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ON THE USE OF NON-LINEAR TVD FILTERS
IN FINITE-VOLUME SIMULATIONS∗

TOMÁŠ BODNÁR†

Abstract. This paper aims to demonstrate the effect of digital filtering on solution of advection
dominated phenomena using finite-volume methods. The non-oscillatory post-processing procedure
is based on the simple filter presented in [4]. Some simple one-dimensional tests are presented to show
the efficiency of this stabilization technique. Further references are given to the authors papers using
this technique as well as to other literature discussing this or other filtering techniques applicable
for solution of some other CFD problems.
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1. Introduction. One of the most challenging problems in CFD is the solution
of convection dominated problems. In these cases the physical viscosity (or diffusivity)
is very small. The numerical solution obtained using certain schemes suffers from non-
physical oscillations. This is why many specialized, non-oscillatory discretizations
have been developed and successfully used (ENO/WENO, TVD, etc.,see e.g. Tadmor
[10]). The drawback of the use of such non-oscillatory discretizations is that they are
often computationally expensive and hard to implement into already existing codes .

One of the alternative ways of obtaining oscillation-free solution, consists in the
post-processing of the resulting data, rather than in modification of the discretization
algorithm itself. This idea comes from the area of signal (e.g. image or acoustic signal)
processing. It has been found that the algorithms used for the signal denoising can
successfully be applied to remove the numerical point-to-point oscillations that often
appear in the numerical solution of physical problems.

This approach was described e.g. in Lafon & Osher [5]. Some more sophisticated,
characteristic based filters were proposed Yee, Sandham, & Djomehri [11] and used
for turbulent flows simulation in Lo, Blaisdelly, & Lyrintzis [6]. A more recent work
Ortleb, Meister, & Sonar [7] shows the application of a spectral and digital Total
Variation filter for discontinuous Galerkin method on unstructured grids.

Although there are various approaches adopted in the wide range of available
filters, the general requirements on such noise-filtering algorithm could be summarized
into three points:

i) Conservativity - The application of the filtering algorithm should not mod-
ify the ”energy/mass content” of the signal. This results into some kind
of an area preserving requirement in the case of single-variable signal post-
processing. The violation of this principle may e.g. lead to a wrong shock
propagation speed in the numerical solution of the Riemann problem.

ii) Computational efficiency - The filter should only be applied in the regions
where the oscillations appear. Moreover the filtering procedure should be
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designed to require as few computational operations as possible.
iii) Quality control - The user should be given a chance to measure the quality

(non-oscillatority) of the solution in order to decide when to stop the post-
processing. This could e.g. be done by controlling the Total Variation (TV)
of the solution. In this way the filters could be designed to enforce the TVD
property of the whole numerical scheme.

2. Digital filter. The filter presented here follows the paper by Engquist et al.
[4], where a family of simple discrete filters has been proposed and studied. The
general idea of this filtering algorithm can be briefly summarized as follows:

1) Localize - The oscillations appear as the local minima/maxima of the solution.
Thus the filtering will only be applied to the points of local extrema. Non-
extremal points will remain unchanged.

2) Measure - The amplitude of an oscillation could be estimated e.g. as a fraction
of backward/forward difference of the filtered quantity.

3) Remove - As the value in the actual point is reduced/increased to remove
the oscillatory maximum/minimum, the neighboring value(s) should also be
modified to retain the overall conservativity of the algorithm.

Now let’s take a closer look to one of the simplest versions of such algorithm. Let’s
have a set of grid values φi, for i = 0, . . . , N , which approximate the scalar function
values φ(xi) at regularly spaced grid points xi. For each of the grid points in the
range i = 1, . . . , N − 1 do the following:

1) To localize the oscillation, compute the backward and forward differences of
φ, i.e. (δ−φ)i = φi − φi−1 and (δ+φ)i = φi+1 − φi. If (δ−φ)i · (δ+φ)i < 0,
then there is a local extrema in xi, that needs to be adjusted.

2) Estimate the amplitude of the oscillation at point xi as

osc = min
{

(δφ)min, 0.5(δφ)max

}
, where

(δφ)min = min{|(δ−φ)i|, |(δ+φ)i|} and (δφ)max = max{|(δ−φ)i|, |(δ+φ)i|}

3) Adjust the local extrema by subtracting/adding the value δφ to the φi, i.e. set
φi = φi + δφ, where δφ = sign((δ+φ)i) · osc. To preserve the conservativity of
the method, redistribute the subtracted/added value osc, to the neighboring
point(s). E.g. adjust the value φi−1 or φi+1, depending on which of them
is further from φi. I.e. if |(δ−φ)i| > |(δ+φ)i| set φi−1 = φi−1 − δφ, or
φi+1 = φi+1 − δφ, if |(δ−φ)i| < |(δ+φ)i|.

This filter, originally proposed in [4], was further extended and studied in detail in
Shyy, Chen, Mittal, & Udaykumar [9]. The above algorithm could be fine-tuned by
choosing how much and how often the filter is applied. It means by the appropriate
choice of relaxation parameter ω, by the which the correction value δφ can be mul-
tiplied, and by the number nf of the filter passes. The filtering should be repeated
until the stopping criterion (TV bound, number of filter passes, ...) is satisfied.

TVD variant of the filter. The above algorithm is just a basic variant of the
discrete filtering procedure. Although it is very efficient in removing (or at least
controlling) the point-to-point numerical oscillations, it can not guarantee the TVD
property of the solution. An improved algorithm has been already presented in the
original paper [4], leading (provided some supplementary conditions are satisfied) to
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a TVD method. The most important part is to keep filtering (correcting) the solution
at the point i, till the following conditions are satisfied.

max(φn
i−1, φ

n
i , φn

i+1) ≥ φn+1
i at discrete maxima(2.1)

min(φn
i−1, φ

n
i , φn

i+1) ≤ φn+1
i at discrete minima(2.2)

This condition is required to avoid the growth of local extrema in time. Using this
assumption, and further requiring that no consecutive extrema appear in the solution,
the TVD property of the algorithm was proved in [4].

3. Simple tests. In order to see the effect of the filter on numerical solution, a
simple one-dimensional advection equation has been solved

φt + φx = 0(3.1)

with initial data distribution φ(x, t = 0) = φ0(x) and periodic boundary conditions.
The exact solution is easy. The initial data are just shifted in time along the x coor-
dinate, and due to periodicity of boundary condition reappear at the initial position
after some time TP . Various smooth and discontinuous data were used to show the
behavior of the filter.

The effect of the filter could be seen from the following figures. The Lax-Wendroff
scheme is taken here as a prototype of oscillatory discretization. Unless stated oth-
erwise, the simulation stopping time was T = 10 × TP . In figure 3.1 the filtered
Lax-Wendroff scheme is compared to its non-filtered version as well as to some low-
order, much more dissipative schemes.
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(a) Lax-Wendroff without filter
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(b) Lax-Wendroff with filter (nf = 2, ω = 1.3)
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(d) Upwind

Fig. 3.1. Comparison of the filtered Lax-Wendroff scheme with some other classical numerical
schemes CFL=0.5. (◦ numerical solution, —exact solution).
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It is obvious that the filtering has largely improved the quality of numerical solu-
tion, which remained oscillation-free. When compared to the lower order methods, the
filtering evidently retained more resolution. The influence of filter tuning parameters,
i.e. the relaxation parameter ω and the number of filter passes nf , is demonstrated in
the figure 3.2. The results suggest that repeated application of the filter has similar
effects as using higher relaxation parameter ω. It should however be kept in mind,
that each pass of the filter has its computational cost. Moreover it can be shown (see
e.g. [9]) that frequent application of the filter may affect also larger wavelengths of
the solution (signal).
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(a) nf = 1, ω = 1.0
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(b) nf = 2, ω = 1.0
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(c) nf = 3, ω = 1.0
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(d) nf = 1, ω = 1.3

-0.5

 0

 0.5

 1

 1.5

-3 -2 -1  0  1  2  3
-0.5

 0

 0.5

 1

 1.5

x

(e) nf = 2, ω = 1.3
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(f) nf = 3, ω = 1.3
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(g) nf = 1, ω = 1.6
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(h) nf = 2, ω = 1.6
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(i) nf = 3, ω = 1.6

Fig. 3.2. Results of the filtered Lax-Wendroff scheme for different tuning parameters ω and
nf . (◦ numerical solution, | exact solution).

The advantage of filtering becomes more evident when longer time-evolution of
the solution is observed. The typical low-order scheme as upwind, will totally smear
the original piecewise data as it is shown in the figure 3.3.
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(a) T = 1× TP
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(b) T = 10× TP
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(c) T = 100× TP

Fig. 3.3. Comparison of the Upwind solution for different solution times. (◦ numerical solution,
| exact solution).
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The Lax-Wendroff scheme will on the other hand introduce a growing in time
numerical oscillations that will spoil the whole solution (see figure 3.4).
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(a) T = 1× TP
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(b) T = 10× TP
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Fig. 3.4. Comparison of the solution obtained by non-filtered Lax-Wendroff scheme at different
times T with CFL=0.99. (◦ numerical solution, — exact solution).

Much better results can be achieved using a filter to postprocess the solution after
each time-step. The filtered version of Lax-Wendroff scheme produces results shown
in the figure 3.5.
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(a) T = 1× TP
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(c) T = 100× TP

Fig. 3.5. Comparison of the solution obtained by filtered Lax-Wendroff scheme (nf = 2,
ω = 1.3) at different times T with CFL=0.99. (◦ numerical solution, — exact solution).

The solution is not oscillation free, but the time growth of oscillations is well
controlled by the filter. Stronger filtering might be imposed, but at the price of
more computational work or loss of sharpness of the discontinuity. The advection of
smooth data is only marginally affected by the filter, as it only acts at the points
of local extrema. This is in contrast to upwind solution (or some simple artificial
viscosty techniques) where the strong numerical diffusivity is applied globally. This
is shown in the figure 3.6
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(b) Lax-Wendroff with filter
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Fig. 3.6. Smooth data advection. Comparison of the solution obtained by non-filtered and
filtered Lax-Wendroff scheme (nf = 2, ω = 1.3) with the Upwind scheme at time T = 100×TP with
CFL=0.99. (◦ numerical solution, — exact solution).
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It is good to note that all the results shown in the above figures 3.1–3.6 were
achieved with fixed number of filter passes. A little bit better (in the sense of smooth-
ness) results can be achieved using the TVD version of the filter, where the number
of filter passes is decided by the algorithm, based on the quality (i.e. Total Variation)
of the solution. The price to pay is the more computationally expensive algorithm
and more filter passes required. The solution using Total Variation controlled filter is
shown in the figure 3.7.
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Fig. 3.7. Comparison of the solution obtained by Lax-Wendroff scheme with TVD filter (ω =
1.0) at different times T with CFL=0.99. (◦ numerical solution, — exact solution).

The effect of the above discussed family of filters can be clearly seen from qual-
itative comparison of results shown in the figures 3.4 (Lax-Wendroff scheme without
filter), 3.5 (Lax-Wendroff scheme with filter), 3.7 (Lax-Wendroff scheme with TVD
filter). These qualitative observations can be supported by comparing a norm of the
error of numerical solution for all of the above mentioned cases. The discrete `1 error
norm can be defined as

‖err‖1 =
∑

i

|φi − φ∗(xi)|(3.2)

where φi is the numerical solution and φ∗(xi) is the exact solution of the Riemann
problem at the node xi. The evolution in time of the error for the three chosen cases
shown in figures 3.4, 3.5 and 3.7 is shown in the following graph in figure 3.8
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Fig. 3.8. Comparison of the solution errors at different times T .
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The reduction of the solution error due to the use of filters is obvious. The main
purpose of filtering is however to remove non-physical oscillations. This kind of effect
is best demonstrated by comparing the Total Variation (TV) of solutions. The Total
Variation of numerical solution is defined as:

TV =
∑

i

|φi − φi−1|(3.3)

The evolution in time of the Total Variation for the three cases from figures 3.4, 3.5
and 3.7 is summarized in figure 3.9.
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Fig. 3.9. Comparison of the solution Total Variation at different times T .

It is evident that the Lax-Wendroff scheme without any filter performs quite
badly as the Total Variation of solution grows significantly in time due to numerical
oscillations. This effect can largely be reduced by using a simple filter with fixed
number of passes (nf = 2, ω = 1.3). There are some over/under-shoots, but their
growth in time is well controlled by the filter. Stronger damping is introduced by the
TVD variant of the filter that can guarantee the preservation of TV in time without
risking an overdamping of solution (like upwind or Lax-Friedrichs schemes do) which
would lead to decrease of the solution Total Variation. The price to pay for this
efficient TVD filtering is the loos of control over the number of passes of the filter,
which can (especially in multidimensional problems) lead to significant increase of
computational time.

4. Practical application. The above described filter was e.g. used in the 3D
simulation of blood coagulation in flowing blood. Detailed description of the problem
can be found in earlier works by Bodnár & Sequeira [2] and Sequeira, Santos, &
Bodnár [8]. Simply speaking, when the blood vessel wall is locally damaged, a cascade
of biochemical reactions is initiated, which results in formation of a clot that acts as
an obstacle in blood flow. The flow however supplies the basic constituents needed
for the blood clot to be built. In this way the interaction of flow (of blood) and
structure (clot) is established. The model used in the aforementioned study assumes
that the clot can simply be modeled by locally increasing the fluid (blood) viscosity
to simulate the highly viscous behavior of clot. The clot (resp. blood) viscosity is
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assumed to depend on the local concentration of fibrin, which is the final product of
the cascade of biochemical reactions describing the blood coagulation.

The biochemistry model consists of a set of 23 coupled advection-diffusion-reac-
tion equations. This system has to be solved numerically. One of the major problems
in numerically solving these equations is that the physical diffusion coefficients are
extremely small (but non-negligible). In order to do not spoil the solution by excessive
numerical diffusion the numerical discretization has to be almost non-diffusive. This
is the reason why the discontinuous boundary data, simulating the vessel wall injury,
generate important oscillations in the numerical solution of concentrations. The over-
and especially undershoots are very dangerous, leading to negative concentrations and
consequently (due to concentration dependent viscosity) to the blow-up of the whole
solution. This is why it is extremely important to keep the numerical oscillations
under control.

The case solved here represents the blood flow in a simple cylindrical tube (a
segment of blood vessel). The local damage of blood vessel wall is simulated in small
circular region on the wall where the boundary data (for some concentrations) are
suddenly changed. This leads to start of the spatio-temporal evolution of all the
chemical constituents that consequently affect the flow. The complete details for
this case can be found in [2]. A simple central scheme is used for both, flow and
biochemistry model solution. The results obtained without filter and with the use of
filter are compared. The surface concentration of fibrin on the vessel wall is shown in
figure 4.1. The coordinates are non-dimensionalized using the vessel radius R.

It is evident that the solution obtained without the use of filter is highly oscillatory
with non-physical undershoots leading to negative concentrations (marked in gray
color in the figure 4.1). The blood coagulation model is highly non-linear and therefore
the solution oscillations can accelerate or decelerate the chemical reactions and cause
unrealistic clot growth predictions. This behavior was not acceptable and it later led
to solution blow-up and crash of simulation.

Applying the simple filter (nf = 3, ω = 1.0) in each grid direction has reduced the
numerical oscillations (while retaining the conservativity of the method) and removed
the under- and overshoots. The numerical simulation remained stable which has
allowed to follow the blood clot formation over a long period of time. The filtering
technique was essential in this case as it has stabilized the numerical solution without
introducing excessive numerical diffusion.

5. Conclusions & Remarks. The discrete filters described in this paper have
turned out to be very powerful and versatile tool in controlling numerical oscillations
in advection dominated CFD problems. Besides of the above shown simple tests,
they have been successfully applied to various multidimensional problems including
biomedical applications Bodnár & Sequeira [2] and Sequeira et al. [8], or free-surface
simulations presented in Yost & Rao [12] or Bodnár & Př́ıhoda [1].

One of the positive aspects of this filtering technique is that it does not affects the
solution as much as some classical artificial viscosity terms, including those imbedded
in some modern non-linear schemes. The only locally applied filtering introduces very
low numerical diffusion, which is important in cases where it may exceed the physical
diffusivity and spoil the numerical solution. This behavior was essential in solving
the blood coagulation problem in [2] and [8], where the diffusion coefficients were
extremely small. Similar is the problem of solving free-surface flows using VOF-like
methods where the gas-liquid interface needs to be kept as sharp as possible.
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Fig. 4.1. Contours of the fibrin concentration on the blood vessel wall.

One of the drawbacks of this specific filter is that it is exclusively designed for
structured grids. It’s extension to multidimensional unstructured grids might be
difficult (or at least non-trivial) and computationally expensive.

It is interesting to note that although the above filtering algorithm has been
described in a fully discrete way, it is also possible to reformulate it in a continuous
way to show its relation to some techniques known in signal and image processing.
This has been done in Bürgel & Sonar [3].
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[4] Engquist, B., Lötstedt, P., & Sjögreen, B.: Nonlinear Filters for Efficient
Shock Computation. Mathematics of Computation, vol. 52, no. 186: (1989)
pp. 509–537.

[5] Lafon, F. & Osher, S.: High Order Filtering Methods for Approximating
Hyperbolic Systems of Conservation Laws. Tech. Rep. ICASE Report No. 90-25,
Institute for Computer Applications in Science and Engineering, NASA Langley
Research Center, Hampton, Virinia 23665-5225 (1990).

[6] Lo, S.-C., Blaisdelly, G. A., & Lyrintzis, A. S.: High-order Shock Cap-
turing Schemes for Turbulence Calculations. In: 45th AIAA Aerospace Sciences
Meeting and Exhibit, January 8-11, 2007, Reno, NV., USA. American Institute
of Aeronautics and Astronautics, (2007). AIAA Paper 2007-827.

[7] Ortleb, S., Meister, A., & Sonar, T.: Spectral and High Order Methods for
Partial Differential Equations, vol. 76 of Lecture Notes in Computational Science
and Engineering, chap. Adaptive Spectral Filtering and Digital Total Variation
Postprocessing for the DG Method on Triangular Grids: Application to the Euler
Equations, (pp. 469–477). Springer-Verlag Berlin Heidelberg (2011).

[8] Sequeira, A., Santos, R. F., & Bodnár, T.: Blood Coagulation Dynamics:
Mathematical Modeling and Stability Results. Mathematical Biosciences and
Engineering, vol. 8, no. 2: (2011) pp. 425–443.

[9] Shyy, W., Chen, M.-H., Mittal, R., & Udaykumar, H.: On the Suppression
of Numerical Oscillations Using a Non-Linear Filter. Journal of Computational
Physics, vol. 102: (1992) pp. 49–62.

[10] Tadmor, E.: Advanced Numerical Approximation of Nonlinear Hyperbolic Equa-
tions, vol. 1697 of Lecture Notes in Mathematics, chap. Approximate Solutions
of Nonlinear Conservation Laws, (pp. 1–149). Springer Verlag (1998).

[11] Yee, H. C., Sandham, N. D., & Djomehri, M. J.: Low-Dissipative High-
Order Shock-Capturing Methods Using Characteristic-Based Filters. Journal of
Computational Physics, vol. 150: (1999) pp. 199–238.

[12] Yost, S. & Rao, P.: A non-linear filter for one- and two-dimensional open
channel flows with shocks. Advances in Water Resources, vol. 24: (2001) pp. 187–
193.


