
Proceedings of ALGORITMY 2024
pp. 264–273

DICTIONARY LEARNING WITH THE K-SVD ALGORITHM
FOR RECOVERY OF HIGHLY TEXTURED IMAGES

–AN EXPERIMENTAL ANALYSIS–

ALEXANDER KÖHLER , MICHAEL BREUß , AND SHIMA SHABANI

Abstract. Image recovery by dictionary learning is of potential interest for many possible
applications. To learn a dictionary, one needs to solve a minimization problem where the solution
should be sparse. The K-SVD formalism, which is a generalization of the K-means algorithm, is
one of the most popular methods to achieve this aim. We explain the preprocessing that is needed
to bring images into a manageable format for the optimization problem. The learning process then
takes place in terms of solving for sparse representations of the image batches. The main contribution
of this paper is to give an experimental analysis of the recovery for highly textured imagery. For our
study, we employ a subset of the Brodatz database. We show that the recovery of sharp edges plays
a considerable role. Additionally, we study the effects of varying the number dictionary elements for
that purpose.

Key words. Image recovery, dictionary learning, sparse representation, textured images

AMS subject classifications. 94A08, 65K05

1. Introduction. Motivated by studying information processed in the primary
visual cortex, Field and Olshausen [14] developed a first approach to sparse dictionary
learning. Technically, sparse dictionary learning is a representation learning method
that aims at finding a sparse representation of input data. This is done in terms of
a linear combination of basic elements called atoms. The aim of dictionary learning
is to find the basic elements themselves, relying on given training data, as well as
finding a useful linear combination of them. Typically, the elements of the dictionary
do not make up an orthogonal basis. It is often of interest to have an overcomplete
dictionary with significantly more elements than the dimensionality of the input data
encourages. The representation of input data in terms of the overcomplete dictionary
may be more sparse than if we had just enough elements to span the space.

In this paper, we deal with textured images as input data. For possible dictio-
naries in image processing, one may either employ a predefined dictionary using for
example wavelets for construction, or learn it at hand of the given imagery. As in-
dicated, we pursue the latter approach, which has lead to state-of-the-art results in
many applications, for example denoising [10], image deblurring [13, 17], or image
segmentation [6]. We refer to [7, 18] for more information and recent applications.

Let us turn to the learning process. We describe the dictionary in terms of
a matrix D ∈ Rn×K , where K ≫ n so that the dictionary will be overcomplete.
Thereby the atoms are the columns, and one may refer to D in terms of the atoms
as {di}Ki=1 with di ∈ Rn. We assume that a training database {yi}Ni=1 with yi ∈ Rn

is given. Let us put together the yi into a training matrix Y ∈ Rn×N , and define a
sparse representation matrix X ∈ RK×N . The core idea is to find the dictionary D
and the sparse representation matrix X such that Y ≈ DX. This may be considered
as a specific matrix decomposition of the training matrix. Finding the approximate
decomposition in terms of a dictionary matrix and a sparse representation matrix is
a minimization problem with two stages: dictionary updating and sparse coding.

Various methods deal with these two stages in different ways, see e.g. [7]. Among

264



AN EXPERIMENTAL ANALYSIS OF THE K-SVD ALGORITHM 265

them, the K-SVD algorithm [2] is one of the most popular methods for dictionary
learning. It is a generalization of the K-means algorithm [9], combined with a step
that performs the singular value decomposition (SVD) to update the atoms of the
dictionary one by one. Besides, it enforces encoding of each input data by a linear
combination of a limited number of non-zero elements. In the Section 2, we discuss
the K-SVD method in some more detail.

Related work. Let us focus here on some important methods that are technically
related to the K-SVD method and may be seen as extensions of the work [14]. The
method of optimal directions (MOD) [8] is one of the first methods introduced to
tackle the sparse dictionary learning problem. Its key idea is to solve the arising
minimization problem in the sparse coding stage by enforcing a limited number of
contributions of each atom in the training set. Concerning the latter point, let us
note that the K-SVD method employs a similar approach. The algorithm in [12] is
a process for learning an overcomplete basis by viewing it as a probabilistic model of
the observed data. This method can be viewed as a generalization of the technique of
independent component analysis, which is technically related to the SVD. The method
in [11] proposes to learn a sparse overcomplete dictionary as unions of orthonormal
bases. The dictionary update of one chosen atom is performed using SVD. Let us
note that K-SVD follows a similar approach.

There have been general experimental evaluations of the overall usefulness of the
K-SVD method in dictionary learning [2], see also theoretical discussions, e.g. [3].

Our contribution. In this paper, we give a dedicated experimental analysis of
the K-SVD algorithm in its ability to recover highly textured images. Such images
impose the challenges that their content is often not smooth and there are many
fine structures that need to be recovered. Our investigation is motivated by ongoing
research in corresponding applications.

2. Sparse Dictionary Learning and K-SVD Algorithm. As indicated, in
sparse dictionary learning, the atoms {di}Ki=1 yield an overcomplete spanning set and
provide an improvement in the sparsity and flexibility of the input data representation.

The sparse representation x of an input y may be exact or approximate in terms
of the dictionary D. The general form of the model for exact representation in sparse
coding amounts to solve

min
x

∥x∥0 w.r.t. y = Dx (2.1)

while for the approximate representation we refer to

min
x

∥x∥0 w.r.t. ∥y −Dx∥2 ≤ ϵ (2.2)

Thereby ∥·∥0 counts the non-zero entries of a vector, ∥·∥2 stands for the Euclidean
norm; the known parameter ϵ is a tolerance for the sparse representation error.

Turning now concretely to the optimization of the learning process based on the
training database {yi}Ni=1, the aim is to estimate D ∈ Rn×K with atoms {di}Ki=1 and
X ∈ RK×N with columns {xi}Ni=1, such that

min
D, xi

N∑
i=1

∥xi∥0 w.r.t. ∥yi −Dxi∥22 ≤ ϵ (2.3)

Solving (2.3) for each yi ∈ Rn gives a sparse representation xopt
i ∈ RK over the

unknown dictionary D, aiming to find the proper sparse representations and the dic-
tionary jointly. Thus, (2.3) encompasses both sparse coding and dictionary updating.



266 A. KÖHLER, M. BREUß AND S. SHABANI

One may also consider the alternative form of (2.3) as

min
D, xi

N∑
i=1

∥yi −Dxi∥22 w.r.t. ∥xi∥0 ≤ T (2.4)

where the role of the penalty and the constraint are reversed, and the parameter T
controls the number of non-zero elements in the vector.

Let us now turn to the main algorithm of the paper. As the K-SVD method is a
generalization of the K-means method, we begin by a brief explanation of the latter
before discussion of K-SVD.

2.1. The K-means Algorithm. There is a relation between sparse representa-
tion and clustering [8, 16]. The K-means method is a possible approach to clustering
which aims to partition N inputs into K clusters, and each input belongs to the cluster
with the nearest mean. The cluster centres serve as a prototype of the cluster.

The K-means method amounts to an iterative process incorporating two steps
per iteration. For convenience, let us also relate to corresponding steps in dictionary
learning. First, given {di}Ki=1, it assigns the training samples ({yi}Ni=1) to their nearest
neighbour in terms of the di (sparse coding). This means, the di have the role of the
closest cluster centroid. Let us note that in standard K-means this is done regarding
the squared Euclidean distance, while in K-SVD [2] the non-squared Euclidean dis-
tance is employed, mimicking the sparse coding problem setup. Then, the dictionary
{di}Ki=1 is updated to better fit the samples by use of the assignment given in the first
step (dictionary update).

More precisely, in the sparse coding stage the method makes K partitions (sub-
sets) of the training samples {yi}Ni=1, related to K columns of the dictionary, each
holding training samples most similar to the corresponding column. At the dictionary
updating stage, each dictionary column is replaced by the centroid of the correspond-
ing subset. Let us note that K is a parameter that needs to be specified.

2.2. The K-SVD Algorithm . The essence of the iterative K-SVD algorithm,
as a generalization of K-means, may be described as follows. First, the dictionary is
fixed to find the best possible sparse matrix representation X under the constraint
in (2.4). Then the atoms of the dictionary D are updated iteratively to better fit to
the training data. This is done specifically by finding a rank-1 approximation of a
residual matrix via making use of the SVD while preserving the sparsity.

One may view the problem posed in (2.4) as a nested minimization problem,
namely an inner minimization of the number of non-zeros in the representation vec-
tors xi for a given fixed D (sparse coding stage) and an outer minimization over
D (dictionary update stage). At the jth step, obtaining a sparse representation via
a pursuit algorithm [7] such as e.g. orthogonal matching pursuit, for implementa-
tion details see [15], we use the dictionary Dj−1 from the (j − 1)th step and solve
N instances of (2.4) for each yi. That gives us the matrix Xj containing column-
wise all sparse representations (sparse representation matrix). Summarizing thus the
squared Euclidean norms of vectors in (2.4) using the Frobenius norm, we solve for
Dj in terms of the following least squares problem, the solution of which has an exact
representation:

Dj = argmin
D

∥Y −DXj∥2F = Y XT
j (XjX

T
j )

−1 (2.5)

TheK-SVD method handles the atoms inD sequentially. Keeping all the columns
fixed except the i0th one, (di0), it updates di0 along with the coefficients that multiply



AN EXPERIMENTAL ANALYSIS OF THE K-SVD ALGORITHM 267

Fig. 3.1: Our considered selection of the Brodatz database [1]. From left to right and
top to bottom, we used the images with the name: D27, D30, D31, D75, D66, D67,
D101, D102, D54, D60, D73 and D112.

it in the sparse representation matrix. To this end, we may rewrite the penalty term
in (2.5), omitting the iteration number j, as

∥Y −DX∥2F =
∥∥Y −

K∑
i=1

dix
r
i

∥∥2
F
=

∥∥Ei0 − di0x
r
i0

∥∥2
F

(2.6)

to isolate the dependency on di0 . Here, Ei0 = Y−
∑

i ̸=i0
dix

r
i is a precomputed residual

matrix and xr
i stands for the row r of X, so that xr

i indicates the contribution of di
in the training set. Which means it includes sparse coefficients of elements of the
training set that currently use di.

The optimal values of di0 and xr
i0

minimizing (2.6) are given by the rank one
approximation of Ei0 , which one can obtain using the SVD. That typically would
yield a dense vector xr

i0
, increasing the number of non-zeros in X. Keeping the

cardinalities of all the representations fixed during the minimization, one may restrict
Ei0 to those columns where the entries in the row xr

i0
are non-zero. In this manner,

only the existing non-zero coefficients in xr
i0

may vary, preserving in this way the
sparsity.

Considering the SVD of the restricted Ei0 as ER
i0

= UΣV , the updated dictionary
column is the first column of U , and the updated non-zero coefficient of xr

i0
is the first

column of V multiplied by Σ(1, 1). The K-SVD algorithm performs an SVD for each
of the K different residuals related to the K columns of the dictionary. This method
is a direct generalization of the K-means process. When the model orders T = 1 in
(2.4), K-SVD exactly acts like K-means [2].

3. Data Set of Textured Images and Preprocessing. In this section, we
want to explain which data set we consider, which transformation process is applied
to the data set, and how we learn the dictionary.

Our experiments are based on a subset of the Brodatz texture database [5] ob-
tained via the website [1], see Fig. 3.1. The complete data set contains 112 highly
textured gray scale images with a resolution of 640 × 640 pixels. For our study, we
select images with a dot-like texture.

3.1. Preprocessing. We begin by describing the basic steps to transform the
resource images Iorig into a useful format. In doing this, we mostly follow the basic
steps of the Matlab code [4], which is the source of our computation, too. The use



268 A. KÖHLER, M. BREUß AND S. SHABANI

1
60

160

6
40

640

b
a
tch

size
b

batch size b

Fig. 3.2: Left to right: Creation of 160×160 pixels partial images from given imagery
of size 640×640, example partial image and one example batch with a batch size b = 8.

of this code serves to enhance the reproducibility of our results and facilitate their
comparison with those of other researchers in this field. However, we also incorporate
a slicing technique, as explained below.

Our starting data set contains 12 images Iorig ∈ R640×640, which we want to
extend by slicing the images. In doing this, we aim for two goals: First, we increase
the number of elements in the data set. Second, working with smaller images will
reduce computation time. By this motivation, we divide the images into 4× 4 blocks
equal in size, see Fig. 3.2 left. Each block, with a resolution of 160× 160 pixels, will
be saved as a separate image, yielding in total a new larger data set. This enlarged
data set now contains 192 images and is used to learn the dictionary D.

We now pursue to explain the preprocessing step P : I → W . In the first step,
we are randomly choosing 20 out of these 192 images to assemble the foundation for
training our dictionary D. At this point, we actually need the enlarged data set.
During the second step, the images I will be completely divided into small image
batches Bi ∈ Rb×b, i ∈ {1, 2, . . . , nb} of a resolution b × b, as shown in Fig. 3.2
middle and right. Since our focus will now be on numerical computing rather than
on interpretation as image batches, we will call Bi batch, b the batch size, and nb is
the number of batches in the image I. This dividing is not overlapping, and a single
batch is visualized in Fig. 3.2 right.

Next, in the third step, we will concatenate these batches Bi to create the vector
wi ∈ Rb2 .

Bi = [v1, . . . , vb] ∈ Rb×b →
[
vT1 , . . . , v

T
b

]T
= wi ∈ Rb2 (3.1)

Concatenating all nb batches Bi of I and pinning them together will construct the
matrix W = [w1, . . . wnb

] ∈ Rb2×nb .
Finally, we have transformed the images I ∈ R160×160 into the matrix W ∈

Rb2×nb . We can reverse this process P−1 : W → I to construct an image I from a
matrix W . This is used to visualize the recovered images wi = Dxopt, ∀i ∈ [1, nb],
where xopt is the solution from (3.3).

3.2. Revisiting Sparse Coding. In accordance with Section 2, the K-SVD
method is based on the sparse coding problem that may be formulated in general in
terms of (2.3) and (2.4). After preprocessing, let us now reformulate them as one



AN EXPERIMENTAL ANALYSIS OF THE K-SVD ALGORITHM 269

Fig. 4.1: Visualization of the three learned dictionaries. From left to right we have
b = 4, 8, 16 and show D4, D8, D16, respectively.

problem mainly used for learning as

∀i ∈ [1, N ] min
D, xi

∥wi −Dxi∥22 w.r.t. ∥xi∥0 ≤ Ttrain (3.2)

and one for testing a computed reconstruction:

∀i ∈ [1, nb] xopt = argmin
xi

∥wi −Dxi∥22 w.r.t. ∥xi∥0 ≤ Ttest (3.3)

3.3. Solving the minimization problem. Solving (3.2) will follow as shown
in [2, Figure 2], which we will briefly recall now. In the sparse coding stage, the
orthogonal matching pursuit algorithm is employed to solve (3.2) only for xi. In the
dictionary update stage, we can use the solution of the previous stage to enhance the
dictionary with (2.6). This iterative process of using D to find a better x and then
use x to find a better D is done, until the process converges.

To provide a profound understanding of the dictionary update process, we first
address the initialization of D. We use K ∈ N random batches Bi from our 20 images
used for training and normalize (∥Bi∥2= 1) them. After concatenating all Bi the

dimension of the dictionary will be D ∈ Rb2×K . An additional part of the updating
stage, see Section 2.2, is, to control if the atoms in the dictionary are used or not, i.e.
all xopt have a zero entry at a certain index. If we do not use an atom, we simply
replace it with another, random and already not in use, normalized concatenated
batch.

4. Experimental Results and Discussion. Let us start with the dictionaries,
and continue with the recovery of selected images. After discussing these, we will
proceed with a parameter study and the impact of the texture on the recovery process.

4.1. Learning the Dictionaries. We learn the dictionaries Db ∈ Rb2×K for
different batch sizes b = {4, 8, 16}. The batch size of b = 4 can be interpreted as the
minimum batch size, since b = 2 would be too small, and we end up in learning almost
every pixel by itself. Doubling the batch size to b = 8, and again to get b = 16, appears
to be a natural choice, since it keeps divisibility to the image resolution. Other batch
sizes are possible, but are not in the focus of this paper. With Db, we will denote
the learned dictionaries corresponding to batch size. The number of atoms in the
dictionary will be set to K = 128, and we set Ttrain = 5. The learned dictionaries can
be seen in Fig. 4.1, and will be used to recover the images.

Inspecting these dictionaries, we notice, that with an increasing batch size b, the
atoms more and more look like each other.

4.2. Generalization Experiment. After learning the dictionary Db, we can
solve (3.3) to recover an image, via

Irec = P−1(Wrec) with Wrec = [wrec
1 , . . . , wrec

nb
] and wrec

nb
= Dbx

opt (4.1)



270 A. KÖHLER, M. BREUß AND S. SHABANI

(a) Recovery of the 640 × 640 images D30
and D73 from the Brodatz data set.

(b) Recovery of the 640×640 non-subset im-
ages D42 and D44 from the Brodatz data set.

Fig. 4.2: From left to right, we present the original image first, followed by recovery
using D4, D8 and D16, respectively. In the first and third row, we see the images in
total, and the rows two and four are showing zoomed in versions of the recoveries.

For this experiment, we have chosen Trec = 10. The results can be seen in Fig. 4.2.
On the left (cf. Fig. 4.2a) we present the results of two images (D30 and D73) that
were part of the subset and therefore part of the training. The right images (cf.
Fig. 4.2b) are the results of images (D42 and D44) not part of the training subset.
In the first and third row of Fig. 4.2, we show the image in the original resolution of
640 × 640 pixels. In the rows two and four, we are presenting a zoomed part of the
image above. The first column is always presenting the original image. The columns
two, three, and four reveal the recoveries using D4, D8 and D16, in this order.

Visual inspection of Fig. 4.2 reveals that using D4 (column 2 and 6) will recover
the images almost perfectly. The recovery using D8 (column 3 and 7) works pretty
well, if only focusing on the full resolution image. Examining the zoomed parts, we
notice that block-like artefacts emerge. In recovery with D16, these artefacts are even
more dominant, even in the full resolution image.

We will use the mean squared error, MSE = ∥I − Irec∥22/m with m the number

b D30 D73 avg. of subset D42 D44
4 2.1 · 10−3 3.8 · 10−3 3.85 · 10−3 6.2 · 10−3 3.2 · 10−3

8 1.07 · 10−2 2.32 · 10−2 2.443̄ · 10−2 3.55 · 10−2 2.36 · 10−2

16 2.73 · 10−2 4.25 · 10−2 4.93̄ · 10−2 5.72 · 10−2 4.44 · 10−2

Table 4.1: The mean squared error (MSE) of different images (part or not part of the
subset) and the average of our subset of the Brodatz data set to different batch sizes
b.



AN EXPERIMENTAL ANALYSIS OF THE K-SVD ALGORITHM 271

Fig. 4.3: From left to right, we present the original image first, and the recovery
using D4, D8 and D16. From top to bottom row, we see the image in total, and a
zoomed version.

of pixels in the image, to quantify the reconstruction quality of the recovered image.
The MSE values for the images in Fig. 4.2 are listed in Table 4.1. There we see, that
if we switch from a batch size b = 4 to b = 8, we will increase the error by almost a
power of ten. Then again, switching from b = 8 to b = 16 only roughly doubles the
error. Generalizing from images that are part of our training set, to images that are
not, seems to have no significant impact on recovery quality.

The number of details/texture in an image appears to be impactful on MSE and
the recovery quality. The bottom image in Fig. 4.2a (D73) and the top image in
Fig. 4.2b (D42) are highly textured images and have higher MSE values than the
other two, less detailed, images in Fig. 4.2.

4.3. Binary Image Experiment. We ended the last section with the hypoth-
esis, that highly textured images produce larger MSE values. But first, we have to
mention that the Brodatz images contain some visually not apparent noise that could
influence the observed MSE values, as the method will attempt to recover it.

To study this issue, we created a binary (black and white) version of our training
dataset. Then we learned a dictionary in the same way as before. No parameters were
changed or adjusted. From the learning process we obtained the three dictionaries
Dbw

4 , Dbw
8 and Dbw

16 .
An example of original image and recoveries can be seen in Fig. 4.3, keeping the

order of Fig. 4.2. We notice that the recovery using Dbw
4 leads to an almost perfect

recovery. However, there are still problems with the details. i.e. in the top-right
corner within the zoomed frame of the original image. There we notice a hook-like
structure, that vanishes during the recovery process.

Considering the recovery using Dbw
8 , we notice that the full-size image still looks

very similar to the original image, on one hand. On the other hand, in the zoomed
image, a blurring occurs that gets even more dominant in the recovery with Dbw

16 . The
latter recovery can no longer be visually declared as a black-and-white image. This
gray blurring comes from the normalization while learning the dictionary. Therefore,
using only binary images will not lead to a binary or non-noise creating dictionary.

Computing the MSE for the recovered images, we get MSE = 1.6891 · 10−5 for



272 A. KÖHLER, M. BREUß AND S. SHABANI

Fig. 4.4: The difference between the original black-and-white image (D30) and re-
covery using Dbw

8 , where values above/below zero were indicated with blue/red dots.
The left image shows the total, and in the right image we show a zoomed part.

4 8 12 16 20

10−3

10−7

10−11

10−15

10−19

Trec

M
S
E

b = 4

4 8 12 16 20
10−4

10−3

10−2

10−1

Trec

b = 8

D30 D73 D30bw

4 8 12 16 20
10−4

10−3

10−2

10−1

Trec

b = 16

Fig. 4.5: The MSE between original and recovered image, with different values for
Trec. From left to right we recovered with b = 4, b = 8, and b = 16. The blue line
indicates the D30 image, the red line belongs to the image D73, and the black denotes
the black-and-white version of D30.

b = 4, MSE = 1.6699 · 10−4 for b = 8, and MSE = 4.8149 · 10−4 for b = 16. We notice
that the MSE belonging to Dbw

16 is still smaller than the MSE of the gray valued
recovery with D4.

In Fig. 4.4, we plot the difference between the original image in black-and-white
and the recovery based on Dbw

8 . On the right plot, we present a zoomed in image. The
zoomed part was indicated left plot with a black square. Red dots indicate negative
and blue dots a positive difference between the original and the recovery. The plots
indicate that all errors occur on the edges of the texture.

4.4. Studying the Parameter Trec. In the previous experiments, we always
fixed Trec = 10. This parameter controls the number of used atoms in the recovery.
To study its influence, we compute the MSE of the recovery obtained with different
values of Trec ∈ [3, 20] in (3.3). The results are visualized in Fig. 4.5.

In this figure, we gave each batch a plot. From left to right, we present the MSE
of the recovery using Db with b = 4, b = 8 and b = 16. The blue line indicates the
D30 image (cf. Fig. 4.2a top), the red line belongs to the image D73 (cf. Fig. 4.2a



AN EXPERIMENTAL ANALYSIS OF THE K-SVD ALGORITHM 273

bottom), and the black denotes the black-and-white version of D30 (cf. Fig. 4.3).
As a main observation, the batch size seems to have a bigger impact on increas-

ing the recovery quality, than increasing the number of used atoms Trec. However,
reducing the batch size will lead to an increase in computation time. In the end, we
have to balance low MSE versus computation time.

In the left plot (b = 4) we see a considerable drop in the MSE for Trec ≥ 16. The
same drop could be noticed if we use Trec ≥ 64 or Trec ≥ 256 for 8 × 8 and 16 × 16
batches, respectively. Thus, using values Trec ≥ b2 appears to be beneficial in terms
of the MSE, but they are not a reasonable option for the K-SVD procedure itself.

5. Conclusion and Future Work. Concerning recovery of highly textured
images, we found that the biggest part in reconstruction error is by the recovery of
edges. Additionally, we have shown that increasing the number of used atoms has a
limited effect on increasing the quality of the recovered image.

Acknowledgments. The authors acknowledge funding of the work by the DLR
project AIMS:AIDIA with the funding number 50WK2270F.

REFERENCES

[1] Brodatz’s texture database. website: https://www.ux.uis.no/~tranden/brodatz.html.
[2] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcomplete dic-

tionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–
4322, November 2006.

[3] Michal Aharon, Michael Elad, and Alfred M. Bruckstein. On the uniqueness of overcomplete
dictionaries, and a practical way to retrieve them. Linear Algebra and its Applications,
416(1):48–67, 2006. Special Issue devoted to the Haifa 2005 conference on matrix theory.

[4] Dennis Bontempi. KSVD. GitHub: https://github.com/denbonte/KSVD, 2018.
[5] Phil Brodatz. Textures: A Photographic Album for Artists and Designers. Dover books on art,

graphic art, handicrafts. Dover Publications, 1966.
[6] Kai Cao, Eryun Liu, and Anil K Jain. Segmentation and enhancement of latent fingerprints:

A coarse to fine ridgestructure dictionary. IEEE transactions on pattern analysis and
machine intelligence, 36(9):1847–1859, 2014.

[7] Michael Elad. Sparse and redundant representations: from theory to applications in signal and
image processing. Springer Science & Business Media, 2010.

[8] Kjersti Engan, Sven Ole Aase, and John H̊akon Husøy. Multi-frame compression: Theory and
design. Signal Processing, 80(10):2121–2140, 2000.

[9] Allen Gersho and Robert M Gray. Vector quantization and signal compression, volume 159.
Springer Science & Business Media, 2012.

[10] Raja Giryes and Michael Elad. Sparsity-based poisson denoising with dictionary learning. IEEE
Transactions on Image Processing, 23(12):5057–5069, 2014.

[11] Sylvain Lesage, Rémi Gribonval, Frédéric Bimbot, and Laurent Benaroya. Learning unions
of orthonormal bases with thresholded singular value decomposition. In Proceed-
ings.(ICASSP’05). IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, 2005., volume 5, pages v–293. IEEE, 2005.

[12] Michael S Lewicki and Terrence J Sejnowski. Learning overcomplete representations. Neural
computation, 12(2):337–365, 2000.

[13] Liyan Ma, Lionel Moisan, Jian Yu, and Tieyong Zeng. A dictionary learning approach for
poisson image deblurring. IEEE Transactions on medical imaging, 32(7):1277–1289, 2013.

[14] Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

[15] Ron Rubinstein, Michael Zibulevsky, and Michael Elad. Efficient Implementation of the K-SVD
Algorithm Using Batch Orthogonal Matching Pursuit. CS Technion, 40, April 2008.

[16] Joel Aaron Tropp. Topics in sparse approximation. The University of Texas at Austin, 2004.
[17] Shiming Xiang, Gaofeng Meng, Ying Wang, Chunhong Pan, and Changshui Zhang. Image

deblurring with coupled dictionary learning. International Journal of Computer Vision,
114:248–271, 2015.

[18] Qiang Zhang and Baoxin Li. Dictionary learning in visual computing. Springer Nature, 2022.

https://www.ux.uis.no/~tranden/brodatz.html
https://github.com/denbonte/KSVD

