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ON NUMERICAL SIMULATION OF AIRFOIL VIBRATIONS
INDUCED BY COMPRESSIBLE FLOW∗

MILOSLAV FEISTAUER † AND JAN ČESENEK‡

Abstract. The subject of the paper is the numerical simulation of the interaction of two-
dimensional compressible viscous flow and a vibrating airfoil. The airfoil is considered as a solid
body with two degrees of freedom, moving in the vertical direction and rotating around an elastic
axis. The numerical simulation consists of the solution of the Navier-Stokes system by the space
discontinuous Galerkin method combined with BDF in time, coupled with a system of nonlinear
ordinary differential equations describing the airfoil motion. The time-dependent computational
domain and a moving grid are taken into account by the arbitrary Lagrangian-Eulerian (ALE) for-
mulation of the Navier-Stokes equations. The applicability of the developed method is demonstrated
by numerical experiments.
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1. Introduction. The interaction between flowing fluids and vibrating struc-
tures is the main subject of aeroelasticity, which studies the influence of aerodynamic
and elastic forces on an elastic structure. The flow-induced vibrations may affect
negatively the operation and stability of the systems. Therefore, one of the main
goals of aeroelasticity is the prediction and cure of the aeroelastic instability. This
discipline achieved many results, particularly from engineering point of view (see, e.g.
the monographs [1], [5] and [10]).

In our paper we are concerned with the numerical solution of airfoil vibrations
induced by compressible viscous flow. The airfoil is considered as a solid flexibly
supported body with two degrees of freedom, allowing its vertical and torsional os-
cillations. The airfoil vibrations are described by a system of second-order nonlinear
ordinary differential equations for the vertical displacement of the airfoil and the ro-
tation angle of the airfoil around its elastic axis. This system is discretized by the
Runge-Kutta method and coupled with the numerical approximation of the compress-
ible Navier-Stokes system written in the arbitrary Lagrangian-Eulerian (ALE) form.
It is discretized by the discontinuous Galerkin finite element method (DGFEM) in
space and the backward difference formula (BDF) in time. We give here a detailed
description of all ingredients of the coupled fluid-structure interaction problem. The
presented results of numerical experiments demonstrate the applicability of the de-
veloped method.

2. Formulation of the flow problem. We consider compressible flow in a
bounded domain Ωt ⊂ IR2 depending on time t ∈ [0, T ]. We assume that the boundary
of Ωt is formed by three disjoint parts: ∂Ωt = ΓI ∪ ΓO ∪ ΓWt , where ΓI is the inlet,
ΓO is the outlet and ΓWt denotes the boundary of an airfoil moving in dependence
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on time. The time dependence of the domain Ωt is taken into account with the use
of the arbitrary Lagrangian-Eulerian (ALE) method, see e.g. [11]. It is based on a
regular one-to-one ALE mapping of the reference configuration Ω0 onto the current
configuration Ωt: At : Ω0 −→ Ωt, i.e. X ∈ Ω0 7−→ x = x(X, t) = At(X) ∈
Ωt. We define the domain velocity z = (z1, z2) defined by the relations z̃(X, t) =
∂
∂tAt(X), t ∈ [0, T ], X ∈ Ω0, z(x, t) = z̃(A−1(x), t), t ∈ [0, T ], x ∈ Ωt, and the
ALE derivative of a vector function w = w(x, t) defined for x ∈ Ωt and t ∈ [0, T ]:
DA

Dt w(x, t) = ∂w̃
∂t (X, t), where w̃(X, t) = w(At(X), t), X ∈ Ω0, x = At(X). Then

the system describing the compressible flow, which consists of the continuity equation,
the Navier-Stokes equations and the energy equation (cf. [7]) can be written in the
ALE form (see, e.g. [8])

DAw

Dt
+

2∑
s=1

∂gs(w)
∂xs

+ w divz =
2∑

s=1

∂Rs(w,∇w)
∂xs

. (2.1)

Here w = (w1, . . . , w4)T = (ρ, ρv1, ρv2, E)T ∈ R4,w = w(x, t), x ∈ Ωt, t ∈
(0, T ), gs(w) = fs(w) − zsw,f i(w) = (ρvi, ρv1vi + δ1i p, ρv2vi + δ2i p, (E + p)vi)T ,
Ri(w,∇w) =

(
0, τV

i1 , τV
i2 , τV

i1 v1 + τV
i2 v2 + k∂θ/∂xi

)T
, τV

ij = λ divv δij + 2µ dij(v),
dij(v) = (∂vi/∂xj + ∂vj/∂xi)/2.

We use the following notation: ρ – density, p – pressure, E – total energy, v =
(v1, v2) – velocity, θ – absolute temperature, γ > 1 – Poisson adiabatic constant,
cv > 0 – specific heat at constant volume, µ > 0, λ = −2µ/3 – viscosity coefficients,
k – heat conduction, τV

ij – components of the viscous part of the stress tensor, δij

– Kronecker symbol. The vector-valued function w is called the state vector, the
functions f i are the so-called inviscid fluxes and Ri represent viscous terms.

The above system is completed by the thermodynamical relations

p = (γ − 1)(E − ρ|v|2/2), θ = (E/ρ− |v|2/2)/cv, (2.2)

and is equipped with the initial condition w(x, 0) = w0(x), x ∈ Ω0, and the following
boundary conditions:

a) ρ|ΓI
= ρD, b) v|ΓI

= vD = (vD1, vD2)T, (2.3)

c)
2∑

i,j=1

τV
ij nivj + k

∂θ

∂n
= 0 on ΓI ,

d) v|ΓWt
= zD = velocity of a moving wall, e)

∂θ

∂n
|ΓWt

= 0 on ΓWt ,

f)
2∑

i=1

τV
ij ni = 0, j = 1, 2, g)

∂θ

∂n
= 0 on ΓO,

with given data ρD, vD,zD.
It is easy to see that fs(αw) = α fs(w) for α > 0. This property implies that

fs(w) = As(w)w, s = 1, 2, (2.4)

where As(w) = Dfs(w)/Dw, s = 1, 2, are the Jacobi matrices of the mappings fs.
The viscous terms Rs(w,∇w) can be expressed in the form

Rs(w,∇w) =
2∑

k=1

Ks,k(w)
∂w

∂xk
, s = 1, 2, (2.5)
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Fig. 3.1. Elastically supported airfoil with two degrees of freedom.

where Ks,k(w) ∈ IR4×4 are matrices depending on w (cf. [3]).

3. Equations for the moving airfoil. The airfoil has two degrees of freedom:
the vertical displacement H (positively oriented downwards) and the angle α of ro-
tation around an elastic axis EA (positively oriented clockwise), see Figure 3.1. The
motion of the airfoil is described by the system of ordinary differential equations for
the unknowns H and α:

mḦ + kHHH + Sα α̈ cosα− Sαα̇2 sinα + dHHḢ = −L(t), (3.1)
SαḦ cosα + Iαα̈ + kααα + dααα̇ = M(t).

The dot and two dots denote the first-order and second-order time derivative, re-
spectively. We use the following notation: L(t) – aerodynamic lift force (upwards
positive), M(t) – aerodynamic torsional moment (clockwise positive), m - mass of
the airfoil, Sα – static moment around the elastic axis EA, Iα – inertia moment
around the elastic axis EA, kHH – bending stiffness, kαα – torsional stiffness, dHH –
structural damping in bending, dαα – structural damping in torsion, l – airfoil depth.

System (3.1) was derived from the Lagrange equations in [12]. It is equipped with
the initial conditions prescribing the values H(0), α(0), Ḣ(0), α̇(0). The aerodynamic
lift force L acting in the vertical direction and the torsional moment M are defined
by

L = − l

∫

ΓW t

2∑

j=1

τ2jnj dS, M = l

∫

ΓW t

2∑

i,j=1

τijnjr
ort
i dS, (3.2)

where

τij = (−p + λ divv)δij + µ
( ∂ui

∂xj
+

∂uj

∂xi

)
, (3.3)

rort
1 = −(x2 − xEA2), rort

2 = x1 − xEA1,

n = (n1, n2) is the unit outer normal to ∂Ωt on ΓWt.

4. Space discretization of the flow problem. For the space semidiscretiza-
tion we use the discontinuous Galerkin finite element method (DGFEM). We construct
a polygonal approximation Ωht of the domain Ωt. By Tht we denote a partition of
the closure Ωht of the domain Ωht into a finite number of closed triangles K with
mutually disjoint interiors such that Ωht =

⋃
K∈Tht

K.
By Fht we denote the system of all faces of all elements K ∈ Tht. Further, we

introduce the set of boundary faces FB
ht = {Γ ∈ Fht; Γ ⊂ ∂Ωht} , the set of “Dirichlet”
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boundary faces FD
ht =

{
Γ ∈ FB

ht; a Dirichlet condition is prescribed on Γ
}

and the
set of inner faces FI

ht = Fht \ FB
ht. Each Γ ∈ Fht is associated with a unit normal

vector nΓ to Γ. For Γ ∈ FB
ht the normal nΓ has the same orientation as the outer

normal to ∂Ωht. We set d(Γ) = length of Γ ∈ Fht and hK = diameter of K ∈ Tht.

For each Γ ∈ FI
ht there exist two neighbouring elements K

(L)
Γ ,K

(R)
Γ ∈ Th such

that Γ ⊂ ∂K
(R)
Γ ∩∂K

(L)
Γ . We use the convention that K

(R)
Γ lies in the direction of nΓ

and K
(L)
Γ lies in the opposite direction to nΓ. If Γ ∈ FB

ht, then the element adjacent
to Γ will be denoted by K

(L)
Γ .

The approximate solution will be sought in the space of piecewise polynomial
functions Sht = [Sht]4 = Sht×Sht×Sht×Sht with Sht = {v; v|K ∈ Pr(K) ∀K ∈ Tht},
where r > 0 is an integer and Pr(K) denotes the space of all polynomials on K of
degree ≤ r. A function ϕ ∈ Sht is, in general, discontinuous on interfaces Γ ∈ FI

ht.
By ϕ

(L)
Γ and ϕ

(R)
Γ we denote the values of ϕ on Γ considered from the interior and the

exterior of K
(L)
Γ , respectively, and set 〈ϕ〉Γ = (ϕ(L)

Γ + ϕ
(R)
Γ )/2, [ϕ]Γ = ϕ

(L)
Γ −ϕ

(R)
Γ .

The discrete problem is derived in the following way: We multiply system (2.1)
by a test function ϕh ∈ Sht, integrate over K ∈ Tht, apply Green’s theorem, sum over
all elements K ∈ Tht, use the concept of the numerical flux and introduce suitable
terms mutually vanishing for a regular exact solution and linearize the resulting forms
on the basis of properties of functions fs and Rs (see, e.g. [8]). In this way we get the
following forms (followed by the explanation of symbols appearing in their definitions):

âh(wh,wh, ϕh, t) =
∑

K∈Tht

∫

K

2∑
s=1

2∑

k=1

Ks,k(wh)
∂wh

∂xk
· ∂ϕh

∂xs
dx (4.1)

−
∑

Γ∈FI
ht

∫

Γ

2∑
s=1

〈
2∑

k=1

Ks,k(wh)
∂wh

∂xk

〉
(nΓ)s · [ϕh] dS

−
∑

Γ∈FD
ht

∫

Γ

2∑
s=1

2∑

k=1

Ks,k(wh)
∂wh

∂xk
(nΓ)s ·ϕh dS

− Θ
∑

Γ∈FI
ht

∫

Γ

2∑
s=1

〈
2∑

k=1

KT
k,s(wh)

∂ϕh

∂xk

〉
(nΓ)s · [wh] dS

− Θ
∑

Γ∈FD
ht

∫

Γ

2∑
s=1

2∑

k=1

KT
k,s(wh)

∂ϕh

∂xk
(nΓ)s ·wh dS,

Jh(wh, ϕh, t) =
∑

Γ∈FI
ht

∫

Γ

σ[wh] · [ϕh] dS +
∑

Γ∈FD
ht

∫

Γ

σwh ·ϕh dS, (4.2)

`h(wh, ϕh, t) =
∑

Γ∈FD
ht

∫

Γ

2∑
s=1

σwB ·ϕh dS (4.3)

− Θ
∑

Γ∈FD
ht

∫

Γ

2∑
s=1

2∑

k=1

KT
k,s(wh)

∂ϕh

∂xk
(nΓ)s ·wB dS,
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dh(wh, ϕh, t) =
∑

K∈Tht

∫

K

(wh ·ϕh) divz dx. (4.4)

b̂h(wh,wh, ϕh, t) (4.5)

= −
∑

K∈Tht

∫

K

2∑
s=1

(As(wh(x))− zs(x))I)wh(x))· ∂ϕh(x)
∂xs

dx

+
∑

Γ∈FI
ht

∫

Γ

(
P+

g

(〈
wh

〉
Γ
, nΓ

)
w

(L)
h + P−g

(〈
wh

〉
Γ
, nΓ

)
w

(R)
h

)
· [ϕh] dS

+
∑

Γ∈FB
ht

∫

Γ

(
P+

g

(〈
wh

〉
Γ
, nΓ

)
w

(L)
h + P−g

(〈
wh

〉
Γ
, nΓ

)
w

(R)
h

)
·ϕh dS,

We set Θ = 1 or Θ = 0 or Θ = −1 and get the so-called symmetric version
(SIPG) or incomplete version (IIPG) or nonsymmetric version (NIPG), respectively,
of the discretization of viscous terms. The symbols P+(w,n) and P−(w, n) denote
the positive and negative part of the matrix P(w, n) =

∑2
s=1(As(w)− zsI)ns defined

similarly as in [9]. In (4.2), σ|Γ = CW µ/d(Γ) and CW > 0 is a sufficiently large
constant. The boundary state wB is defined on the basis of the Dirichlet boundary
conditions (2.3), a), b), d) and extrapolation:

wB = (ρD, ρDvD1, ρDvD2, cvρDθ
(L)
Γ +

1
2
ρD|vD|2) on ΓI , (4.6)

wB = w
(L)
Γ on ΓO, (4.7)

wB = (ρ(L)
Γ , ρ

(L)
Γ zD1, ρ

(L)
Γ zD2, cvρ

(L)
Γ θ

(L)
Γ +

1
2
ρ
(L)
Γ |zD|2) on ΓWt . (4.8)

For Γ ∈ FB
ht we set 〈wh〉Γ = (w(L)

Γ + w
(R)
Γ )/2 and the boundary state w

(R)
Γ is defined

with the aid of the solution of the 1D linearized initial-boundary Riemann problem
as in [6].

In order to avoid spurious oscillations in the approximate solution in the vicinity
of discontinuities or steep gradients, we apply local artificial viscosity forms. They
are based on the discontinuity indicator gt(K) =

∫
∂K

[ρh]2 dS
/
(hK |K|3/4), K ∈ Tht,

introduced in [4]. By [ρh] we denote the jump of the function ρh on the boundary ∂K
and |K| denotes the area of the element K. Then we define the discrete discontinuity
indicator Gt(K) = 0 if gt(K) < 1, Gt(K) = 1 if gt(K) ≥ 1, and the artificial
viscosity forms (see [9])

β̂h(wh,wh, ϕh, t) = ν1

∑

K∈Tht

hKGt(K)
∫

K

∇wh·∇ϕh dx, (4.9)

Ĵh(wh,wh, ϕh, t) = ν2

∑

Γ∈FI
ht

1
2
(
Gt(K

(L)
Γ ) + Gt(K

(R)
Γ )

) ∫

Γ

[wh]· [ϕh] dS,

with parameters ν1, ν2 = O(1).
In order to increase the quality of the numerical approximations, in [2], isopara-

metric elements were used.

4.1. Time discretization by the BDF method. Let us construct a partition
0 = t0 < t1 < t2 . . . of the time interval [0, T ] and define the time step τn = tn− tn−1.
We use the approximations wh(tn) ≈ wn

h ∈ Shtn , z(tn) ≈ zn, n = 0, 1, . . .. Let
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Table 4.1
The coefficients αl.

q = 1 q = 2 q = 3

α0
1

τm
, 2τm+τm−1

τm(τm+τm−1)
,

(2τm+τm−1)(2τm+τm−1+τm−2)−τ2
m

τm(τm+τm−1)(τm+τm−1+τm−2)

α1 − 1
τm

, − τm+τm−1
τmτm−1

, − (τm+τm−1)(τm+τm−1+τm−2)
τmτm−1(τm−1+τm−2)

α2
τm

τm−1(τm+τm−1)
, τm(τm+τm−1+τm−2)

τm−1τm−2(τm+τm−1)

α3 − τm(τm+τm−1)
τm−2(τm+τm−1+τm−2)(τm−1+τm−2)

Table 4.2
The coefficients βl.

q = 1 q = 2 q = 3

β1 1, τm+τm−1
τm−1

, (τm+τm−1+τm−2)(τm+τm−1)
τm−1(τm−1+τm−2)

β2 − τm

τm−1
, − τm(τm+τm−1+τm−2)

τm−1τm−2

β3
τm(τm+τm−1)

τm−2(τm−1+τm−2)

us assume that wn
h, n = 0, . . . , m − 1, are already known. Then we introduce the

functions ŵn
h = wn

h ◦ Atn ◦ A−1
tm

for n = m − 1,m − 2, . . ., which are defined in the
domain Ωhtm . The ALE derivative at time tm is approximated by the backward finite
difference formula (BDF) of order q:

DAwh

Dt
(tm) ≈ DA

apprwh

Dt
(tm) = α0w

m
h +

q∑

l=1

αlŵ
m−l
h ,

with coefficients αl, l = 0, ..., q, depending on τm−l, l = 0, ..., q−1. In the begining of
the computation, when m < q, we approximate the ALE derivative by formulas of the
lower order q := m. In nonlinear terms we use the extrapolation for the computation
of the state wm

h :

wm
h =

q∑

l=1

βlŵ
m−l
h , (4.10)

where βl, l = 1, ..., q, depend on τm−l, l = 0, ..., q − 1. If m < q, then we apply the
extrapolation of order m. The values of the coefficients αl, l = 0, ..., q, and βl, l =
1, ..., q, for q = 1, 2, 3 are given in Tables 4.1 and 4.2, respectively.
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By the symbol (·, ·)tm
we shall denote the scalar product in L2(Ωhtm

), i.e.

(wh,ϕh)tm =
∫

Ωhtm

wh ·ϕh dx. (4.11)

The resulting BDF-DG scheme has the following form: For each m = 1, 2, . . . we
seek wm

h ∈ Shtm such that

(
DA

apprwh

Dt
(tm),ϕh

)

tm

+ b̂h(wm
h ,wm

h ,ϕh, tm) + âh(wm
h ,wm

h ,ϕh, tm) (4.12)

+ Jh(wm
h , ϕh, tm) + dh(wm

h ,ϕh, tm) + β̂h(wm
h , wm

h , ϕh, tm)

+ Ĵh(wm
h , wm

h , ϕh, tm) = `(wm
B , ϕh, tm), ∀ϕh ∈ Shtm

.

The numerical solution of the structural problem, in contrast to the solution of
the compressible flow, is not difficult. System (3.1) is transformed to a first-order
system and approximated by the Runge-Kutta method. In what follows, we shall be
concerned with the realization of the complete fluid-structure interaction problem.

4.2. Construction of the ALE mapping. There exist various possibilities
how to construct the ALE mapping At. In the case of flow past an isolated airfoil it
is possible to use the procedure introduced in [2]. We start from the assumption that
we know the airfoil position at time instants tm, given by the displacement H(tm) and
rotation angle α(tm) and want to define the mapping Atm : Ωh0 → Ωhtm We construct
two circles K1,K2 with center at the elastic axis EA and radii R1, R2, 0 < R1 < R2

so that the airfoil is lying inside the circle K1. The interior of the circle K1 is moving
in the vertical direction and rotates around the elastic axis as a solid body together
with the airfoil. The exterior of K2 is not deformed and in the area between K1

and K2 we use the intepolation. First we define the mapping Htm(X1, X2), where
X = (X1, X2) ∈ Ωh0, describing the vertical motion and rotation:

Htm(X1, X2) =
(

cos α(tm) sin α(tm)
−sin α(tm) cos α(tm)

)(
X1 −XEA1

X2 −XEA2

)
(4.13)

+
(

XEA1

XEA2

)
+

(
0

−H(tm)

)
,

where (XEA1, XEA2) represents the position of the elastic axis at time t = 0. If we
denote the identical mapping by Id(X1, X2) = (X1, X2), we define the mapping Atm

as a combination of Id and Htm :

Ātm(X1, X2) = (1− ξ)Htm(X1, X2) + ξId(X1, X2), (4.14)

where

ξ = ξ(r̂) = min
(

max
(

0,
r̂ −R1

R2 −R1

)
, 1

)
(4.15)

and r̂ =
√

(X1 −XEA1)2 + (X2 −XEA2)2 is the distance of a point X ∈ Ωh0 from
the elastic axis. Finally, the ALE mapping At is defined as the conforming piecewise
linear interpolation of Āt.
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The domain velocity is approximated by the formula of order q in the form

zm(x) = α0x +
q∑

l=1

αlAtm−l
(A−1

tm
(x)) for x ∈ Ωhtm

, (4.16)

with coefficients αl, l = 0, ..., q, given in Table 4.1. If m < q, then we set q := m.

4.3. Coupling procedure. In the solution of the complete coupled fluid-struct-
ure interaction problem it is necessary to apply a suitable coupling procedure. Here
we apply the following algorithm.

0. Prescribe ε > 0 - the measure of accuracy in the coupling procedure, and an
integer N ≥ 0 - the maximal number of iterations in the coupling procedure.

1. Assume that the approximate solution wm−1
h of the discrete flow problem

(4.12) and the corresponding lift force L and torsional moment M computed
from (3.2) - (3.3) are known.

2. Extrapolate linearly L and M from the interval [tm−2, tm−1] to [tm−1, tm].
Set n := 0.

3. Prediction of H, α: Compute the displacement H and angle α at time tm as
the solution of system (3.1). Denote it by H∗, α∗.

4. On the basis of H∗, α∗ determine the position of the airfoil at time tm, the
domain Ωhtm , the ALE mapping Ahtm and the domain velocity zm

h .
5. Solve the discrete problem (4.12) at time tm.
6. Correction of H, α: Compute L, M from (3.2) - (3.3) at time tm and in-

terpolate L, M in the interval [tm−1, tm]. Compute h, α at time tm from
(3.1).

7. If |H∗ −H|+ |α∗ − α| ≥ ε and n < N , set H∗ = H, α∗ = α, n := n + 1 and
go to 4. Otherwise, m := m + 1 and go to 2.

If N = 0, then we get a weak (loose) coupling of the flow and structural problems.
With increasing N and decreasing ε, the coupling becomes stronger.

5. Numerical experiments. In order to demonstrate the applicability and ro-
bustness of the developed method, numerical tests were performed. Here we present
the results of computations carried out with the following data: m = 0.086622
kg, Sα = −0.000779673 kgm, Iα = 0.000487291 kgm2, kHH = 105.109 N m−1,
kαα = 3.696682 N mrad−1, l = 0.05 m, c = 0.3 m, µ = 1.8375 · 10−5 kgm−1 s−1, far-
field density ρ = 1.225 kg m−3, H(0) = 0.02 m, α(0) = 6 degrees, Ḣ(0) = 0, α̇ = 0.
We neglect the structural damping. The elastic axis is placed on the airfoil chord at
the 40% distance from the leading edge.

For the space discretization quadratic polynomials (r = 2) were used and the
time discretization was carried out by the second-order BDF method (q = 2). The
discretization of the viscous terms was realized by the SIPG version. The parameter
CW = 500 in the interior part of the penalty form Jh was used, whereas in the
boundary penalty CW = 5000. The constants in the artificial viscosity forms were
chosen ν1 = ν2 = 0.1.

The computational process starts at time t = −δ < 0 by the solution of the flow,
keeping the airfoil in a fixed position given by the prescribed initial translation H and
the angle of attack α. Then, at time t = 0 the airfoil is released and we continue by
the solution of a complete fluid-structure interaction problem.

Figure 5.1 shows the displacement H and the rotation angle α in dependence on
time for the far-field velocity 30 and 40 m s−1. The corresponding Reynolds numbers
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Fig. 5.1. Displacement H (left) and rotation angle α (right) of the airfoil in dependence on

time for far-field velocity 30 and 40 m s−1.

are 6 ·105 and 8 ·105, respectively. We see that for the velocity 30 m s−1 the vibrations
are damped, but for the velocity 40 m s−1 we get the flutter instability, when the
vibration amplitudes are increasing in time.

The developed method also allows the numerical simulation of airfoil vibrations
induced by high-speed transonic or hypersonic flow. Here we present the results of
the simulation of airfoil vibrations induced by the flow with far-field Mach number
M∞ = 1.2 and Reynolds number Re = 104. In this case damped airfoil vibrations were
obtained for the same data as above except the bending and torsional stiffnesses, which
were now 1000 times higher than before. Figure 5.2 shows Mach number distribution
in the vicinity of the airfoil at several time instants. One can see well resolved obligue
shock wave, shock waves leaving the trailing edge and wake.

6. Conclusion . The paper is concerned with the development and applications
of the numerical method for the simulation of airfoil vibrations induced by viscous
compressible flow. The gas flow is described by the 2D compressible Navier-Stokes
equations in the ALE formulation allowing to take into account time dependence of
the computational domain. The flow problem is coupled with the structural problem
represented by the system of second-order ordinary differential equations for the ver-
tical displacement and torsional angle of the airfoil. For the discretization of the flow
problem the space DGFEM combined with the BDF time discretization was applied.
This method is coupled with the Runge-Kutta method for the solution of the system
of ordinary differential equations describing the airfoil vibrations. Numerical exper-
iments show that the method can be applied to the simulation of airfoil vibrations
induced by compressible subsonic as well as transonic flow.

There are the following subjects for further work: realization of further tests of
the developed technique, solution of problems with large vibrations, comparison of
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Fig. 5.2. Mach number distribution at time instants t = 0.0 s, 0.00049 s, 0.00098 s, 0.00147
s, for far-field velocity 408 m s−1, Mach number Ma = 1.2 and Reynolds number Re = 104.

obtained results with wind tunnel experiments, and theoretical analysis of qualitative
properties (as, e.g. stability, convergence) of the developed numerical method.
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