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TWO DIMENSIONAL SIMULATION OF FLUID-STRUCTURE
INTERACTION USING DGFEM

JAROSLAVA HASNEDLOVÁ-PROKOPOVÁ†,∗, MILOSLAV FEISTAUER† , JAROMÍR

HORÁČEK∗ , ADAM KOSÍK† , AND VÁCLAV KUČERA†

Abstract. This paper deals with the numerical simulation of the fluid-structure interaction of
compressible flow with an elastic body. The work was motivated by the vibrations of human vocal
folds during phonation onset. The fluid part of the problem is represented by the Navier-Stokes
equations written in the ALE form. It allows us to treat the time dependence of the computational
domain using the ALE (Arbitrary Lagrangian-Eulerian) method. The deformation of the elastic
body is described by the linear dynamical elasticity equations. Both these system are coupled by the
transmission conditions. The space-discretization of the fluid problem was carried out by the dis-
continuous Galerkin Finite element method (DGFEM) and for the time-discretization the backward
difference formula (BDF) was used. The structural problem was discretized by the conforming finite
element method and the Newmark method. The results present the applicability of the method and
compare two different developed couplings.
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1. Introduction. At the current speed of technological progress, the coupled
problems describing the interactions of fluid flow with elastic structure motion are of
great importance in many fields of physical and technical sciences such as biomechan-
ics, aerospace, civil and mechanical engineering, etc. In our work we are inspired by
the flow-induced vibrations in the human vocal folds. In current publications various
simplified glottal flow models are used. They are based on the Bernoulli equation
([1]), 1D models for an incompressible inviscid fluid ([2]), 2D incompressible Navier-
Stokes equations solved by the finite volume method ([3]) or finite element method
([4]). From the papers dealing with the compressible Navier-Stokes equations we can
mention [5], where the finite volume method is used and the motion of the channel
cross-section of the glottal channel is prescribed. Our aim is the finite element model
of the fluid-structure interaction of the viscous compressible flow with the elastic body.

2. Continuous problem. This section is devoted to the formulation of the
interaction problem. We treat the compressible flow and the elasticity of the body
separately.

2.1. Formulation of the flow problem. We are concerned with the problem
of compressible flow in a time-dependent bounded domain Ωt ⊂ IR2 with t ∈ [0, T ] .
The boundary of Ωt is formed by three disjoint parts: ∂Ωt = ΓI ∪ΓO ∪ΓWt , where ΓI

is the inlet, ΓO is the outlet and ΓWt represents impermeable time-dependent walls.
The time dependence of the domain Ωt is taken into account with the aid of the

Arbitrary Lagrangian-Eulerian (ALE) method, see e.g. [6]. The basis of this approach
is created by a regular one-to-one ALE mapping of the reference configuration Ω0 onto
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the current configuration Ωt :

At : Ω̄0 −→ Ω̄t, i.e. X ∈ Ω̄0 7−→ x = x(X, t) = At(X) ∈ Ω̄t.

Further, we define the domain velocity:

z̃(X, t) =
∂

∂t
At, t ∈ [0, T ] , X ∈ Ω0, (2.1)

z(x, t) = z̃(A−1
t (x), t), t ∈ [0, T ] , x ∈ Ωt

and the ALE derivative of the state vector function w = w(x, t) defined for x ∈ Ωt

and t ∈ [0, T ] :

DA

Dt
w(x, t) =

∂w̃

∂t
(X, t), (2.2)

w̃(X, t) = w(At(X), t), X ∈ Ω0, x = At(X, t), X ∈ Ω0, x = At(X).

Using the chain rule we are able to express the ALE derivative in the form

DAwi

Dt
=

∂wi

∂t
+ div(zwi)− widivz, i = 1, . . . , 4. (2.3)

Application of (2.3) to the continuity equation, the Navier-Stokes equations and the
energy equation leads to the governing system in the ALE form

DAw

Dt
+

2∑
s=1

∂gs(w)
∂xs

+ wdivz =
2∑

s=1

∂Rs(w,∇w)
∂xs

, (2.4)

where

w = (ρ, ρv1, ρv2, E)T ∈ IR4,

gs(w) = fs − zsw, s = 1, 2,

fs = (ρvs, ρv1vs + δ1sp, ρv2vs + δ2sp, (E + p)vs)T , s = 1, 2,

Rs(w,∇w) = (0, τV
s1, τ

V
s2, τ

V
s1v1 + τV

s2v2 + k
∂θ

∂xs
)T , s = 1, 2,

τV
ij = λδijdivv + 2µdij(v), dij(v) =

1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
, i, j = 1, 2.

For a detailed description see, for example, [7]. The following notation is used: ρ
– fluid density, p – pressure, E – total energy, v = (v1, v2) – velocity vector, θ –
absolute temperature, cv > 0 – specific heat at constant volume, γ > 1 – Poisson
adiabatic constant, µ > 0, λ = −2µ/3 – viscosity coefficients, k > 0 – heat conduction
coefficient, τV

ij – components of the viscous part of the stress tensor. The vector-
valued function w is called the state vector, fs are inviscid fluxes and Rs represent
viscous terms. The system (2.4) is completed by the thermodynamical relations

p = (γ − 1)

(
E − ρ

|v|2
2

)
, θ =

1
cv

(
E

ρ
− 1

2
|v|2

)
(2.5)

and equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω0 (2.6)
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and the boundary conditions

Inlet ΓI : ρ = ρD, v = vD = (vD1, vD2),
2∑

j=1

(
2∑

i=1

τV
ij ni

)
vj + k

∂θ

∂n
= 0,

Moving wall ΓWt
: v = zD(t) = velocity of a moving wall,

∂θ

∂n
= 0, (2.7)

Outlet ΓO :
2∑

j=1

τV
ij nj = 0,

∂θ

∂n
= 0, i = 1, 2,

with prescribed data ρD, vD, zD. By n we denote the unit outer normal.

2.2. Elasticity problem. Let us have a bounded open set Ωb ⊂ IR2 representing
an elastic body, which has a common boundary with the reference domain Ω0 occupied
by the fluid at the initial time. Further, the boundary of Ωb is formed by two disjoint
parts ∂Ωb = Γb

W ∪ Γb
D, where Γb

W ∩ Γb
D = ∅, Γb

W ⊂ ΓW0 and Γb
D is a fixed part

of the boundary. Using the notation of the displacement of the body u(X, t) =
(u1(X, t), u2(X, t)), X = (X1, X2) ∈ Ωb, t ∈ (0, T ) we can write the equations
describing the deformation of the elastic body Ωb in the form

ρb ∂2ui

∂t2
+ Cρb ∂ui

∂t
−

2∑

j=1

∂τ b
ij

∂Xj
= 0 in Ωb × (0, T ), i = 1, 2. (2.8)

Here (τ b
ij)

2
i,j=2 represents the stress tensor fulfilling the generalized Hooke’s law for

an isotropic material

τ b
ij = λ̃divuδij + 2µ̃eij , i, j = 1, 2, (2.9)

where (eij)2i,j=2 is the strain tensor with the components

eij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi

)
, i, j = 1, 2 (2.10)

and ρb is the density of the solid material. The Lamé coefficients are denoted by λ̃, µ̃
and are used in the definition of the Young modulus Eb and Poisson ratio σb :

Eb =
µ̃(3λ̃ + 2µ̃)

λ̃ + µ̃
, σb =

λ̃

2(λ̃ + µ̃)
. (2.11)

The dissipation of the energy of the system is represented by the expression Cρb ∂ui

∂t ,
where C ∈ IR and C ≥ 0. The formulation of the dynamical elasticity problem (2.8)
is completed by the initial conditions

u(X, 0) = 0 and
∂u

∂t
(X, 0) = 0 X ∈ Ωb (2.12)

and boundary conditions:

2∑

j=1

τ b
ijnj = Tn

i on Γb
W × (0, T ), i = 1, 2, (2.13)

u = 0 on Γb
D × (0, T ). (2.14)

The components of the normal stress are denoted by Tn
i , i = 1, 2.
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2.3. Fluid-structure interaction coupling and the ALE mapping. The
common boundary Γ̃Wt

between the fluid and the structure at time t, is given by

Γ̃Wt =
{
x ∈ IR2; x = X + u(X, t), X ∈ Γb

W

}
. (2.15)

This means that the domain Ωt is determined by the displacement u of the part Γb
W

at time t. If we know the domain Ωt occupied by the fluid at time t, the flow problem
can be solved and the surface force acting on the body on Γ̃Wt

can be determined.
Then the transformation of the surface force to the reference configuration, i.e. to the
interface Γb

W is realized. In the case of the linear elasticity model, when only small
deformations are considered, we get the transmission condition

2∑

j=1

τ b
ij(X)nj(X) = −

2∑

j=1

τf
ij(x)nj(X), i, j = 1, 2, (2.16)

where τf
ij are the components of the stress tensor of the fluid

τf
ij = −pδij + τV

ij , i, j = 1, 2 (2.17)

and points x and X satisfy the relation

x = X + u(X, t). (2.18)

By n(X) = (n1(X), n2(X)) we denote the unit outer normal to the body Ωb on
Γb

W at the point X. Further, the fluid velocity is defined on the moving part of the
boundary ΓWt by the transmission condition

v(x, t) = zD(x, t) =
u(X, t)

∂t
. (2.19)

The ALE mapping At is determined with the aid of an artificial stationary elas-
ticity problem, where we seek d = (d1, d2) defined in Ω0 as a solution of the elastic
system

2∑

j=1

∂τa
ij

∂xj
= 0 in Ω0, i = 1, 2, (2.20)

where τa
ij are the components of the artificial stress tensor

τa
ij = λadivdδij + 2µaea

ij(d), ea
ij(d) =

1
2

(
∂di

∂xj
+

∂dj

∂xi

)
, i, j = 1, 2. (2.21)

The artificial Young modulus Ea and the artificial Poisson ratio σa can be derived
from Lamé coefficients λa and µa in the same way as in (2.11). The problem is again
completed by the boundary conditions:

d|ΓI∪ΓO
= 0, d|ΓW0\Γb

W
= 0, d(x, t) = u(x, t), x ∈ Γb

W . (2.22)

The solution of the problem (2.20) – (2.22) gives us the ALE mapping of Ω̄0 onto
Ω̄t in the form

At(x) = x + d(x, t), x ∈ Ω̄0, (2.23)
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for each time t.
Based on the above mentioned ideas we can formulate the continuous FSI prob-

lem: Our aim is to determine the domain Ωt, t ∈ (0, T ] and function w = w(x, t), x ∈
Ω̄t, t ∈ [0, T ] and u = u(X, t), X ∈ Ω̄b, t ∈ [0, T ] satisfying equations (2.4), (2.8),
the initial conditions (2.6), (2.12), the boundary conditions (2.7), (2.13),(2.14) and
the transmission conditions (2.16), (2.19).

3. Discrete problem. The described FSI problem represents a strongly nonlin-
ear dynamical system, where the theoretical analysis of the qualitative properties of
this problem is open. Therefore, we shall be concerned with its numerical solution. In
the following we describe numerical methods for the solution of separately considered
flow and structural problems and the construction of the ALE mapping.

3.1. Discretization of the flow problem. For the space semidiscretization
we use the discontinuous Galerkin finite element method (DGFEM).

We construct a polygonal approximation Ωht of the domain Ωt. By Tht we denote
a partition of the closure Ω̄ht of the domain Ωht into a finite number of closed triangles
K with mutually disjoint interiors such that Ω̄ht =

⋃
K∈Tht

K. The approximate
solution will be sought in the space of piecewise polynomial functions

Sht = [Sht]4, with Sht = {v; v|K ∈ Pr(K) ∀K ∈ Tht}, (3.1)

where r ≥ 0 is an integer and Pr(K) denotes the space of all polynomials on K of
degree ≤ r. A function ϕ ∈ Sht is, in general, discontinuous on interior edges of the
triangulation.

The discrete problem is derived in the following way: We multiply system (2.4)
by a test function ϕh ∈ Sht, integrate over K ∈ Tht, apply Green’s theorem, sum over
all elements K ∈ Tht, use the concept of the numerical flux and introduce suitable
terms mutually cancelling for a regular exact solution. Moreover, we carry out a
linearization of the nonlinear terms. Then, the semidiscrete solution of problem (2.4)
is defined as a function wh ∈ C1((0, T ), Sht) fulfilling the conditions

(
DAwh

Dt
(t), ϕh

)
+ dh(wh(t), ϕh) + bh(wh(t), ϕh) (3.2)

+ah(wh(t), ϕh) + Jh(wh(t), ϕh) = lh(wh(t), ϕh) ∀ϕh ∈ Sht, ∀t ∈ (0, T ),
wh(0) = w0

h, (3.3)

where w0
h is L2(Ωh0)-projection of w0 on Sh0. This means that

(
w0

h, ϕh

)
=

(
w0,ϕh

) ∀ϕh ∈ Sh0. (3.4)

For a detailed description of the whole process see [7].
In the case of the time discretization of (3.2) we construct a partition 0 = t0 <

t1 < t2 . . . of the time interval [0, T ] and define the time step τk = tk+1 − tk. We use
the approximations wh(tn) ≈ wn

h ∈ Shtn , z(tn) ≈ zn, n = 0, 1, . . . and introduce the
function ŵk

h = wk
h ◦ Atk

◦ A−1
tk+1

, which is defined in the domain Ωhtk+1 . The ALE
derivative at time tk+1 is approximated by the first-order backward finite difference

DAwh

Dt
(x, tk+1) ≈ wk+1

h (x)− ŵk
h(x)

τk
. (3.5)

The remaining terms are treated with the aid of a linearization and extrapolation.
For details see [7].
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3.2. Discretization of the structural problem. The space semidiscretization
of the structural problem is carried out by the conforming finite element method.
By Ωb

h we denote a polygonal approximation of the domain Ωb. We construct a
triangulation T b

h of the domain Ωb
h formed by a finite number of closed triangles. Then

the approximate solution of the structural problem is sought in the finite-dimensional
space Xh = Xh ×Xh, where

Xh =
{
vh ∈ C(Ω̄b

h); vh|K ∈ P s(K), ∀K ∈ T b
h

}
. (3.6)

Here s ≥ 1 is an integer. In Xh we define the subspace V h = Vh × Vh, where

Vh =
{

yh ∈ Xh; yh|Γ̄b
Dh

= 0
}

. (3.7)

The derivation of the space semidiscretization can be obtained in a standard way.
Multiplying system (2.8) by any test function yhi ∈ Vh, i = 1, 2, applying Green’s
theorem and using the boundary condition (2.13). Using the notation u′h(t) = ∂uh(t)

∂t

and u′′h(t) = ∂2uh(t)
∂t2 we define the approximate solution of the structural problem as

a function t ∈ [0, T ] → uh(t) ∈ V h such that there exist the derivatives u′h(t), u′′h(t)
and the identity

(ρbu′′h(t), yh)Ωb
h

+ (Cρbu′h(t), yh)Ωb
h

+ a(uh(t), yh) = (T n
h (t), yh)ΓW h

, (3.8)

∀yh ∈ V h, ∀t ∈ (0, T ),

and the initial conditions

uh(X, 0) = 0, u′h(X, 0) = 0, X ∈ Ωb
h. (3.9)

are satisfied. This approach leads to a system of ordinary differential equations. The
time discretization is carried out by the Newmark method. For details see [8].

3.3. Construction of the ALE mapping. System (2.20) is discretized by con-
forming piecewise linear finite elements on the mesh Th0 used for computing the flow
field at the beginning of the computational process in the polygonal approximation
Ωh0 of the domain Ω0. The use of linear finite elements is sufficient, because we need
only to know the movement of the vertices of the mesh.

4. Coupling procedure. In the solution of the complete coupled fluid-structure
interaction problem it is necessary to apply a suitable coupling procedure. The general
framework can be found, e.g. in [9]. In our case we apply two different types of
algorithms.

First, we present the weak coupling algorithm:
1. Compute the approximate solution of the flow problem (2.4) on the time level

tm.
2. Compute the stress tensor of the fluid τf

ij and the aerodynamical force acting
on the structure and transform it to the interface Γb

Wh by (2.16).
3. Solve the elasticity problem (2.8), compute the deformation uh,m at time tm

and approximate the domain Ωhtm+1 .
4. Determine the ALE mapping Atm+1h by (2.20) and approximate the domain

velocity zh,m+1 by (2.19).
5. Set m := m + 1, go to 1).

The strong coupling procedure represents a more complicated coupling algorithm.
It follows this outline:
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1. Assume that the approximate solution wm
h of the flow problem and the de-

formation uh,m of the structure are known on the time level tm.
2. Set u0

h,m+1 := uh,m, k := 1 and apply the iterative process:
(a) Compute the stress tensor of the fluid τf

ij and the aerodynamical force
acting on the structure and transform it to the interface Γb

Wh.
(b) Solve the elasticity problem, compute the approximation of the deforma-

tion uk
h,m+1 and construct the approximation Ωk

htm+1
of the flow domain

at time tm+1.
(c) Determine the approximations of ALE mapping Ak

tm+1h and the domain
velocity zk

h,m+1.
(d) Solve the flow problem in Ωk

htm+1
and obtain the approximate solution

wk
h,m+1.

(e) If the variation of the displacement uk
h,m+1 and uk−1

h,m+1 is larger than
the prescribed tolerance, go to a) and k := k + 1. Else Ωhtm+1 :=
Ωk

htm
, wm+1

h := wk
h,m+1, um+1

h := uk
h,m, m := m + 1 and goto 2).

The difference between these two coupling algorithms will be presented on our nu-
merical results in Section 5.

5. Numerical results. We consider the model of flow through a channel with
two bumps which represent time dependent boundaries between the flow and a sim-
plified model of vocal folds (see Figure 5.1). The numerical experiments were carried

Fig. 5.1. Computational domain at time t = 0 with a finite element mesh and the description
of its size: LI = 50 mm, Lg = 15.4 mm, LO = 94.6 mm, H = 16 mm. The width of the channel in
the narrowest part is 1.6 mm.

out for the following data: magnitude of the inlet velocity vin = 4 m/s, the viscosity
µ = 15 · 10−6 kg m−1 s−1, the inlet density ρin = 1.225 kg m−3, the outlet pressure
pout = 97611 Pa, the Reynolds number Re = ρinvinH/µ = 5227, heat conduction
coefficient k = 2.428 · 10−2 kg m s−2 K−1, the specific heat cv = 721.428 m2 s−2 K−1,
the Poisson adiabatic constant γ = 1.4. The inlet Mach number is Min = 0.012.
The Young modulus and the Poisson ratio have values Eb = 25000 Pa and σb = 0.4,
respectively, the structural damping coefficient is equal to the constant C = 100 s−1

and the material density ρb = 1040 kg m−3 .
In the numerical experiments quadratic (r = 2) and linear (s = 1) elements were

used for the approximation of the flow and structural problem, respectively.
In Table 5.1 we characterize the computational meshes used by the number of

elements in the flow part and in the structure part of the mesh. Figure 5.1 shows
the situation at the initial time t = 0 corresponding to the computational mesh 1. In
Figure 5.2 we see the positions of sensor points used in the analysis.

First we tested the influence of the density of the computational meshes on the
oscillations of the pressure averaged over the outlet ΓO and the corresponding Fourier
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Mesh Colour used in graphs Flow part Structure part
Mesh 1 red 5398 1998
Mesh 2 green 10130 2806
Mesh 3 blue 20484 4076

Table 5.1
Computational meshes.

Fig. 5.2. Positions of some sensors in the narrowest part of the channel used in the analysis

analysis. The time step used in the compared computations was 4 · 10−7s. Figure 5.3
shows the behaviour of the quantity

pav(t) =
∫

ΓO

(
p(x, t)− 1

T

∫ T

0

p(x, t)dt

)
dS/

∫

ΓO

dS (5.1)

in dependence on time, computed with the aid of the strong coupling (left) and the
weak coupling (right). Figure 5.4 shows the corresponding Fourier analysis. During
successive mesh refinement one can observe the convergence tendency manifested by
the decrease of the magnitude of the quantity pav fluctuations and the decrease of the
magnitude of the Fourier spectra.
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100
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Fig. 5.3. Dependence of the quantity pav computed on three meshes: strong coupling (left),
weak coupling (right).

In order to compare the impact of the used coupling procedure we present graphs
of the quantity pav on the different meshes computed by the strong coupling (blue)
and the weak coupling (red). Figure 5.5 shows that the difference between the results
obtained by the strong and weak coupling is not too large. The same fact can be
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Fig. 5.4. Fourier analysis of the quantity pav computed on three meshes: strong coupling (left),
weak coupling (right).

observed in Figures 5.3 and 5.4. The main difference is in the higher stability of the
strong coupling during solution the problem on a long time interval. On the other
hand, the strong coupling requires naturally longer CPU time.
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Fig. 5.5. Comparison of the weak coupling (red) and the strong coupling (blue) on the meshes
1, 2 and 3.

The character of the vocal folds vibration can be indicated in Figure 5.6, which
shows the displacements of the sensor points on the vocal folds surface (marked in
Figure 5.2) and the fluid pressure fluctuations in the middle of the gap.

6. Conclusion. A robust higher-order method for the numerical simulation of
the interaction of compressible flow with elastic structures has been presented. The
numerical tests show the convergence tendency of this method during successive mesh
refinement and the good applicability of the method for the numerical solution of the
simplified models of phonation onset. Unfortunatelly, we are not able to treat the
complete closure of the channel due to the degeneration of the computational mesh.
This remains as the next step of our implementation.
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Fig. 5.6. Displacement of the structure and the pressure of the fluid in the marked sensor
points. (The computation were carried out using the mesh 2.)
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