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LAGRANGEAN METHOD WITH TOPOLOGICAL CHANGES FOR
NUMERICAL MODELLING OF FOREST FIRE PROPAGATION

MARTIN BALAŽOVJECH, KAROL MIKULA, MÁRIA PETRÁŠOVÁ, JOZEF URBÁN ∗

Abstract. We introduce a mathematical model and new Lagrangean numerical algorithm for
modelling of a wind-driven forest fire front propagation. The model is based on evolution of plane
curve (representing the fire front) in the outer normal direction by a speed given by the properties
of a fuel bed which is scaled exponentially by a wind speed projected onto the normal to the front.
The influence of the front shape on the speed of propagation is modelled by adding the curvature
regularization to the normal velocity. For numerical modelling we use so-called Lagrangean approach
where the crucial point is an asymptotically uniform tangential redistribution of grid points which
prevents the moving front from forming spurious crossovers and swalow tails. Moreover, thanks to the
uniform tangential redistribution and our new idea of computing distance function in a narrow tube
along discrete curve grid points, we detect and solve in O(n) complexity the topological changes in
moving front. Such approach makes our Lagrangean method highly efficient and represents significant
improvement of the existing numerical models for the forest fire propagation and, in general, it
represent new fast and stable method for solving free boundary problems modelled by moving fronts
with possible topological changes.
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1. Introduction. In this paper we present a new wind-driven forest fire prop-
agation model and its efficient and robust numerical solution by the so-called La-
grangean approach. The proposed mathematical model has the form of an intrinsic
advection-diffusion equation with a driving force which represents the equation of
motion in normal direction for a closed planar curve representing the fire front. The
normal velocity is influenced by the fuel bed, wind velocity and by the shape of the
front represented by the local curvature. We allow topological changes in the fire
front movement and present new approach for their detection and resolution. For the
numerical solution we use the so-called direct Lagrangean approach where the curve is
directly discretized and moved in a stable way by incorporating a suitable tangential
velocity which keeps numerical grid points uniformly distributed. This property is
crucial for building a stable numerical algorithm preventing the moving curve from
spurious swalow tails and crossovers and also for the fast detection and resolution of
topological changes during the front evolution. Our new method for treatment of topo-
logical changes has computational complexity O(n), where n is a number of grid points
representing the moving fire front, while standard approaches has complexity O(n2),
thus the new method brings high improvement into the Lagrangean computational
approaches allowing topological changes. Our spatial and temporal discretizations
are based on flowing finite volume method in space and semi-implicit discretization in
time. The solvability of the arising cyclic tridiagonal linear systems for any choice of
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time step is guarranteed by using the so-called inflow-implicit/outflow-explicit scheme
for intrinsic advection corresponding to a tangential redistribution. It also guarrantees
the choice of common time step for multi-component fire front when other approaches
would either lead to necessity to use different time steps (given by solvability and sta-
bility conditions) for different curves arising after a topological change or to use the
smallest uniform time step for all the curves which would deteriorate both speed and
precision. From all these points of view the Lagrangean numerical method which is
proposed in this paper seems to be optimal with respect to stability, precision and
computational complexity for a general 2D moving fronts.

Concerning the current forest fire propagation numerical models, the best known
and most widely used is software FARSITE (Fire Area Simulator) described in [2]. In
FARSITE, the moving fire front is given by a closed polygonal curve and its propa-
gation is governed by the Huygens principle. It means that any point of the curve at
time t is a source of an independent elliptical ignition and thus expansion [9] and new
front position is constructed as an envelope of such ellipses. The half-axes of every
ellipse in a point of the front depends on the local fuel bed properties and on the
wind direction. There are several deficiences in existing forest fire simulators based
on evolving polygons. A first one is that the moving curve (fire front) can artificially
selfintersect (or form crossovers) either due to a numerical instability in solving corre-
sponding ODE systems or by the fact that front is comming to a time moment where
a topological change should occur, cf. Figure 2.3 in section on topological changes.
A treatment of topological changes, i.e. splitting and merging of moving fire front, is
a nontrivial task itself, as well. In current simulation softwares it is done by testing
pairwise distances of not-neighboring linear segments of the polygon [2] or by pairwise
comparison of not-nieghbouring grid point distances [1]. The computational complex-
ity of such approach is proportional to the squared number of grid points representing
a discrete moving front and thus the testing whether a topological change should oc-
cur takes a substantial part of computational time of the corresponding algorithm.
It is worth to note that occurence of a topological change is a rare event in general,
but it must be checked at every discrete time step and thus such methods waste too
much of CPU time. We cite here the FARSITE manual which states explicitly the
above mentioned dificulties:

These crossovers, however, must be removed to preserve the meaningful
portions of the fire front.
...a list of pairwise comparisons is made to detect intersections between each
perimeter segment and every other perimeter segment of a given fire polygon.
Regardless of the methods chosen, the process of crossover removal is expensive
in time and computing power, and is an interesting area for further research
and improvement.

In our paper we design the Lagrangean method without such deficiences. The pre-
sented method is fast, stable and thus robust and applicable in real-time simulations.
Our work has been motivated by a cooperation with Slovak state forestry company
Vojenské lesy a majetky SR, Malacky, which takes care about the forest area in the
Záhorská ńıžina lowland, an area north-west of Bratislava, Slovakia, and has to pre-
vent the mostly pine forests from fires which are not a rare event. The rest of the
paper is organized as follows, in section 2 we describe our new Lagrangean scheme
including topological changes for general curve evolution equations, in section 3 we
present our model for the forest fire propagation and in section 4 we present results
of numerical simulations.
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Figure 2.1. Curve discretization corresponding to uniform discretization of circle with unit
length.

2. Lagrangean numerical algorithm. Let Γ be the plane curve, Γ : S1 → R2,
parametrized by u ∈ S1, where S1 is a circle with unit length, thus u ∈ [0, 1] and
Γ = {x(u), u ∈ S1}, where x(u) is position vector of the curve Γ for parameter u. In
our Lagrangean method the curve will be discretized as displayed in Figure 2.1, where
x0,x1, ...,xn are discrete curve points which correspond to the uniform discretization
of the unit circle with step h = 1/n and x0 = xn. Let g = |xu| > 0 and denote by
s the unit arc-length parametrization of the curve Γ. Then ds = gdu. The unique
definition of the unit tangent T and normal N vectors to the plane curve Γ can
be done as follows: T = xs, N = x⊥

s and T ∧ N = 1, where T ∧ N denotes the
determinant of the matrix with columns T and N. We note that for the closed curve
parametrized in a counterclockwise direction (as plotted in Fig. 2.1) such defined N
represents the inner unit normal vector. The motion of any point on the curve can be
decomposed into the normal and tangential directions. Although it is well-known that
the tangential motion does not change the shape of the evolving curve, on the other
hand we know that it is helpful in stabilization of the numerical algorithms based on
the Lagrangean approaches. So we consider a general form of the curve evolution in
the form

xt = βN+ αT. (2.1)

where β = w + εk is a velocity in the inward normal direction and α is a ”free”
parameter, which can be suitably chosen. From the Frenet-Serret formula we have
Ts = kN, where k is the curvature, from which it follows kN = Ts = (xs)s = xss.
The equation (2.1) thus can be written in the form of the following intrinsic PDE

xt = εxss + αxs + wx⊥
s , (2.2)

for the curve position vector x = (x1, x2). The model (2.2) is a system of two equations
for the components of the position vector x1 and x2. The curvature term represents
the intrinsic diffusion along the curve, the tangential velocity term represents the
intrinsic advection along the curve and the external driving force in the inner normal
direction is given by the third term of the right hand side of (2.2).

2.1. Suitable choice of tangential velocity. In order to derive tangential
velocity we follow [6, 7, 8]. We know that for any evolving curve satisfying (2.1) with
arbitrary parameters α and β we get the formula which describes the evolution of
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its local length gt = −gkβ + gαs = −gkβ + αu. On the other hand, by integrating
this equation along the curve we get equation for evolution of the total curve length
Lt = −L⟨kβ⟩Γ where ⟨kβ⟩Γ = 1

L

∫
Γ
kβds is the mean value of kβ along the curve Γ.

Let us consider a numerical discretization of the ratio

g

L
≈

|xi−xi−1|
h

L
=

|xi − xi−1|
Lh

=
|xi − xi−1|

L
n

,

where the numerator denotes distance between two neighbouring points and denom-
inator a distance of neighbouring points if the curve would be uniformly discretized
(since n denotes the total number of curve points and its segments). We can sim-
ply see that one can get the curve with uniformly redistributed discrete grid points

if such ratio |xi−xi−1|
L
n

→ 1 for all discrete segments representing distances between

neighbouring points, so in the continuous formulation we should have g
L → 1 with

increasing time. By using the above results for gt and Lt we obtain( g
L

)
t
=

g

L
(−kβ + αs + ⟨kβ⟩Γ)

On the other hand, we can consider e.g. the function g
L (t) = 1 + g

L (0)e
−ωt for which

limt 7→∞
(
g
L

)
= 1 with parameter ω controlling how fastly the redistribution becomes

uniform. Such function is solution of differential equation( g
L

)
t
= ω

(
1− g

L

)
(2.3)

If we take into account both (2.3) and (2.3) we obtain differential equation

αs = kβ − ⟨kβ⟩Γ + ω(
L

g
− 1) (2.4)

for tangential velocity α which guarantees the asymtotically uniform redistribution of
grid points.

2.2. Numerical discretization of intrinsic PDE. Let us consider our general
intrinsic differential equation (2.2) and integrate it on the segment [xi− 1

2
,xi+ 1

2
], where

xi− 1
2
denotes the middle point between the points xi−1 and xi, i.e. xi− 1

2
= xi−1+xi

2 :∫ x
i+1

2

x
i− 1

2

xtds = ε

∫ x
i+1

2

x
i− 1

2

xssds+

∫ x
i+1

2

x
i− 1

2

αxsds+

∫ x
i+1

2

x
i− 1

2

wx⊥
s ds.

Let us denote by hi = |xi − xi−1| the length of the linear approximation of the i-th

discrete curve segment. Then we have |xi− 1
2
− xi+ 1

2
| = hi+hi+1

2 . Let us consider
that ε, α and w are given by constant values εi, αi and wi on the curve segment
[xi− 1

2
,xi+ 1

2
] around the point xi. Let us denote by m the time step numbering and

by τ the length of discrete time step. Let us approximate the time derivative by the
finite difference. Using the Newton-Leibniz formula and semi-implicit approach we
get

hm
i + hm

i+1

2

xm+1
i − xm

i

τ
= εmi [xm+1

s ]
x
i+1

2
x
i− 1

2

+ αm
i [xm+1]

x
i+1

2
x
i− 1

2

+ wm
i ([xm]

x
i+1

2
x
i− 1

2

)⊥
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from where

hm
i + hm

i+1

2

xm+1
i − xm

i

τ
= εmi [xm+1

s ]
x
i+1

2
x
i− 1

2

+ αm
i (xm+1

i+ 1
2

− xm+1
i− 1

2

) + wm
i (xm

i+ 1
2
− xm

i− 1
2
)⊥

and by approximating the arc-length derivative in the first bracket on the right hand
side by the finite difference we obtain the fully-discrete semi-implicit flowing finite
volume scheme [6, 7, 8],

hm
i + hm

i+1

2

xm+1
i − xm

i

τ
= εmi

(
xm+1
i+1 − xm+1

i

hm
i+1

−
xm+1
i − xm+1

i−1

hm
i

)

+ αm
i

(
xm+1
i+1 − xm+1

i−1

2

)
+ wm

i

(
xm
i+1 − xm

i−1

2

)⊥

. (2.5)

As one can see, we have obtained two cyclic tridiagonal systems of linear equations
for position vector components xm+1

i = ((xm+1
i )1, (x

m+1
i )2), where i = 1, ..., n and

xm+1
0 = xm+1

n resp. xm+1
n+1 = xm+1

1 . The tangential velocity αm
i is computed as

follows. We set αm
0 = 0, i.e. the point x0 will not be moving in tangential direction,

but only in the normal direction. Then we get disretization of (2.4) in the form

αm
i = αm

i−1 + hm
i kmi βm

i − ⟨kβ⟩mΓ hm
i + ω

(
Lm

n
− hm

i

)
(2.6)

where the curvature kmi , the normal component of velocity βm
i , for i = 1, ..., n, the

mean value ⟨kβ⟩mΓ and the total length Lm are computed by using the following
formulas:

kmi = sgn (Ri−1 ∧Ri+1)
1

2hm
i

arccos

(
Ri+1.Ri−1

hm
i+1h

m
i−1

)
,

βm
i =

εmi−1 + εmi
2

kmi +
wm

i−1 + wm
i

2
, ⟨kβ⟩mΓ =

1

Lm

n∑
l=1

hm
l kml βm

l , Lm =
n∑

l=1

hm
l ,

where Ri = ((Ri)1, (Ri)2)
T = xm−1

i − xm−1
i−1 . The above constructed system (2.5) is

cyclic tridiagonal and can be written in the following form

−Am
i xm+1

i−1 +Bm
i xm+1

i − Cm
i xm+1

i+1 = Dm
i , (2.7)

where Dm
i is right hand side and Am

i = −αm
i

2 +
εmi
hm
i
, Cm

i =
αm

i

2 +
εmi
hm
i+1

and Bm
i = (Hm

i +

Am
i + Cm

i ), where Hm
i =

hm
i+1+hm

i

2τ . It can be solved by the cyclic tridiagonal solver
which uses Sherman-Morrison formula in order to generalize the classical Thomas
algorithm to the matrices with non-zero elements in matrix corners. As in the case
of the Thomas algorithm, the solvability is guaranteed by the diagonal dominance
of the system matrix. In case of (2.5) the diagonal dominance yields the condition
|Bm

i | ≥ | − Am
i | + | − Cm

i | = |Am
i | + |Cm

i |. Since in the semi-implicit approach the
system parameters are fixed from the previous time step this condition can be fulfilled
only by the proper choice of the time step τ according to the next condition

τ ≤ 1

2

hm
i+1 + hm

i

| ε
m
i

hm
i

− αm
i

2 |+ | εmi
hm
i+1

+
αm

i

2 | − (
εmi
hm
i

+
εmi
hm
i+1

)
, (2.8)
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which must be tested for all i = 1, .., n in every time step. Such test is time consuming
itself and moreover it can give different values of τ for different curves arising e.g. after
a topological change. The smallest τ then must be chosen which again slowed down
the speed of this semi-implicit scheme. For this reason it is usefull to modify the
scheme, in order to get a method which is not constrained by the choice of the length
of discrete time step.

2.3. Numerical scheme without restriction on time step. To motivate the
scheme, let us consider the advection equation

qt + vqx = 0, (2.9)

where q : Ω × [0, T ] → R is an unknow function and v(x) is a scalar velocity field.
We solve the equation (2.9) in a domain Ω ⊂ R and in time interval [0, T ]. Let us
denote by pi a finite volume (in our case it will be a segment of the curve [xi− 1

2
,xi+ 1

2
]

around the point xi), with length h. The equation (2.9) can be rewriten as

qt + (vq)x − qvx = 0. (2.10)

If we integrate (2.10) on the finite volume pi, we get

h(q̄i)t + vi+ 1
2
q̄i+ 1

2
− vi− 1

2
q̄i− 1

2
− q̄i(vi+ 1

2
− vi− 1

2
) = 0,

h(q̄i)t + vi− 1
2
(q̄i − q̄i− 1

2
) + (−vi+ 1

2
)(q̄i − q̄i+ 1

2
) = 0, (2.11)

where vi = v(xi), vi− 1
2

= v(xi− 1
2
), vi+ 1

2
= v(xi+ 1

2
), and q̄i, q̄i− 1

2
and q̄i+ 1

2
are

representative values of solution inside and on the boundaries of the finite volume
pi. If vi− 1

2
> 0, it represents the inflow into the finite volume from the left side. If

vi+ 1
2
< 0, it represents the inflow to the finite volume from the right side. If the signs

are opposite, they represent outflows from the finite volume. Let us define

bini− 1
2
= max(vi− 1

2
, 0), bouti− 1

2
= min(vi− 1

2
, 0), (2.12)

bini+ 1
2
= max(−vi+ 1

2
, 0), bouti+ 1

2
= min(−vi+ 1

2
, 0).

Let qi be the solution of the scheme for the finite volume pi. The representative values
will be obtained from the values qi by reconstructions q̄i− 1

2
= qi+qi−1

2 , q̄i+ 1
2
= qi+qi+1

2

and q̄i = qi in the inflow part while q̄i =
q̄
i− 1

2
+q̄

i+1
2

2 in the outflow part. Then, let us
approximate the time derivative by the finite difference and take the inflow implicitly
and the outflow explicitly as suggested in [4, 5], cf. also [3]. We get the I2OE scheme
in the form

h

τ
qm+1
i +

1

2
bini− 1

2
(qm+1

i − qm+1
i−1 ) +

1

2
bini+ 1

2
(qm+1

i − qm+1
i+1 ) =

h

τ
qmi − 1

4

(
bouti− 1

2
(qmi+1 − qmi−1) + bouti+ 1

2
(qmi−1 − qmi+1)

)
.

Since the velocity αi is given in the centers of finite volumes (the points xi) and not
on their boundaries and in our case of the curve evolution equation (2.2) it is on the
right hand side and thus we have vi = −αi, we modify the above I2OE scheme by
defining

bini− 1
2
= max(−αi, 0), bouti− 1

2
= min(−αi, 0), bini+ 1

2
= max(αi, 0), bouti+ 1

2
= min(αi, 0)
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and unknowns are components of the position vector xi for which we get our final
numerical scheme:

−
(
εmi
hm
i

+
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2
bini− 1

2

)
xm+1
i−1 −
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εmi
hm
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i+1 +(
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2τ
+
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+
1

2
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2
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1

2
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2

)
xm+1
i = (2.13)

hm
i+1 + hm

i

2τ
xm
i − 1

4
bouti− 1

2
(xm

i+1 − xm
i−1)−

1

4
bouti+ 1

2
(xm

i−1 − xm
i+1) + wm

i

(
xm
i+1 − xm

i−1

2

)⊥

.

Now, the coeficients Am
i , Bm

i and Cm
i in corresponding system (2.7) are always non-

negative, the system matrix is diagonally dominant M-matrix and thus it is always
solvable by the cyclic tridiagonal solver without any restriction on time step length
τ . A possible negative values of Am

i and Cm
i in the classical system (2.7) were caused

by the intrinsic advection which corresponds to the tangential velocity α. This prob-
lem is solved by our treatment of advection using the inflow-implicit/outflow-explicit
splitting. This approach has the second order accuracy in space and time in case of
the scalar advection equation [4, 5] and for the curve evolution model it keeps the
grid points on the circle for the constantly rotating tangential velocity.

2.4. Topological changes. By the topological change we mean splitting of the
evolving curve into several separate parts. Such situations can occur during the
evolution mainly around nonburnable regions or when the curve velocity is slowed
down significantly locally. Together with splitting, we can consider also merging
of several fire fronts. Solution of such problems can be treated analogously to the
approach presented here. Detecting and solving the topological changes in the La-
grangean approach is usually highly time consuming because the standard approaches
has computational complexity O(n2) where n is the number of curve grid points. Such
complexity is due to a standard strategy for the topological change detection which
consists in computing distances between all grid points of the curve. Then, if the
smallest computed distance is realized not among the neighbouring grid points and it
is below a specified threshold, it indicates that the curve should be split to two curves

in those points. The number of operations in such approach is
∑n−2

i=2 (n− i) = n2−3n
2

and it slowes down computing time significantly.
Our goal is to develop new method for the topological changes detection with

much lower complexity. We follow the same strategy to find two not-neighbouring
points with the smallest distance below some threshold. But we find this couple in
completely different and fast way. Our curve is asymptotically uniformly discretized
which means that all distances are close to their mean value. The global length
can increase (fire front expands) or decrease (after a topological change) during the
evolution. If the mean distance between neighbouring grid points is greater than 1
(the size of one pixel in the forestry (bit)map is 1m2, see Fig. 2.3) we densify the
curve, which means that we put new point in the middle of every curve segment and
thus the number of points is doubled. On the other hand, if the mean distance is
less than 0.4 we coarse the discretization and remove half of the grid points. By this
procedure we guarantee that for a smooth curve there are generically maximally 3
grid points in one pixel.

Our main new idea is to create a narrow strip (with thickness 1) of pixels along
the curve. If there is no topological change occuring, this strip should not be crossed
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by two distant pieces of the curve. On the other hand, if there are two distant points
inside one pixel of this strip, it indicates the topological change. So our algorithm is
as follows:

1. we traverse all curve grid points and mark the pixels in which they lie by j = 0.
2. we traverse again subsequently all points and ask whether the pixel value j

where the point belongs is equal to 0. If yes, set it to i, where i is the number of
grid point. If it is not 0, it means that the value in pixel was set by another point
j. If i − j ≤ 2 then go to another point. If i − j > 2 then there are more than two
points between the points i and j, and i and j belong to one pixel. It is clear that
such situation indicates the splitting of the curve.

3. if such splitting was detected, we do a test of distances between the sets of
points {i − 2, i − 1, i, i + 1, i + 2} and {j − 2, j − 1, j, j + 1, j + 2}. If the smallest
distance is less than a given threshold (in our case the mean distance) then the curve
is split in two points where this smallest distance was computed.

From the above description it is clear that the number of operations is propor-
tional only to number of grid points and thus our algorithm has complexity O(n), see
also Figure 2.2.

Figure 2.2. Detection of topological changes. In the left figure, the points x4 and x19 are
detected as indicators of the topological change, they are distant but in one pixel. The smallest
distance in their local neighbourhood is then computed for the points x5 and x18 (right figure) where
the topological change is performed and two new curves are created each of which contains x5 and
x18.

3. Fire front propagation model. We have at disposal the forestry typological
maps where recorded data includes a species composition, age and density of the
trees. Such data are provided in shp format which is then used in ArcGIS software
to create a bitmap images with the resolution 1000 x 1000 pixels corresponding to
area 1 x 1 km. The greyscale color of the image is given by the combustibility of
an underlying forest which we get by a combination of age and density of species.
Here, the black color represents a non-flammable material (river, road) and white the
most burnable material (young, dense, coniferous forest). The graylevels in between
thus give the local speed of fire front propagation in the range from 0 (black) to a
maximal speed of fire propagation with zero wind velocity (white) which is e.g. 1
meter/minute for the young and dense pine forest. By this approach we have given
the scalar velocity function f depending on the spatial position x which represents
the speed of linear fire front in outer unit normal direction without wind and terrain
slope. The influence of the wind and terrain slope on the fire front propagation has
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Figure 2.3. Curve evolution in nonhomogeneous media by the Lagrangean approach without
treatment of topological changes (up) and with treatment of topological changes (down).

the same character. Increasing the wind speed or terrain slope in the direction of the
fire front head increases the speed of front head while decreasing the front speed on
its back. This can be modelled by a projection of the wind speed (or terrain slope)
vector v to the outer unit normal of the front (−N) which is then an input to (e.g.
exponential) function having the property to increase velocity f at the head of the
front and decrease it at the back of the front. Thus we can write the equation for the
inner normal velocity β considered in the previous section as follows

β = −f e−λ(v·N) . (3.1)

Since such inner normal velocity is always negative, the outer normal velocity is
positive and the front is always expanding. It is worth to note that the choice of
the exponential function with a positive parameter λ was justified in [10] for the pine
forests. Both from the real observations and physical considerations related to a heat
radiation which is the main driving force for the forest fire propagation it follows that
there is an influence of the local shape of the front, expressed by the curvature k,
on the fire front speed. If the front is convex (which means with positive curvature)
then there is larger portion of unburned forest encompassing the front than in linear
case, it dries slowly and thus the speed of propagation in outer normal direction is
slowed down (and in inner normal direction is fasten up). In opposite, if the shape of
front is concave (which means with negative curvature), the unburned forest is largely
encompassed by burning area and thus the front speed in outer normal direction must
be larger as in the linear case. Such situations can be modelled e.g. by modifying β
in the following sense

β = −f e−λ(v·N)(1− δk), (3.2)
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which represents our final mathematical model for the forest fire front propagation.
The model has two empirical parameters λ and δ which must be given by laboratory
experiments or tuned in real simulations e.g. using the past forest fire records. The
equation (3.2) for the inner normal velocity of the fire front is rewritten into the form
of intrinsic PDE (2.2) with ε = δ f e−λ(v·N), w = −f e−λ(v·N) and with α given
by (2.4) which is then solved by the numerical scheme (2.13) and by treatment of
topological changes as described in section 2.4.

4. Computational results. First, let us compare computationally our ap-
proach to topological change detection with the standard one where distances among
all grid points are computed [2, 1]. We run 10000 time steps in the same wind condi-
tions and starting at same place, cf. Fig. 2.3 bottom row. Using standard approach
the computation took 709.89 seconds and the detection of topological changes took
669.16 seconds while the rest was spent in solving tridiagonal systems for updating
the evolving curve(s) position. The topological change detection cover 94.26% of the
whole computing time. Using our new approach the overal computation took only
44.85 seconds and the detection of topological changes took only 3.381 seconds which
was only 7.53% of the whole computing time. The resulting curve evolution was same
using both approaches while our new method brings high acceleration regarding CPU
time. The computations have been performed on standard PC (Intel Core 2 Duo
CPU 1.66 GHz, 2 GB RAM).

At the end we present computational reconstruction of the real forest fire from
August 29th, 1992 which took place in the Záhorská ńıžina lowland. Fire began near
the highway from Bratislava to Brno (the small circle in the left bootom corner of
the map presented left up in Fig. 4.1) and very soon a large area of pine forest was
stricken. It is known from literature that maximal velocity of fire front propagation
in pine forest (without wind) is 1 meter per minute. From the records of Slovak
weather forecast services (Slovenský Hydrometeorologický Ústav) we know that in
that location the averaged wind velocity on August 29th, 1992 was 6 meters per
second and the wind direction was 85 deg from the x axis. It is a flat area so there is
no need to consider the influence of the terrain slope. By the records of fire department
of Vojenské lesy a majetky SR, Malacky, we know that the fire passed in 1 day (1440
minutes) about 3 km to the lake Tančibok (indicated on the bottom right map). For
the computation we use the forestry map of the region which was valid before the
forest fire and we have chosen the lenght of time step τ = 0.1 minute and the model
parameters λ = 0.26, δ = 3. In Fig. 4.1 we plot the fire front after 0, 5000, 10000 and
14000 time steps when the lake Tančibok was reached.
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