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Abstract. In this paper, we present a new form-finding method for freeform shell structures.
For a given boundary curve, we design a construction that is an approximation of the corresponding
minimal surface. The surface is represented by a triangular network of curves and its initial shape
can be an arbitrary smooth surface with the given boundary. In order to satisfy the minimal surface
condition, we apply the mean curvature flow model to the given initial shape and we let it evolve
until it reaches the equilibrium. Since it is desirable in practice to have the structure as uniform as
possible, we propose a method for tangential redistribution of nodes on the individual curves. The
mathematical model is discretized by a flowing control volume scheme and the paper also provides
the details of the discretization technique.
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1. Introduction. Shell structures are light weight constructions that have be-
come very popular in the last decades. They provide a great flexibility in shape design
which is very important in modern architecture and they are realizable with a rela-
tively low amount of material. They consist of truss elements usually made of wood,
steel or other metals and shell elements for which the typical materials are concrete,
glass or plastic. These elements are assembled to large structures that are mostly
used as roofs or walls of various types of buildings.

The process of the construction design begins with the design of its shape. Af-
terwards, a proper geometric configuration of the elements has to be found in order
to meet aesthetic criteria and optimize the process of manufacturing. The structure
can be viewed as a wireframe or polygonal approximation of a surface so the design
procedure – the so called form-finding process [8] – consists in choosing the surface
itself and the subsequent choosing of a set of vertices and edges in order to represent
it.

In our paper, we present a method for generating structures representing min-
imal surfaces. These surfaces are frequently used as roof constructions because of
their appealing aesthetic and practical properties – they have a three-dimensional
nature which makes them more interesting than simple flat shapes and in many cases
they minimize the consumption of material used for the shell elements. From the
mathematical point of view, a minimal surface is a surface of zero mean curvature
and its shape depends on its boundary curve. It can be obtained as the solution of
the mean curvature flow (MCF) equation with the initial condition being an appro-
priately differentiable surface with the given boundary. Our method for finding the
geometric configuration of the shell structures is based on numerical solution of the
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MCF model. The numerical approach requires a discrete representation of the surface
of exactly the same character as the desired structure – the edges of the discretization
correspond to the truss elements of the construction while the polygons represent the
shell elements. In order to be able to adjust the lengths of the truss elements, the
basic MCF model is extended by adding a term representing tangential movement of
the node points along the surface. This is important from both aesthetic and manu-
facturing points of view – the resulting structure should be in some sense uniform or
it should contain as many equally sized elements as possible. We propose a method
for tangential redistribution of the grid points that produces structures with up to
2/3 of equally sized truss elements.

2. Computing minimal surface shapes. A minimal surface is a surface whose
mean curvature is everywhere zero. The existence and uniqueness of a minimal surface
for a given boundary curve is still unresolved in the general case, however, a lot
is known about particular cases. For example, having in mind the possible use in
architecture, we can invoke the result of Nitsche [7] who proved that a regular analytic
Jordan curve in R3 whose total curvature is at most 4π bounds a unique minimal
surface which is an embedded disk. This disk is also area-minimizing.

Let us restrict ourselves to the case when the boundary is a simple closed regular
curve Γ: R → R3. The corresponding minimal surface SΓ

min : Ω → R3, Ω being a
closed subset of R2 homeomorphic to a disk, can be obtained as the solution at t =∞
of the mean curvature flow equation

∂tS = 2HN (2.1)

solved in int(Ω) where S : Ω × 〈0,∞) → R3, S(·, ·, t) is an embedding of Ω in R3,
S(u, v, 0) is a smooth regular surface with the boundary given by Γ, H : Ω×〈0,∞)→ R
and H(u, v, t) is the mean curvature of S(·, ·, t) in S(u, v, t), N : Ω×〈0,∞)→ R3 and
N(u, v, t) is the outward unit normal to S(·, ·, t) in S(u, v, t). The boundary condition
is given by

∂tS = 0 on ∂Ω. (2.2)

Alternatively, the equation (2.1) can be written in terms of the Laplace-Beltrami
operator [2] (the symbol ∆ stands for the Laplace-Beltrami operator throughout this
paper)

∂tS = ∆S. (2.3)

3. Tangential movement of points on the surface. The equation (2.1) can
be seen as a shape evolution equation since the movement in normal direction affects
the shape of the evolving surface. However, besides this movement in the surrounding
space, there is also an intrinsic evolution that becomes visible once we start following
a selected set of (more than one) points on the surface. In such case we might observe
changes in configuration of these points – it might be a change of their distances or the
ratio of the distances, a change of area in case we follow a whole neighborhood of some
point etc. Having in mind a particular application, this evolution of parametrization
might be undesirable. In that case we can extend our model and allow the points
to move along the surface (without any influence on its geometry) and adjust the
parametrization according to our needs. The corresponding equation reads

∂tS = 2HN + αT (3.1)
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where α : Ω× 〈0,∞)→ R, T : Ω× 〈0,∞)→ R3 and T (·, ·, t) is a unit vector field on
the surface S(·, ·, t). Both α and T can be chosen in various ways according to our
purposes. The two-dimensionality of the tangent space in each point of the surface
gives larger possibilities than in the case of curves [3, 4, 5]. The topic has still not
been fully examined though some work has already been done [1, 6].

4. Curves on an evolving surface. The particularity of our situation lies in
the fact that we are evolving a surface (in order to be able to guarantee the minimality
of the resulting shape) but what we want to obtain is actually a network of one-
dimensional line segments. The lengths of these segments are of particular interest
from the manufacturing point of view as it is convenient to have as many equally sized
elements as possible. One way to redistribute a one-dimensional measure on a two-
dimensional manifold is to focus on a selected curve on the surface and redistribute
the points on this curve in the course of the surface evolution.

In order to do this, we extend the ideas of Mikula and Ševčovič [3, 4] and Mikula
and Urbán [5]. Having an evolving regular space curve γ : R × 〈0,∞) → R3, we can
express its motion as

∂tγ = β1N1 + β2N2 + aT (4.1)

where β1, β2 : Ω× 〈0,∞)→ R are the scalar normal velocities, a : Ω× 〈0,∞)→ R is
the scalar tangential velocity, T : R×〈0,∞)→ R3 is the (evolving) unit tangent vector
to the curve and N1, N2 : R × 〈0,∞) → R3 form an orthonormal basis of the plane
normal to T . There are many possibilities how to choose N1 and N2. The Frenet
frame cannot be used in this case since we have no guarantee that the curvature vector
is non-zero. However, for a regular curve, a non-singular basis which is also smooth
along the curve can be easily constructed by rotating the standard basis {e1, e2, e3}
of R3 around the axis given by the vector

r = T × e1 (4.2)

by the angle given by

cos θ = T · e1. (4.3)

That means if Ar,θ is the corresponding rotation matrix, then

N1 = Ar,θe2, N2 = Ar,θe3. (4.4)

Now, let l : R× 〈0,∞)→ R represent the local length of γ (l(z, t) = ||∂zγ(z, t)||)
and let L : R × 〈0,∞) → R be its global length. The evolution of these quantities is
given by [5]

∂tl = l∂sa− l(β1k1 + β2k2) (4.5)

∂tL = −
∫ L

0

(β1k1 + β2k2) ds+ a(0, ·)− a(L, ·) (4.6)

where s represents the arc-length of γ and k1 and k2 are the projections of the cur-
vature vector κ = ∂sT to N1 and N2 (k1 = κ ·N1, k2 = κ ·N2).

Now we can impose some conditions on the evolution of parametrization of γ. An
asymptotically uniform parametrization can be expressed as

lim
t→∞

l

L
= 1
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which can be achieved e.g. by solving the equation

∂t

(
l

L

)
= ω

(
1− l

L

)
(4.7)

where ω ∈ R is a parameter regulating the speed of the evolution. This, together with
(4.5) and (4.6), determines the arc-length derivative of a

∂sa = β1k1 + β2k2 −
1

L

∫ L

0

(β1k1 + β2k2) ds+ ω

(
L

l
− 1

)
(4.8)

where, for simplicity, we suppose that a(0, ·) = a(L, ·) = 0.0 since this will be the only
setting that we will use in our experiments.

We might also want to prescribe the length L∞ of the curve for t→∞. In that
case we have ∂tL∞ = 0 and thus we get

∂sa = β1k1 + β2k2 + ω

(
L∞
l
− 1

)
. (4.9)

In this case, we do not assume any specific choice of a(0, ·).
Now we can apply these ideas to a regular curve γ on the evolving surface S. Such

a curve can be obtained as a push-forward of a regular plane curve γp : 〈0, 1〉 → Ω
along the map S. Its points are evolving according to (2.1) and thus, decomposing
the mean curvature vector to the directions N1, N2, we have

β1 = 2HN ·N1, β2 = 2HN ·N2. (4.10)

We can directly use (4.8) or (4.9) in order to redistribute the points on this curve as
the surface is evolving. To conserve the smoothness of the surface, we can determine
the tangential velocity in the neighborhood of γ e.g. by applying a mollifier to the
computed vector field on γ.

Finally, coming back to our architectural application, we have to resolve the
situation with a whole network of truss segments. The smooth analogue to such
structures are networks of smooth curves. Let us suppose that we have a structure
composed of regular curves γk, k = 1 . . . nc, with possible intersections but with the
conditions that each node of the network is an intersection point of exactly two curves,
each pair of curves has at most one common point and the tangent vectors of two
intersecting curves at their intersection point are linearly independent. Such networks
can often be found in real structures as their subsets; we speak about subsets since,
in general, it is not possible to expect that all segments will satisfy some specific
condition (i.e. that they will have a given length). Let Pijt be the intersection point
of the curves γi(·, t) and γj(·, t), i.e. Pijt = S(uij , vij , t) = γi(zij , t) = γj(zji, t). Let
the scalar tangential velocities (computed according to (4.8) or (4.9)) at γi(zij , t) and
γj(zji, t) be ai(zij , t) and aj(zji, t). The corresponding unit tangential vectors are
Ti(zij , t) and Tj(zji, t). Then we can set the tangential velocity at Pijt to

α(uij , vij , t)T (uij , vij , t) =
ai(zij , t)Ti(zij , t) + aj(zji, t)Tj(zji, t)

2
(4.11)

Since Ti(zij , t) and Tj(zji, t) are linearly independent, the left hand side of this equa-
tion will be zero only if, at some time point, all of the following conditions are satisfied.
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1. S(·, ·, t) is a minimal surface, i.e. the normal velocities in (4.1) (and hence in
(4.8) and (4.9)) are zero.

2. Both curves γi(·, t) and γj(·, t) are uniformly parametrized and, if we use (4.9),
they have the prescribed global length. In this case, if also 1 is satisfied, we
get ∂sai(·, t) = 0, ∂saj(·, t) = 0.

3. ai(0, t) = 0, aj(0, t) = 0.
These three conditions, if they are satisfied for all curves in the network, characterize
the equilibrium state of the whole system.

5. Numerical approximation.

5.1. The flowing control volume method. The surface evolution model that
we are going to discretize reads as follows.

∂tS = ∆S + αT (5.1)

The time discretization is semi-implicit, i.e.

Sn − Sn−1

τ
= ∆n−1S

n + αn−1Tn−1 (5.2)

where τ is the time discretization step and n > 0 denotes the time level. ∆n−1 is the
Laplace-Beltrami operator corresponding to the surface Sn−1 (this makes sense since
Sn and Sn−1 are defined over the same domain and there is a one-to-one correspon-
dence between their points).

The key part of the numerical approximation of (5.1) is the discretization of the
Laplace-Beltrami operator. We can apply the flowing control volume scheme [3, 9]
that we adjust to our situation.

The flowing control volume method belongs to the family of finite volume schemes
and as such it is based on polygonal representation of the surface. We suppose that
the vertices Sni of the polygons are points of the unknown surface S(·, ·, tn). These
vertices are moving together with the evolving surface which means that the whole
discretization mesh is evolving or “flowing” – that is how the method took its name.
We present the version of the method for the most simple case when the surface is
represented by a triangular mesh. In order not to get lost in a labyrinth of indices,
we omit the time index n in some parts of the explanation and include it only when
necessary – though the position of the mesh vertices depends on time, its structure
does not. We also use local indexing of the mesh elements since it is sufficient to
explain the idea.

The first step is the construction of a co-volume mesh (Fig. 5.1). We will describe
the procedure for a chosen inner node Si. Let us suppose that this node is the common
vertex of m mesh triangles T1, . . . , Tm. Then it is also the common vertex of m edges
h1, . . . , hm, where hp connects Si with Sip . Let Bp be the barycenter of Tp and Cp
the center of hp, p = 1 . . .m. The co-volume Vi corresponding to Si is constructed
as the union of the triangles Vp,1 = SiCpBp and Vp,2 = SiBpCp+1 for p = 1 . . .m
where we set Cm+1 = C1. This construction is correct in the sense that the union of
all these co-volumes covers the (triangulated) surface and their only intersections are
their boundaries. Our approximation will further use the outward unit normals µp,1,
µp,2, µp,3 to the sides of Tp in its plane and the outward unit normals νp,1, νp,2 to the
co-volume edges σp,1 = CpBp, σp,2 = BpCp+1 in the plane of Tp. For the boundary
nodes, the only difference is that the node with m neighboring mesh triangles has
m+ 1 neighboring edges h1, . . . , hm+1.
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Fig. 5.1. The discretization mesh.

Integrating (5.2) over V n−1
i , we get∫

V n−1
i

Sn − Sn−1

τ
dx =

∫
V n−1
i

∆n−1S
n dx+

∫
V n−1
i

αn−1Tn−1 dx. (5.3)

For any inner control volume Vi, the Laplace-Beltrami operator term can be rewritten
as ∫

Vi

∆S dx =

∫
∂Vi

∇S · νi dy =

m∑
p=1

(∫
σp,1

∇S · νp,1 dy +

∫
σp,2

∇S · νp,2 dy

)
(5.4)

where ∇ denotes the tangential gradient. If we assume that S(·, ·, t) is linear on T np ,
we can write

Dp ··= (∇S)�Tp=
1

|Tp|

∫
Tp
∇S dx =

1

|Tp|

∫
∂Tp

S ⊗ µp dy (5.5)

and further, taking in account the semi-implicit time discretization

Dn
p =

1

|T n−1
p |

(
|hn−1
p |S̄ni,ip ⊗ µ

n−1
p,1 + |hn−1

p+1 |S̄ni,ip+1
⊗ µn−1

p,2 + |hn−1
p,p+1|S̄nip,ip+1

⊗ µn−1
p,3

)
.

(5.6)
where

S̄ni,ip =
Sni +Snip

2
, S̄ni,ip+1

=
Sni +Snip+1

2
, S̄nip,ip+1

=
Snip +Snip+1

2

Finally, we can write the fully discrete model for the node Si. At this place, we
include the full indexing in order to provide a correct presentation of the resulting
linear system.

Sni −
τ

|V n−1
i |

mi∑
p=1

(
|σn−1
i,p,1|D

n
i,p · νn−1

i,p,1 + |σn−1
i,p,2|D

n
i,p · νn−1

i,p,2

)
= Sn−1

i + ταn−1
i Tn−1

i .

(5.7)
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5.2. Approximation of the tangential velocity. We will describe the ap-
proximation for one selected curve γ on the surface. When the surface is approx-
imated by a polygonal mesh, the approximated curve γ̂ is a polygonal line with
vertices Si0 , Si1 , . . . , Sip where p is the number of line segments of the curve. Let dj ,
j = 1 . . . p, be the length of the segment Sij−1Sij . The unit tangential vector to γ in
Sij , j = 1, . . . , p− 1, is approximated by

Tj =
1

2

(
Sij+1

− Sij
dj+1

+
Sij − Sij−1

dj

)
. (5.8)

and for the first and the last point of the curve we set

T0 =
Si1 − Si0

d1
, Tp =

Sip − Sip−1

dp
(5.9)

Next, we approximate the curvature vector in the inner nodes Sij by

κj =
2

dj+1 + dj

(
Sij+1

− Sij
dj+1

−
Sij − Sij−1

dj

)
(5.10)

and in the boundary points as

κ0 =
T1 − T0

d1
, κp =

Tp − Tp−1

dp
· (5.11)

Having computed κj and the normals N1,j , N2,j (according to (4.2)–(4.4)), we can
compute the projections k1,j = κj ·N1,j , k2,j = κj ·N2,j . Further, we need the scalar
normal velocities β1,j , β2,j which (according to (4.10)) means to approximate the
mean curvature vector. Since 2HN = ∆S, we can recall (5.7) where we have the
integral

∫
Vij

∆S dx approximated by the term

Ij =

mij∑
k=1

(
|σij ,k,1|Dij ,k · νij ,k,1 + |σij ,k,2|Dij ,k · νij ,k,2

)
. (5.12)

The velocities β1,j and β2,j are then obtained as

β1,j =
Ij ·N1,j

|Vij |
, β2,j =

Ij ·N2,j

|Vij |
(5.13)

The length L̂ of the polygonal curve γ̂ is simply computed as

L̂ =

p∑
j=1

dj . (5.14)

Assuming that γ, γ̂ : 〈0, 1〉 → R3 and Sij = γ̂(j/p), we can approximate the local
length of γ in Sij by

lj =

∥∥∥∥∥Sij − Sij−1

1
p

∥∥∥∥∥ = pdj (5.15)
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for j = 1 . . . p. Finally, we take the approximation∫ L

0

(β1k1 + β2k2) ds ≈
p∑
j=1

(
β1,j−1k1,j−1+β1,jk1,j

2
+
β2,j−1k2,j−1+β2,jk2,j

2

)
dj =·· β̄.

(5.16)
Now, using (5.8)–(5.16), we get the discrete representation of (4.8)

anj = anj−1 + dnj (βn1,jk
n
1,j + βn2,jk

n
2,j)−

dnj

L̂n
β̄n + ω

(
L̂n

p
− dnj

)
(5.17)

and of (4.9)

anj = anj−1 + dnj (βn1,jk
n
1,j + βn2,jk

n
2,j) + ω

(
L∞
p
− dnj

)
(5.18)

for j = 1 . . . p− 1.

6. Results.

6.1. Experiment 1. In the first experiment, the surface S(·, t) was defined on
the quadrilateral Ω with vertices AΩ = (0, 0), BΩ = (22, 0), CΩ = (30, 25), DΩ =
(0, 25). The boundary Γ of the surface was given as the union of four curves, i.e.
Γ = ΓW ∪ ΓE ∪ ΓN ∪ ΓS , where

ΓW (z) = (0.0128z2 − 0.32z, z, 0.0512z2 − 1.28z), z ∈ 〈0, 25〉
ΓE(z) = (0.32z + 22.0, z, 0.0384z2 − 0.96z), z ∈ 〈0, 25〉
ΓN (z) = (z, 25.0, 0.0), z ∈ 〈0, 30〉
ΓS(z) = (z, 0.0, 0.0), z ∈ 〈0, 22〉.

The surface was approximated by a mesh containing 242 triangles, the topology of
the grid can be seen in Fig. 6.1. We set S0

i = (0, 0, 0) for all inner nodes of the mesh
and the boundary nodes were placed on Γ.

We tested both types of redistribution of the grid points. Looking at the mesh
topology, we can identify three sets of curves starting and ending in boundary points
– the “horizontal”, “vertical” and “diagonal” curves. These are the curves that can be
considered for the redistribution of grid points described in Sec. 4. Since in practice the
truss element lengths have to be indeed equal in order to optimize the manufacturing
process (the allowed tolerance is about 1� of the element length), we set ω = 800 in
either (4.8) or (4.9). This parameter controls the speed of the redistribution and the
higher it is the quicker we approach the desired distribution of the mesh points. The
time step was τ = 6.25× 10−3, and we stopped the computation after 800 time steps.
The linear system (5.7) was solved by the SOR method.

First, we required the uniform distribution of points on the individual curves
without any further conditions. Generally, it is not possible to impose this condition
on all curves in the network and also the redistribution model described in Sec. 4
does not admit more than two curves intersecting at one point. Therefore we perform
the redistribution only on the horizontal and vertical curves (Fig. 6.3). We apply the
scheme (5.17). The resulting surface is displayed in Fig. 6.2 and 6.3.

Next, we tested the second type of redistribution by (4.9). This approach can be
used if we want to maximize the number of equally sized truss elements in order to
minimize the manufacturing expenses – by setting the length of a polygonal curve, we
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Fig. 6.1. Two different views of the initial condition for Experiment 1. Left, an axonometric
projection, right, a perspective projection.

Fig. 6.2. Experiment 1 – asymptotically uniform redistribution of points on the individual
curves. The figure shows the computed triangulated minimal surface in an axonometric projection.

actually set the length its segments (assuming we want to end up with a uniformly
discretized curve). The prescribed boundary and the condition of minimality make it
impossible to require the same length for all horizontal and vertical curves considered
in the previous case. Therefore we impose the fixed length condition only on the part
of the curve between its second and last but one point – the points in this part are
allowed to move freely on the surface. We set L∞ = 22.0 and an0 = 0.0 for each curve.
The question is how to choose the velocity an1 . We can directly use (5.18) but in order
to achieve an aesthetic result, we decided to apply the condition of symmetry and set

an1 = dn1 (βn1,1k
n
1,1 + βn2,1k

n
2,1) + ω

(
dnp − dn1

)
. (6.1)

This means that at the end of the evolution (for t→∞) the first and the last segment
of the polygonal curve will have the same length. The result can be seen in Fig. 6.4
and 6.5. We achieved 216 equally sized truss elements out of 385 total, which is 56.1%.
For the number of segments tending to infinity, this ratio would approach 2

3 = 66.67%
(two out of three sides of almost all triangles have the prescribed length). However,
we can observe that even though the manufacturing cost would be lower than in the
first case, for this particular configuration of the structure we obtain a more aesthetic
result by applying the redistribution given by (4.8).

6.2. Experiment 2. Contrarily to Experiment 1, Fig. 6.6 and 6.7 show a case
where we obtained a very aesthetic result by applying the second type or tangential
redistribution. In this case we set

ΓW (z) = (0.0, z,−(z − 0.5)2 + 0.25), z ∈ 〈0, 1〉
ΓE(z) = (1.0, z,−(z − 0.5)2 + 0.25), z ∈ 〈0, 1〉
ΓN (z) = (z, 1.0, 0.0), z ∈ 〈0, 1〉
ΓS(z) = (z, 0.0, 0.0), z ∈ 〈0, 1〉.
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Fig. 6.3. Experiment 1 – asymptotically uniform redistribution of points on the individual
curves. The figure shows the computed triangulated minimal surface in a perspective projection, top
view. The curves included in the redistribution process are highlighted on the right picture.

Fig. 6.4. Experiment 1 – redistribution with prescribed length of the curves. The figure shows
the computed triangulated minimal surface in an axonometric projection.

The mesh was dually hexagonal (each inner node has six neighboring triangles)
just as in Experiment 1 but it had a different configuration (Fig. 6.7). In this case we
applied the redistribution method to the set of “diagonal” curves and to two boundary
curves ΓW and ΓE . Instead of setting L∞, we set the length of a single truss segment
to d∞ = 0.101 for the inner curves and d∞ = 0.12 for the boundary curves. All other
parameters as well as an0 and an1 for each curve were set as in Experiment 1. The
resulting structure had 180 equally sized truss elements out of 401, i.e. 44.89%. The
asymptotic ratio is 66.67% similarly to Experiment 1.

7. Concluding remarks. We described a method for generating triangular ap-
proximations of minimal surfaces. We also suggested two possible ways of redistribut-
ing the mesh points and illustrated their performance and possible advantages and
disadvantages. To conclude, we will mention some possible extensions.

First, the method that we described provides us with (approximate) surfaces of
zero mean curvature. However, it can be straightforwardly extended to surfaces of
constant curvature or, in fact, any prescribed curvature.

Second, the boundary of the surface need not be a Jordan curve, the method
could be applied to any reasonable boundary. We only have to keep in mind that the
minimal surface for a given boundary is not always unique so the result will depend on
the initial condition. It is also possible to apply the method to closed surfaces evolving
by mean curvature flow though this is out of the scope of architectural applications.

Third, it is not complicated to adjust the numerical scheme to the case of a
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Fig. 6.5. Experiment 1 – redistribution with prescribed length of the curves. The figure shows
the computed triangulated minimal surface in a perspective projection, top view. The equally sized
truss elements are highlighted in the right picture.

Fig. 6.6. Experiment 2 – the computed triangulated minimal surface in an axonometric pro-
jection.

general polygonal representation of the surface. In fact, the only problematic thing is
that the vertices of the polygons Tp need not be coplanar in a general situation. This
difficulty can be overcome e.g. by triangulating Tp.
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