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AUTOMATIC PATH EXTRACTION INSIDE THE AORTA FROM CT
DATA ∗

KONAN A. ALLALY† AND JOZEF URBÁN‡

Abstract. Segmentation of the aorta is crucial for various medical image analyses, such as
the diagnosis of large vessel vasculitis. In this work, we present the extraction of a path inside the
aorta from 3D non-contrast CT data using the minimal path approach. We define a suitable potential
function to keep the path inside the aorta and as close as possible to the centerline. Using anatomical
knowledge, we segment the liver, lungs, and trachea to locate the abdominal aorta, descending aorta,
and ascending aorta. Key points are automatically detected by circular Hough Transform using the
locations of the liver and trachea. The path inside the aorta is built step by step using the detected
key points.
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1. Introduction. Vasculitis is the inflammation of blood vessels of various sizes.
The early detection and treatment of vasculitis are crucial to avoid irreversible damage
such as loss of vision, kidney failure, and aortic dissection. Various approaches are
used to diagnose vasculitis, including biopsy, blood or urine cultures, and imaging [2].
The use of 18F-fluorofeoxyglucose PET/CT (FDG-PET/CT) imaging in the diagnosis
and treatment of large vessel vasculitis (LVV) is constantly increasing [1, 2]. LVV
mainly affects the aorta and its branches. Image analysis and interpretation are the
core of imaging’s use in the diagnosis of LVV. The interpretation compares pixel values
from a reference region of interest (ROI) defined inside the liver and ROIs defined in
the affected aorta regions. The ROIs are detected visually, extracted manually, and
used for assessment in clinical routine. We aim to automate the extraction of the
ROIs to simplify routine use, increase reproducibility, and improve the results.

This work presents the automatic extraction of a path inside the aorta from CT
data using the minimal path approach [3]. The minimal path approach finds the
geodesic minimal path between two given points in an image. The extracted path is
used for various applications such as path planning [3], detection of optimal trajectory
for virtual colonoscopy [21], tubular structure centerline extraction and segmentation
[4, 5]. In the context of the diagnosis of LVV, we use the extracted path to define ROIs
inside the aorta by defining spherical volumes around each path point. The minimal
path approach suffers from the shortcut problem when used for long and curved
structures [6], and the extracted path may not be centered. For our application, we
define multiple key points to overcome the shortcut problem in the aortic arch. We
segment the liver and the carina to detect the abdominal, ascending, and descending
aorta by circular Hough Transform (HT). We design a potential function to keep the
path inside the aorta and as close as possible to its centerline.
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The paper is organized as follows: section 2 describes the workflow for obtaining
a path inside the aorta from 3D non-contrast CT data. In section 3, we present and
discuss our results.

2. Method.

2.1. Data sets and preprocessing. Our data are provided by BIONT, a.s.
in Bratislava. The patient data are anonymized by removing personal information
to ensure the patient’s privacy. The 3D CT image data is made of a sequence of 2D
slices. The resolution of the slices is 512×512. The pixel spacing varies from 0.976562
mm to 1.171875 mm, and the spacing between slices varies from 1.5 mm to 2.5 mm.
We apply trilinear interpolation to the original image data to have the same spacing
in all the directions (x, y, z) to ensure a uniform grid for space discretization. Due to
the noise, we applied filtering as preprocessing. We use the Geodesic Mean Curvature
Flow (GMCF) for the filtering because it is suitable to remove noise while preserving
the edges [9]:

ut = |∇u| ∇ ·
(
g(|∇Gσ ∗ u|) ∇u

|∇u|

)
(2.1)

where u is the input image, g(s) = 1
1+Ks2 is an edge detection function and K > 0 is a

parameter. Gσ is a Gaussian kernel used for smoothing and σ the variance. We use a
semi-implicit finite volume scheme for the discretization and a Gauss-Seidel iterative
scheme to solve the linear system (see [9] for more details).

2.2. Detection of key points. The minimal path approach requires one or
two points to be implemented [3, 6]. We automatically detect key points based on
anatomical knowledge to have a path inside the aorta with less user interaction. Each
slice containing the liver contains the abdominal aorta as a circular object. The slice
containing the carina contains the ascending and the descending aorta [12]. This
section presents our approach to segmenting the liver and the carina; then, using
the Hough Transform, we detect the key points in the abdominal, ascending, and
descending aorta.

2.2.1. Segmentation of the liver. The segmentation of the liver is crucial
for various reasons, such as a better understanding of liver anatomy, the diagnosis
of liver diseases, or surgical planning. This work uses the segmented liver to locate
the abdominal aorta. The segmentation of the liver from CT data is a challenging
task due to the proximity of the liver to abdominal organs such as the pancreas,
the spleen, or the stomach. The segmentation of the liver has occupied researchers
for many years. Various approaches have been used to segment the liver, including
thresholding, region growing, active contour, and deep learning models [22, 23, 24]. We
performed the segmentation of the liver by a combination of several image processing
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techniques, including thresholding, connected components labeling [14], morphological
operations, and the Generalized SUBjective SURface (GSUBSURF) method [10, 11].
Our approach is a semi-automatic approach and consists of four steps. We start by
applying multilevel thresholding according to the liver pixel value range (−50HU to
199HU) [17]. In the second step, we apply the connected components labeling. The
region containing the liver is found to be the largest region. For our data set, the
segmented region contains the liver and other organs such as the kidney, the aorta, and
some ribs. In the next step, we apply erosion several times to the segmented region
to remove the other structures and keep the liver. The erosions shrink the liver, so
in the last step, we apply the GSUBSURF model using the segmented volume as the
initial condition to refine the segmented liver.

Fig. 2.1. Liver segmentation from CT data, by thresholding, erosion, connected components
labeling and refined by the GSUBSURF method.

The first image in FIG. 2.1 shows the segmentation of the liver obtained by
thresholding, connected components labeling, and seven erosions. The second image
shows the refined initial liver segmentation by the GSUBSURF model. We stopped
the segmentation at 6000 time steps because the difference (L2-norm) between the
previous and current solutions was small (around 0.001). For visualization, we chose
the level set 0.9.

2.2.2. Segmentation of the lungs and the trachea. The trachea is a tube-
like structure between the mouth and the parenchyma of the lungs and the carina,
which marks its end. The carina is the region where the trachea splits into two
segments and is just under the aortic arch [16]. Therefore, detecting or segmenting the
trachea can be used to detect the aortic arch, the ascending and descending aorta [12].
The lungs, the trachea, and the carina are all connected, so segmenting the trachea
or the carina involves segmenting the lungs. Over the years, various segmentation
approaches have been proposed to segment the lungs, see [19] for a detailed review of
the literature. We follow a similar approach to authors of [18] to segment the lungs.
Our approach to segmenting the lungs consists of three steps. Firstly, we perform
thresholding using lung pixels value (−500 HU for our dataset). All the pixels above
the threshold are set to 0, and the remaining are set to 1. Connected components
labeling is applied to the thresholded data, and the lungs, connected to the trachea,
are extracted as the largest region. Next, we apply morphological operations such as
erosion and dilatation to disconnect the trachea and the left and right lungs. Finally,
the initial segmentation is used as a mask to segment the trachea. The carina is
detected as the last slice containing one region before the slice containing two regions.
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Fig. 2.2. Lungs and trachea segmented from CT data, by thresholding, erosion, dilatation and
connected components labeling.

2.3. Hough Transform. The HT is used in computer vision to detect shapes
such as lines, squares, or circles. The algorithm is mostly applied to edge images. An
edge detector such as a Canny edge detector [15] is applied to the input image, and
pixels whose value exceeds a defined threshold are kept as edge pixels. If a circle in
a 2D image is described as: (x − a)2 + (y − b)2 = r2, where (a, b) are coordinates
of the center and r the radius, an arbitrary edge point (xi, yi) will be transformed
into a right circular cone in the (a, b, r) parameters space [20]. For each image point
(a, b) and given radius range [rmin, rmax], an accumulation array is built by voting.
The accumulation array for (a, b) and ri is increased by 1 if an edge point (xi, yi) is
a solution of the circle equation. At the end of the voting process, the accumulation
array contains the number of all the points belonging to the circle. A criterion is
then defined based on the accumulation array to decide which point corresponds to a
circle center in the image. The original approach is time-consuming and needs a large
memory to store the accumulation array. For optimization, our implementation is a
local approach (around the carina). We discriminate the edge pixels as non-center.
We use the aorta radius range provided in [13] and cumulative ratio (based on voting
and given radius) array to find the optimal center. We compute the ratio by dividing
the vote of each point by the radius, and the cumulative ratio is the average of the
ratios for all the radiuses. We obtain one single circle corresponding to the aorta.
This approach allows us, for a given aorta radius range, to detect one circle in the
abdominal, the ascending, and the descending aorta.

Fig. 2.3. Abdominal, ascending and descending aorta detected by circular Hough Transform.
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2.4. The minimal path approach. The minimal path approach was intro-
duced in [3] to find the geodesic minimal path between two given points. The minimal
path is a curve C connecting two points pi (starting point), pf (end point) and mini-
mizes a modified ”snake” energy. It detects the global minimum of an active contour
model’s energy between two endpoints.

2.4.1. Global minimum for active contour. The deformable contour model
is a mapping : C(v) : Ω → R2, v 7→ (x(v), y(v)), where Ω = [0, 1] is the parametriza-
tion interval, v is a parameter. We use 2D notations for simplification purposes. The
deformable model is a space of admissible paths or deformations A and a functional
E. E represents the energy of the model, which will be minimized on A and has the
following form E : A → R:

C 7→ E(C) =

∫
Ω

( ω1

2
||C ′(v)||2 + ω2

2
||C ′′(v)||2 + P (C(v))

)
dv (2.2)

where C ′ and C ′′ are the first and second derivatives of C with respect to v, and P
is the potential function associated to the external forces. The first two terms are
internal forces, and the third is image forces. The choice of ω1 and ω2 determines the
curves’ elasticity and rigidity.

2.4.2. Problem formulation. Contrary to the classical snake energy, v is cho-
sen to be the arc-length parameter s, which means ||C ′(s)|| = 1, then Ω = [0, L],
where L is the length of the curve. Therefore, the energy depends only on the geo-
metric curve and not on the parametrization. The second derivative of C is removed
from the energy to reduce the user initialization to setting just two endpoints of the
curve C. The energy of the new model has the following form: Api,pf

→ R

C 7→ E(C(s)) =

∫ L

0

(
ω||C ′(s)||2 + P (C(s))

)
ds

= ωL(C(s)) +

∫ L

0

P (C(s)) ds

=

∫ L

0

(ω + P (C(s))) ds =

∫ L

0

P̃ (C(s)) ds

where P̃ (p) = ω+P (p). Api,pf
is the space of all curves connecting the points pi and

pf . The boundary conditions are given by C(0) = pi and C(L) = pf . ω > 0 is used
to control the smoothness of the curve.

Given a potential P > 0 that takes lower values near desired features, we are
looking for paths along which the integral of P̃ is minimal. At each point p of the
image, the minimal action U corresponds to the minimal energy integrated along a
path that starts at pi and ends at p:

U(p) = inf
Api,p

(∫
C

P̃ ds

)
= inf

Api,p

E(C) (2.3)

Api,p is the set of all paths between pi and p.

To compute the minimal action U , the authors of [3] formulated the partial dif-
ferential evolution equation (related to eq. 2.3):

∂L(s, t)
∂t

=
1

P̃
n⃗(s, t) (2.4)
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to describe the set of equal energy contour L in time, where t is the value of the
energy and n⃗(s, t) the normal to the closed curve L(., t). The equation (eq. 2.4)
evolves a front starting from a small circle around p0 until U is computed for each
point inside the image domain. The authors proposed three approaches to find the
minimal action U : graph search approach, shape from shading approach, and front
propagation approach [3]. They showed that U satisfies the Eikonal equation:

||∇U || = P̃ , U(p0) = 0. (2.5)

In this work, we use the fast marching method [7] to compute U because it is fast and
has lower complexity than the other approaches [4].

The gradient of U is orthogonal to the propagating front. Therefore, the minimal
path Cpi,pf

between two points pi and pf is found by sliding back the minimal action
U from pf until pi. To find Cpi,pf

, the authors of [4] suggested the steepest descent
gradient:

pn+1 = pn − τ × ∇U

||∇U ||
, τ > 0, n = 0, ..., N (2.6)

where pn+1 is the next point, pn the current point and N the maximal number of
path points. The iterative process starts with p0 = pf and stops when the Euclidian
distance between the current point and pi is less than a defined tolerance ε. The
gradient of U is normalized by ||∇U ||−1 to have a unit speed of the curve. Some
other methods like Runge-Kutta midpoint algorithm or Heun’s method can be used
to extract the path by solving the following ordinary differential equation [4]:

dCpi,pf

ds
(s) = −∇U(Cpi,pf

(s)), Cpi,pf
(0) = pf (2.7)

In this work, we use the descent gradient (eq. 2.6) method to find the minimal path
for given points pi and pf .

2.4.3. Potential Function. The potential function is based on the image pixel
values and pushes the front to the desired regions. The front propagates faster along
lower values of the potential function [4]. Defining an appropriate potential function
is crucial for obtaining accurate results. Depending on the applications, the authors
in [3] suggested some potential functions based on edge detection operators, distance-
based potential, and potential using pixel values. Our potential function is defined to
extract a path inside the aorta and close to the centerline:

P̃ (x) = ω +
|Iseed − Ix|

max(|Iseed − Ix|)
1

1 + d(x)
, x ∈ Rn, n = 2, 3. (2.8)

Iseed is the average of pixels value in spherical volume (3 mm of radius) around the
starting point to reduce the noise effect. ω > 0 is a parameter for smoothing the path,
and d is the distance map computed on the edge image. The edge image is obtained
in two steps. We start by computing the edge detector using the function presented
in section 2.1. We apply thresholding to the edge detector to have a binary image
where the edge pixels value is set to 1 and the other to 0. Then, we compute a
signed distance function using the fast sweeping method [8] to the edge image so that
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the higher distance for the aorta regions will be located at the center. Therefore, the
third term of (eq. 2.8) allows us to have smaller values of the potential function inside
the aorta and larger values on the edges. The edges will act as an obstacle to the
propagation in the front, allowing faster propagation inside the aorta. The second
term is built according to the potential functions suggested in [4]. We normalize the
difference by the maximal value to have the term in the interval [0, 1]. The second
term is enough to obtain a good path for images with high contrast between the region
of interest and the other regions. Combining these terms allows us to extract a path
in non-contrast CT image data, and the extracted path is close to the centerline for
tubular structures such as the aorta.

3. Results and discussion. In this section, we present the extracted paths
inside the aorta using the potential function described in section 2.4.3. We use the
fast marching method [7] to compute the minimal action U and the descent gradient
(eq. 2.6) method to find the path Cpi,pf

connecting two given points pi and pf , with
τ = 0.8 and ε = 1.

Fig. 3.1. Extracted paths (green) in 3D image of two different patients.

The blue dots are the points used for the path extraction. The aorta is segmented
manually for visualization purposes. Let’s call the points in the abdominal aorta p1,
the descending aorta p2, and the ascending aorta p3. Between p1 and p2, we perform
the minimal path approach to get the first segment of the path. Between p2 and p3,
we get the path in two steps to avoid the shortcut issue in the aortic arch. First, we
use the automatic key points detection approach presented in [6] to find a new point p
inside the aorta between p2 and p3. In the second step, we find the paths connecting
p2 to p and p to p3.

The minimal path approach is noise-sensitive, may not lead to a centered path,
and suffers from the shortcut issue [5, 6]. The shortcut happens when the structure
of interest is long, thin, and curved. We applied the geodesic mean curvature filtering
[9] to reduce the noise and its potentially harmful effect. We defined a new potential
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function combining pixel values and a distance map to keep the path inside the aorta
as close as possible to its centerline. We detected points automatically in the ascending
and descending aorta to reduce user interaction and overcome the shortcut issue in
the aortic arch. As mentioned in the introduction, the path extraction inside the
aorta is part of a framework related to the diagnosis of large vessel vasculitis by FDG-
PET/CT imaging. For this purpose, a centered path is better since a good enough
estimation of the aorta shape can be obtained using the aorta radius range and the
centered path. In future work, we will focus on an efficient implementation of the
approach presented in [5] to get a 3D-centered path in a reasonable time. We will also
implement the work presented in [21] to obtain another centered path. A comparison
of the results for both approaches will be provided. We will also present the diagnosis
of patients suspected of having vasculitis using the extracted path.
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