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COMPARISON OF THREE DIFFERENT OBSTACLE MODELS FOR
MODELING OF STRATIFIED FLOWS OVER THE BODY ∗

LUDĚK BENEŠ † AND PHILIPPE FRAUNIÉ ‡

Abstract. The article deals with the numerical simulation of the stratified incompressible flows
over the body. The mathematical model is based on the Boussinesq approximation of the Navier–
Stokes equations for viscous incompressible stratified flow. Three different numerical approaches to
the body are implemented and tested. The first one is the classical body fitted mesh. The second
one is the penalization technique. The obstacle is modeled as the permeable obstacle with high
resistance parameter. The last approach is based on the immersed boundary method. The resulting
set of PDE’s is then solved by the AUSM MUSCLE scheme in finite volume approximation. For the
time integration the three stage BDF method of the second order is used.
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1. Introduction. Interest in the study of the flow structure in stratified fluid
is stimulated by a number of environmental and technical problems. Stratified flows
in environmental applications are characterized by the variation of fluid density in
the vertical direction that can lead to appearance of specific phenomena which are
not present when density is constant, namely internal and gravity waves, jet–like flow
structures, thin interfaces with high density and velocity gradients and anisotropic
turbulence. Even if the density changes are small, density gradients can be large. In a
stably stratified fluid a buoyancy force causes very distinct flow behavior manifested
by a presence of large–scale wave patterns in the flow–field. The stratification also
strongly affects flow separation and downstream wake structure.

The internal waves are generated by many different processes, for example distur-
bances induced by moving obstacles [3], [2], [19], during the collapse of mixed regions
in the stratified fluid [1], by flow past topography [4] (Lee waves) and due to per-
turbations induced by contiguous turbulent regions [5]. The transport of momentum
and energy by these waves contributes significantly to the general dynamics of the
atmosphere and study of its generation and behavior is essential for understanding of
the ocean and atmosphere behavior.

The experimental and numerical studies of the flow around a moving obstacle
were proposed by e.g. [2],[7],[21],[8],[16],[9].

From the numerical point of view, the simulations of stratified fluid flows are in
general more demanding than the solution of similar non-stratified flow cases. The
transport equation for the density (or its perturbation) is coupled to momentum
equations by a buoyancy term. Because of this buoyant force the obstacles in flow
generate waves that propagate at long distances. These waves need to be properly
resolved, without unphysical damping or dispersion.
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Our study of the stratified flow started in 2008 by the simulation of the flow past
a ball in 2D [14] using WENO, AUSM MUSCL and compact differences schemes .
The extension to 3D was published in [12], [13]. Next studies were devoted to the
flow around thin vertical strip [15] and over sinusoidal hill [10].

The correct resolution of the flow structure over the body can be affected by its
representation. Suitability of different body’s models can also depend on the effects
under investigation. It means whether we are interested more in the boundary layer
in the proximity of the body surface or rather in the development of internal waves
farther from the body. Different methods of body’s modeling are studied.

2. Boussinesq approximation. The flow is assumed to be incompressible, yet
the density is not constant. The mathematical model is based on the Navier-Stokes
equations for viscous incompressible flow with variable density.

These equations are simplified by the Boussinesq approximation. Density and
pressure are divided into two parts: a background field (with subscript 0) plus a per-
turbation. The system of equations obtained is partly linearized around the average
state ρ∗. The full development of the basic system of equations can be found in [10].
The resulting set of equations for 2D flow can be written in the form
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where W = [%, u1, u2, p]T is the vector of unknowns, %(x1, x2, t) denotes the perturba-
tion of the density and u1, u2 are two velocity components, p stands for the pressure
perturbation and g for the gravity acceleration and P̃ = diag(1, 1, 1, 0). The x1–axis
is orientated in the direction of the motion and the x2–axis is perpendicular to the
density gradient.

The other parameters of the flow are related to the velocity of incoming flow U
and to characteristic height of the obstacle h. For the description of the stratified
flow around the horizontal strip the Reynolds number, the Richardson number and
the Froude number are defined as
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is the length scale of stratification.
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3. Numerical scheme. For the numerical solution of the above mentioned
equations the AUSM MUSCL scheme in the finite volume formulation combined with
the artificial compressibility method in dual time is used.
The continuity equation (2.3) is rewritten in the form

∂p
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∂xj
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where τ is the artificial time. The finite volume AUSM scheme is used for the spatial
semidiscretization of the inviscid fluxes.
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where un is the normal velocity vector, and (q)L/R are quantities on the left/right
hand side of the face. These quantities are computed using MUSCL reconstruction
with the Hemker-Koren limiter [20]
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The scheme is stabilized according to [11] by the pressure diffusion.(
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where wr is reference velocity (in our case the maximum velocity in flow field) and η
is the scaling factor (in our computations η ∈< 0, 10−3 >.

The viscous fluxes are discretized using central approach on a dual mesh (diamond
type scheme).

The spatial discretization results in a system of ODE’s solved by the second-order
BDF formula

3Wn+1 − 4Wn +Wn−1

2∆t
+ Ln+1 = 0. (3.3)

Here, Ln+1 denotes the numerical approximation of the convective and viscous fluxes
described above and the source terms. Arising set of nonlinear equations is then
solved by the artificial compressibility method in the dual time τ by the explicit 3-
stage second-order Runge-Kutta method.

Presented scheme was successfully validated in our previous studies. The scheme
has been successfully used for simulation of the flow field around moving bodies in
2D and 3D stratified fluid and also for simulation of the flow over the hill for wide
range of Richardson numbers, see [12], [13], [14], [15], [10].
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4. Obstacle modeling. We are interested in the simulation of the flow past a
body. For the obstacle modeling three different techniques have been used.
• In the first case the classical body fitted mesh surrounding the obstacle is used.
Multidomain arrangement with 4 subdomains is used. Due to simplicity of our ob-
stacle, very simple Cartesian grids can be used. In the case of the general body, the
deformation of the mesh will play significant role in the numerical simulations.
• In the second case, the obstacle is modeled as a source term emulating a porous
media with small permeability by the volume penalization technique proposed origi-
nally by Arquis and Caltagirone [22]. A term proportional to the difference between
the fluid and obstacle velocities is added to the momentum equation and represents
the drag force.

χ(x, y, t)
Krez

(Uob
i − ui), (4.1)

whereKrez corresponds to the small permeability of the obstacle, moving with velocity
Uob. In the computed case, the obstacle is at rest and drag is proportional to the
velocity of the incoming flow. χ(x, y, t) is the characteristic function of the obstacle
and is equal to 1 inside the obstacle and 0 elsewhere. According to our previous
numerical tests, which studied the dependence of the solution on the permeability
parameter, its value is set to Krez = 1/1000, see [12].
• Last model is based on simple variant of the immersed boundary method [18], [17].
In this modification the computational cells lying inside the body are identified. Then,
the velocity in these cells is set to Uob, while pressure and density are computed for
whole domain. Similar technique was successfully used for simulation of the flow
around the preservative ramparts in the open coal mine [23].

The immersed boundary approximation may seems as limiting case of the porous
media for Krez →∞. But these approaches represent different concepts. In the first
case expected value of the velocity is prescribed directly to the flow field. In the
second case the penalization term is added to the momentum equations and flow field
is driven by this force.

Advantage of the last two approaches lies in a very simple computational mesh.
On the other hand the question arise regarding the correct resolution of the boundary
layer on the body.

5. Computational setup. The problem solved in this study is inspired by the
towing tank measurement performed by Chaschechkin and Mitkin [16]. The thin
horizontal strip 0.025×0.002 m is placed in the towing tank with dimensions 2.2×0.6
m. The strip is located 1m from the left wall and at the mid–heights. At the time t = 0
the obstacle starts moving to the right (in the positive x1 direction) with constant
velocity Uob = 0.0017 m/s. The flow field is initially at rest with the exponential
profile of stratification %0 = %00 exp x2

Λ , %00 = 1008.9 kg/m3, Λ = 47.735 m, the
kinematic viscosity is ν = 10−6m2/s. It corresponds to the Re = 3.4 (relative to
the thickness of the body) and Ri = 121. In our computations the body is fixed
in the incoming flow of the corresponding velocity and stratification given by the
experiment.

The computational domain is 0.5× 0.25m. The obstacle is placed 0.3m from the
left side (ranges in < 0.3; 0.325 >m) and in the middle height. The origin is placed
on the left side of the domain and in the middle height. The x1 axis is orientated in
the stream-wise direction.
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The same set of the boundary conditions is satisfied in the physical and artificial
time. On the inlet, the velocity is prescribed. Pressure and density disturbances
are extrapolated from the flow field. On the outlet velocity and density perturbance
are extrapolated. Pressure perturbance is set to zero. On the top and bottom,
homogeneous Neumann boundary conditions are satisfied. Pressure is fixed in one
point. In the multidomain case, the non–slip boundary conditions are prescribed
for velocity component on the body. For the pressure and density perturbations the
homogeneous Neumann condition are used.

The computations have been performed on the Cartesian mesh of 500×500 cells.
The resolution of the mesh is 1mm in the x1 direction and 0.5mm in the x2 direc-
tion. To verify independence of the solution on the mesh, and sensitivity of different
approaches the mesh two times refined (resolution 0.25mm) and two times diluted
(resolution 1mm) in x2 direction was used.

6. Numerical results. Fig.6.1 shows the process of the wave generation in the
form of isolines of u2 velocity component for three different times. The multidomain
approach is used. The flow pattern is typical for transient internal waves past an
impulsively started body in stably stratified flow. The thin strip generates an initial
perturbation and then gravity waves are formed. The upstream disturbances are
pronounced, which is typical for the flow with relatively low Froude number. Behind
the obstacle strip with step–like density profile is formed as is shown on Fig. 6.2 left.

In Fig.6.2, the comparison of the different obstacle approaches in the form of the
isolines of density perturbance % (left) and u2–velocity component (right) is given.
The comparison shows a very good qualitative agreement. Small differences are in
the wake behind the obstacle, which is stronger in the multidomain case. Immersed
boundary case and permeable obstacle are practically the same.

Figs.6.3–6.4 displays the perpendicular distribution of the computed quantities
in different distances. Point x = 0.24m is in front of the obstacle, x = 0.305m and
x = 0.315m are on the obstacle, x = 0.33m and x = 0.35m are behind the obstacle.
The wave length is the same in all models and is in a good agreement with theoretical
prediction given by the Brunt-Väisälä frequency. Maxima and minima of all computed
quantities are the highest in the multidomain approach mainly in front of and behind
the obstacle. Results in the porous and immersed boundary cases are very similar.
The boundary layer on the obstacle is well resolved in all approaches, see Fig.6.4b.
Main differences are in the u2–velocity component. Over the centre of the strip the
minimum of this component is predicted by the porous approach Fig.6.5.

Fig.6.6 shows dependency of the u1 and u2–velocity components on the beginning
of the obstacle on the mesh for porous and immersed boundary approach. The u1

component is captured relatively well on coarsest grid (the obstacle is very thin, so
the mesh is not so bad), u2 velocity component seems much more sensitive. On the
coarsest mesh is resolved with the error greater then 20%.

The maxima of the quantities in whole computational domain are sumarized
in the Tab.1. These maxima are compared to the multidomain approach and are
approximately 8% lower in the immersed boundary and porous case.

7. Conclusion. The flow around obstacle in the stratified flow was simulated.
Three different models of obstacle were implemented and compared.

Presented first results show that all models are suitable for modeling of this type
of problems. Both wave structure far away the obstacle and boundary layer are well
resolved. The number, position and wave length are practically identical and are
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(a) t = 25s (b) t = 50s

(c) t = 75s

Fig. 6.1. Developing of the internal waves. Isolines of u2– velocity component, three different
times.

variable multidomain porous immersed boundary
% 4.34× 10−2 4.02× 10−2 4.04× 10−2

difference 0% 7.3% 6.9%
u1 2.13× 10−3 2.11× 10−3 2.11× 10−3

difference 0% 0.9% .9%
u2 3.23× 10−4 2.95× 10−4 2.97× 10−4

difference 0% 8.7% 8.0%
Table 6.1

Maxima of the computed quantities and relative differences to the multidomain case.

in the good agreement with the theoretical prediction. The small differences are in
the predicted maxima and minima of the computed quantities, which are app. 8%
higher in the multidomain approach. While the u1–velocity component is similar in
all models (including the boundary layer), greatest differences are in the prediction
of the u2–velocity component. For the deeper understanding of the behavior of these
models (e.g. dependency on the mesh density) further research is necessary.
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(a) multidomain – body fitted mesh

(b) permeable obstacle

(c) immersed boundary

Fig. 6.2. Comparison of the flow pattern at time t = 75s. Left column shows isolines of the
density perturbance %, right column isolines of u2 velocity component.
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(a) x = 0.24m (b) x = 0.315m

(c) x = 0.33m (d) x = 0.35m

Fig. 6.3. Vertical profiles of the density perturbation % in the different distances.

(a) x = 0.24m (b) x = 0.305m
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(c) x = 0.315m (d) x = 0.35m

Fig. 6.4. Vertical profiles of the u1–velocity component in the different distances.

(a) x = 0.24m (b) x = 0.305m

(c) x = 0.315m (d) x = 0.35m

Fig. 6.5. Vertical profiles of the u2–velocity component in the different distances.
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[10] T. Bodnár, L. Beneš, Ph. Fraunié, K. Kozel Application of compact finite-difference schemes

to simulations of stably stratified fluid flows. Applied Mathematics and Computation
doi:10.1016/j.amc.2011.08.058 Article in press.

[11] Dick E., Vierendeels J., Riemslagh K.: A multigrid semi–implicit line–method for viscous incom-
pressible and low–mach–number flows on high aspects ratio grids. Journal of Computational
Physics 154 310–341 (1999)
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