de-fuzzification of fuzzy sine discrete transformation
approximation (with α = 0.3) for four cases. In Fig.6.1 we compare exact function,
discrete sine transformation approximation and α-cut of fuzzy discrete sine transfor-
mation approximation (α = 0.3) for three cases of the above examples that is done
on the rectangle [−1, 1]2:

a)

b)

c)

Fig. 6.1. Comparison of exact function, discrete sine transformation approximation (sT) and
α-cut components of the fuzzy sine discrete transformation approximation (FsT), with α = 0.3 for

z(u, v): a) sin(uv)+u2 − v2 , b) (1− u2

σ2 − v2

σ2 )e
−u2+v2

2σ2 , σ = .1 , c) −u2 − v2, 3
9
< u2 + v2 < 4

9
.

We confirm here that the accuracy of the fuzzy approximation is equivalent to the classical approxi-
mation D = d.
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6.2. Comparison with respect to Noise Suppression. Since the operation
on the function is linear, it makes sense to consider to fuzzify the elements of normal
vectors at the beginning of the operation, and then de-fuzzify at the end, so the
calculation error is almost the same in the two approximations.

A possible advantage by fuzzy construction of our method is in its application at
specific points without given data (i.e. holes in domain where data is given). Also
integration with fuzzy components may potentially remove noise better than classic
method. Which we confirm in Fig.6.2 where we have solutions with noise for cases in
Fig.6.1.

To be more precise, it has been proved in [13] that the inverse F -transform of
a noisy function is almost equal to the inverse F -transform of the original function.
Which makes us conjecture that our method has good denoising capabilities.

We consider a noise, represented by a function s(u, v) and z(u, v) + s(u, v) is
the representation of the noised function z. On the basis of linearity of the direct
F -transform, this noise can be removed if its regular components of the direct F -
transform are equal to zero. Here we consider to apply both F -transform (direct and
inverse) to a function to remove a certain noise. Indeed, the inverse F -transform can
be considered as a special fuzzy identity filter which can be utilized.

Let a discretization for the surface withm×n size be represented a function of two
variables z : [1,m] × [1, n] → [0, 1] defined at nodes (u, v) : u = 1, ...,m; v = 1, ..., n.
The F -transform (2.3) for z(u, v) is as follows:

Zkl =

∑n
v=1

∑m
u=1 Ak(u)Bl(v)z(u, v)∑n

v=1

∑m
u=1 Ak(u)Bl(v)

Where A1, ..., Ar ,B1, ..., Bs ,r ≤ m , s ≤ n, are basic functions which form fuzzy
partitions of [1,m] and [1, n], respectively. A reconstruction of the image z, being
described by Frs[z] = (Zkl) with respect to A1, ..., Ar and B1, ..., Bs, can then be
computed by the inverse F -transform (2.4) adapted to the domain [1,m]× [1, n]:

zFrs(u, v) =

m∑
k=1

n∑
l=1

ZklAk(u)Bl(v)

which holds for all u = 1, ...,m, v = 1, ..., n. Also, we know zFrs(u, v) = (z+ s)Frs(u, v)
that has improved in [13], where the noise s(u, v) be continuous functions on [1,m]×
[1, n]. We can see in Fig.6.3 that F -transform performs as an effective filter.

We also have constructive suggestions for specific situations that occur in real-
ity, for example, a part of the procedure cannot be reconstructed due to insufficient
information. In this way, to make the components of the normal vector of points
with unknown normal, the corresponding directions are used , p̃u,v = p̃u−1,v and
q̃u,v = q̃u,v−1. In fact, in every point (u, v) in area with uncertain normal vector for
the p̃ of the unknown point, we use the information of the closest point in the x-
direction, and for the q̃, we use the information of the closest point in the y-direction.
Then fu,v get changed as follow:

f̃u,v =
p̃u,v ⊖gH p̃u−2,v

2h
+

q̃u,v ⊖gH q̃u,v−2

2h
(6.1)
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Fig. 6.2. The solution with noise for three cases in Fig.1. As it shows, fuzzy approximation is
better to suppress noise than classic approximation since D < d.

Fig. 6.3. Removing noise with ”F -transform” in order to obtain zFmn(u, v) = (z + s)Fmn(u, v).
As it shows, fuzzy approximation is better to suppress noise than classic approximation since D(z) <
d(z).

7. Conclusion. In this paper, the Fuzzy Poisson equation with Dirichlet bound-
ary conditions was investigated as part of a fuzzy Frankot-Chellappa method. We
show experimentally, backed up by some theoretical considerations, that our fuzzy
Frankot-Chellappa method reconstructs surfaces, using normal vectors of which some
may be considered uncertain or ambiguous, with reasonable results. In terms of ac-
curacy, for smooth surfaces our fuzzy method gives equivalent results than the classic
method, while in terms of noise suppression the use of fuzzy concepts appears to be
beneficial.

To achieve these results, some concepts such as a fuzzy-valued vector function,
fuzzy operators, and a fuzzy sine discrete transform were studied. Consequently, the
fuzzy solution of the fuzzy Poisson equation was obtained by our applying an fuzzy
extension z̃u,v of zu,v.

For future research, other types of fuzzy numbers may be used. We may consider
also using fuzzy distance between fuzzy normal vectors to can obtain missed normal
vectors for approximating related surface with missing data.
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Table 7.1
Compare the classical and fuzzy methods with d = RMSE(z) and D = RMSE(m(z̃))

Exact function z d D d(noise 0.5) D(noise 0.5)

sin(uv) + u2 − v2 0.5704e-06 0.5704e-06 1.9234e-02 4.4535e-03

(1− u2

σ2 − v2

σ2 )e
−u2+v2

2σ2 1.1119e-06 1.1119e-06 2.6299e-03 1.6738e-03

e(u+0.25v) 4.0103e-06 4.0103e-06 3.1116e-03 4.4851e-04

−u2 − v2 8.3435e-05 8.3435e-05 4.4281e-04 7.3650e-05
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