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MORTAR-LIKE MIXED-HYBRID METHODS FOR ELLIPTIC
PROBLEMS ON COMPLEX GEOMETRIES. ∗

JAN BŘEZINA†

Abstract. We consider a model of the flow in fractured porous media based on the dual
continuum approach and explicit description of the fracture zones by lower-dimensional objects. For
this model, we present the mixed-hybrid formulation and discretization using Raviart-Thomas finite
elements. In particular, we present two new methods for the discrete coupling between equations on
meshes of different dimensions with arbitrary overlapping. Convergence properties of these methods
are demonstrated by numerical tests.
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1. Introduction. Realistic modeling of subsurface water flow has to deal with
highly heterogeneous and multi-scale nature of the hydraulic properties of the rock
masses. The water moves slowly on the majority of the rock volume through mi-
croscopic pores and fractures while it moves rapidly on the small part of the rock
volume occupied by larger fractures that forms preferential flow paths. These paths
may by highly localized and the volumetric flow rate in them may be comparable or
even dominating flow rate in the bulk volume. However, a cross-section of the larger
fractures is still very small compared to the length scale of the whole domain, thus
one has to refine computational mesh along the fractures in order to render them
properly, which can lead to the meshes that are intractably larger, especially if the
network of fractures is dense enough. To overcome these difficulties, we consider the
flow on fractures to be constant in the normal direction and we integrate the flow
equations over the aperture of the fractures. Similar procedure can be done for the
channels with relatively small cross-section area. Finally, we obtain system of equa-
tions on the domains of different dimension, coupled through the boundary conditions.
This approach has been proposed by several authors, see e.g. [5] or homogenization
arguments in [4].

Even after this simplification, it could be difficult to obtain the mesh where the
elements on the fractures match the sides of the elements of a surrounding continuum.
The aim of this paper is to present two mortar-like methods for mixed-hybrid formu-
lation that relax this compatibility condition. Since these methods can not capture
the jump in the pressure over the fractures, we have to assume continuous pressure
in our model. This is not completely unrealistic, since such a model can be viewed as
a dual continuum model in spirit of Gerke and Genuchten [3] where the fracture zone
is explicitly localized.

The paper is organized as follows. In the next section, we specify our model.
Then, in Section 3, we introduce its mixed-hybrid formulation. The two new methods
for discretization on incompatible meshes are presented in Section 4 and the last
section is devoted to the numerical test of convergence of the methods.
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2. Problem formulation. Let Ω3 be a domain in R3, Ω2 ⊂ R3 a domain of
fractures formed by piecewise smooth manifolds, and Ω1 ⊂ R3 a domain of channels
formed by piecewise smooth curves. In order to keep further formulas consistent, we
also introduce Ω0 as the set of channel intersections. We assume that Ω1 has no direct
interaction with Ω3, i.e.

Ω1 ∩ Ω3 ⊂ Ω2. (2.1)

We also assume that the boundary of Ωd is outside of Ωd+1 for d = 1, 2. On the other
hand, the domain Ωd can hang out of Ωd+1 for d = 1, 2.

On these domains, we consider the Darcy’s law

qd = νdvd = −νdKd∇hd on Ωd \ Ωd−1 for d = 1, 2, 3; (2.2)

and the continuity equation

divqd = Fd on Ωd \ Ωd−1 for d = 1, 2, 3; (2.3)

where vd [ms−1] is the velocity qd is the Darcy flux and νd is the measure of cross-
section. The physical units of these quantities depends on the dimension

q3 [ms−1], ν3 [−] is constantly one,

q2 [m2s−1], ν2 [m] is fracture’s aperture,

q1 [m3s−1], ν1 [m2] is channel’s cross-section area.

Other quantities in (2.2) and (2.3) are: the tensor of hydraulic conductivity Kd, the
pressure head hd [m], and partially integrated density of the water sources Fd. Vectors
qd and tensors Kd lives in the corresponding local tangent spaces of domains Ωd. The
principal unknowns of this system are the fluxes qd and the pressure heads hd.

To complete the system, we have to prescribe boundary conditions. The boundary
of Ωd \ Ωd−1 consists of the outer boundary ∂Ωd and the interior interface to the
domain Ωd−1. On the outer boundary, we consider the Dirichlet boundary condition
hd = Hd on the set ΓD

d and the homogeneous Neumann boundary condition on the
set ΓN

d , where these two sets forms disjoint decomposition of ∂Ωd. The boundary
conditions on the interior interfaces introduce a coupling between dimensions. For
d = 3, the set Ω2∩Ω3 \Ω1 consists of separated patches of smooth two side manifolds,
thus we need two boundary conditions on them. First condition is the continuity of
h3 on both sides of the patch and the second is balance of the fluxes

q+
3 · n+ + q−3 · n− = Q3 = σ2(Trh3 − h2). (2.4)

Here Q3 is the surface density of the local outer flux from Ω3 into Ω2 which is propor-
tional to the difference between the trace of h3 and h2 with a given transition coeffi-
cient σ2 [s−1]. The flux Q3 also appears as a part of the volume source F2 = Q3 +ν2f2

on the domain Ω2. For d = 2, the set Ω1 ∩ Ω2 \ Ω0 consists of separated curve seg-
ments, where every segment is on the boundary of k ≥ 2 different 2d-patches. The
continuity of the pressure h2 yields k − 1 conditions and the last condition is again
balance of the fluxes

k∑
i=1

qi
2 · ni = Q2 = σ1(Trh2 − h1). (2.5)



202 J. BŘEZINA

Here σ1 = ν2σ̃1, where σ̃1 [s−1] is the transition coefficient, and as before the flux
Q2 is a part of the volume source on Ω1, i.e. F1 = Q2 + ν1f1. Similarly, we assume
continuity of the pressure head h1 and zero flux balance on the set Ω0 and for the
consistency, we introduce Q1 = 0. Finally, we set F3 = f3, where fd [s−1] is the
density of external volume sources. For the sake of simplicity, we consider equations
(2.4) and (2.5) also on hanging parts, namely on Ω2 \ Ω1 and Ω1 \ Ω0 respectively,
but we set σd = 0 on Ωd \ Ωd+1 for d = 1, 2.

3. Mixed-Hybrid Formulation. After introduction of the model, we are going
to derive its mixed-hybrid weak formulation in the similar fashion as in [1] and [7]. To
avoid technicalities, we assume that Ω3 have piecewise polygonal boundary, domain
Ω2 consists of polygons, and Ω1 consists of line segments. We also assume that the
Dirichlet boundary ΓD

3 is a polygonal subset of ∂Ω3. Further, we decompose Ωd,
d = 1, 2, 3, into sub-domains Ωi

d, i ∈ Id, and we denote the set of their boundaries

Γd =
⋃

i∈Id

∂Ωi
d.

For now, we consider only the decompositions satisfying the compatibility condition

Ωd−1 ∩ Ωd ⊂ Γd, d = 1, 2, 3, (3.1)

but we shall relax this condition on the discrete level.
In the following, we introduce spaces for the solution and the test functions. The

fluxes qi
d on the sub-domains Ωi

d shall be from

V = V3 × V2 × V1 =
∏

d=3,2,1

∏
i∈Id

H(div,Ωi
d), (3.2)

where H(div,Ωi
d) ⊂ L2(Ωi

d)d is the standard space of vector functions with divergence
in L2(Ωi

d). The pressure head hd shall be from the space

Pd = L2(Ωd), (3.3)

and the trace of the pressure head h̊d from the space

P̊d =
{
ϕ̊ ∈ H 1

2 (Γd) | ϕ̊ = 0 on ΓD
d

}
, (3.4)

where H
1
2 (∂Ω) is the space of traces of functions from H1(Ω). Equivalently, it can

be introduced as the subspace of functions form L2(Ω) with a finite norm

∥∥u∥∥2

H
1
2 (Ω)

=
∫

Ω

u2(x) dx+
∫

Ω

∫
Ω

|u(x)− u(y)|2

|x− y|d+1
dxdy. (3.5)

In particular, P̊1 is just finite-dimensional vector space. We also introduce common
space for the pressure head unknowns

P = P3 × P2 × P1 × P̊3 × P̊2 × P̊1. (3.6)

In order to derive the mixed-hybrid formulation, we divide (2.2) by νdKd, multiply
it by a vector test function ψd ∈ Vd, and integrate by parts over every sub-domain Ωi

d.
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There appears a boundary term containing the trace of the pressure head h̊d which
is further treated as an independent unknown. It can also be viewed as the Lagrange
multiplier for the balance constrain∑

i∈Id

qd · n|∂Ωi
d

=
{
Qd on Ωd−1 ∩ Γd,
0 on Γd \ Ωd−1,

(3.7)

imposed on the fluxes by (2.4), (2.5) and their continuity out of Ωd−1. Next, we
substitute for Fd in the continuity equation (2.3) and test it by −ϕd ∈ Pd. Finally, we
substitute for Qd in the balance constrain (3.7) and test this equation by the functions
ϕ̊d ∈ P̊d with support on Γd \ ΓD

d . After these manipulations, we arrive at following
definition of the mixed-hybrid solution in terms of an abstract saddle point problem:

Definition 3.1. We say that pair (q, h) =
(
q, (h, h̊)

)
∈ V × P is mixed-hybrid

solution of the problem P123 if it satisfies abstract saddle point problem

a(q,ψ) + b(ψ, h) = 〈G,ψ〉 ∀ψ ∈ V, (3.8)

b(q, ϕ)− c(h, ϕ) = 〈F,ϕ〉 ∀ϕ = (ϕ, ϕ̊) ∈ P, (3.9)

where the bilinear forms on the left-hand side are

a(q,ψ) =
∑

d=1,2,3

∑
i∈Id

∫
Ωi

d

1
νd
qi

dK−1
d ψi

d,

b(q, ϕ) =
∑

d=1,2,3

∑
i∈Id

(∫
Ωi

d

−divqi
d ϕd +

∫
∂Ωi

d

(qi
d · n)ϕ̊d

)
,

c(h, ϕ) =
∑

d=1,2

∫
Ωd

σd(hd − h̊d+1)(ϕd − ϕ̊d+1)

and linear forms on the right-hand side are

〈G,ψ〉 =
∑

d=1,2,3

∑
i∈Id

∫
∂Ωi

d

H̃d(ψd · n),

〈F,ϕ〉 = −
∑

d=1,2,3

∫
Ωd

νdfdϕd.

where H̃d is an extension of the prescribed boundary pressure head Hd ∈ H1/2(ΓD
d )

into the space P̊d. Consequently the full trace of the unknown pressure head is h̊d+H̃d.
The second term in the bilinear form b(·, ·) deserves a note. The outflow qi

d · n
is from the dual of H

1
2 (∂Ωi

d), therefore we have to use restriction of ϕ̊d from the
space H

1
2 (Γd), where Ωi

d ( Γd. Fortunately, this restriction exists due to Gagliardo
definition of H

1
2 spaces by the norm (3.5). In the bilinear form c(·, ·), we simply use

embedding of H
1
2 (Γd) into L2(Γd).

Assuming that νd, Kd, σd, and αd are uniformly bounded and uniformly grater
than zero (positive definiteness of Kd), we can prove that a(·, ·) and c(·, ·) are bounded,
symmetric, positive definite bilinear forms and that

B : V → P ′, 〈B(q, ϕ〉 = b(q, ϕ)
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is surjective operator. Assuming further

fd ∈ L2(Ωd) and Hd ∈ H
1
2 (ΓD

d ),

we can prove that the mixed-hybrid solution is independent of choice of decomposition
Id and independent of choice of extension H̃d. Finally, using [2, Theorem 1.2], we can
prove existence and uniqueness of the mixed-hybrid solution.

4. Discretization on incompatible meshes. Let us consider particular de-
composition of domains Ωd into a mesh of simplex elements Ωi

d, i ∈ Id. We say that
the mesh is compatible if it satisfies condition (3.1) and if the elements of dimension
d− 1 match the faces of elements of dimension d. Otherwise we say that the mesh is
incompatible. In this section, we shall deal with a discrete version of the mixed-hybrid
problem 3.1 on the incompatible meshes.

First, let us consider discretization of 3.1 on the compatible mesh. We approxi-
mate the velocity space V by

Ṽ = Ṽ3 × Ṽ2 × Ṽ1, Ṽd =
∏
i∈Id

RT 0(Ωi
d), (4.1)

where RT 0(Ωi
d) is d + 1 dimensional space of Raviart-Thomas functions on one el-

ement (see [2]). The space P will be approximated by zero order polynomials. We
approximate Pd by the polynomials constant over individual elements

P̃d =
∏
i∈Id

P0(Ωi
d), (4.2)

and similarly, we approximate the space P̊ by the polynomials constant over the sides
of elements

P̃ ◦d =
∏

e∈Ed

P0(e), (4.3)

where Ed is set of all edges on sides of the elements Ωi
d, i ∈ Id that are not on

the Dirichlet boundary ΓD
d . Note, that unlike the previous spaces, the space P̃ ◦d is

not subspace of P̊d, so the approximation is nonconforming. Finally, let us denote
P d = P̃d × P̃ ◦d and P̃ = P 3 × P 2 × P1.

Using these spaces, we obtain a discrete linear system

Ax = b. (4.4)

The values of the system matrix A are given directly by the bilinear forms a, b, c

Aij = a(ψj ,ψi) + b(ψi, ϕj) + b(ψj , ϕi) + c(ϕj , ϕi)

and the values of the right-hand side b are given by the linear forms F, G

bi = 〈G,ψi〉+ 〈F,ϕi〉,

where the bases functions (ψi, ϕi) iterates through a suitable basis of Ṽ × P̃ . All inte-
grals are evaluated as a sum of integrals over individual elements and their boundaries,
in particular the term c is sum of the integrals over elements Ωi

d for d = 1, 2

c(ϕj , ϕi) =
∑

d=1,2
k∈Id

∫
Ωk

d

σk
d(ϕd,j − ϕ̊d+1,j)(ϕd,i − ϕ̊d+1,i) (4.5)
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In order to get a discrete mixed-hybrid formulation on an incompatible mesh, we
have to modify the bilinear form c. In particular we have to provide an approximation
of the trace of the pressure head hd+1 on Ωd since for meshes violating (3.1) this set
is not in the support of h̊d+1. We shall consider following approximation of c:

c̃(ϕj , ϕi) =
∑

d=1,2
k∈Id

∫
Ωk

d

σk
d

(
Sd(ϕd,j)− Td(ϕd+1,j)

)(
Sd(ϕd,i)− Td(ϕd+1,i)

)
, (4.6)

where Sd : P d → L2(Ωd) is a reconstruction operator, which can possibly reconstruct
better approximation of hd from its discrete version hd, and Td : P d+1 → L2(Ωd) is
approximation of the trace.

A straightforward choice for these operators is

Sd(ϕd) = ϕd and T (ϕd+1)|Ωi
d∩Ωj

d+1
= ϕd+1|Ωj

d+1
, (4.7)

i.e. the approximation of the trace is possibly different constant on every intersection
Ωi

d ∩ Ωj
d+1. This choice was suggested by O. Severýn in [6], but it come out that

for large values of σ the term c̃ force equivalence of the pressures hd and hd+1 on
all elements intersection the domain Ωd which leads to wrong solution that is locally
constant along Ωd.

Thus we have proposed two other choices of operators Sd, Td inspirited by the
mortar methods.

4.1. method P0. In the first method, we take space Pd as a space of the mortar
interface and let both Sd and Td interpolate into this space. Thus, we take Sd(ϕd) =
ϕd as before and

T (ϕd+1)|Ωi
d

=

∑
j∈Id+1

µij
d ϕd+1|Ωj

d+1∑
j∈Id+1

µij
d

, (4.8)

i.e. Td on Ωi
d is a weighted average of the values on intersecting elements Ωj

d+1 with the
weights proportional to the d-dimensional measure µij

d of the intersection Ωi
d ∩Ωj

d+1.
Clearly the sums in (4.8) run only over elements intersecting with Ωi

d.

4.2. method P1. For the second method, we have to introduce a space of non-
conforming finite elements Xd ⊂ L2(Ωd) of the functions ϕ that are linear on every
element Ωi

d and continuous in the midpoints of all edges from Ed. In particular X1 is
the space of continuous piecewise linear functions. Since both P̃ ◦ and Xd has support
points of degrees of freedom in the midpoints of edges, we can introduce operator
R : P̃ ◦ → Xd that reconstructs linear nonconforming approximation from the trace
values on the edges given by ϕ̊d. Then we set

Sd(ϕd) = R(ϕ̊d), Td(ϕd)|Ωi
d∩Ωj

d+1
= TrΩi

d
R(ϕ̊d+1). (4.9)

Thus, on every intersection Ωi
d ∩ Ωj

d+1 the value of Td is a linear function that is the
trace of R(ϕ̊d+1).

Motivation for this method comes from the structure of the linear system (4.4).
For compatible discretization, this system is indefinite, but by means of Schur com-
plements, it can be efficiently reduced to a positive definite system only for traces of
the pressure head. Method P1 does not break the structure of the system, thus the
reduction of the system can be done in the same way.
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5. Numerical experiments. In this section, we shall present numerical tests
of convergence for the proposed methods P0 and P1. We present only tests for the
case 2d-1d for the simple reason, that the case 3d-2d requires much more complicated
algorithms from the computation geometry for identification of intersections Ωi

d∩Ωj
d+1

and we do not have them implemented yet.
Let us consider a 2d-1d flow problem on the domains Ω2 = (−1, 1)× (−1, 1) and

Ω1 = {(x, 0) |x ∈ (−1, 1)}. We set hydraulic conductivities k2 = 1 and k1 = 5 on Ω2

and Ω1 respectively, and we assume zero sources f1 = f2 = 0. We also set δ1 = δ2 = 1,
which implies qd = vd, for d = 1, 2.

We prescribe the Dirichlet boundary conditionH2 = 10 on the top and the bottom
part of ∂Ω2 and the homogeneous Neumann boundary conditions on the side edges.
At the end points of Ω1, we prescribe the Dirichlet boundary condition H1 = 5. In
our study, we consider three values for the parameter σ = 1, 10, 100; where the largest
value force the pressures h1 and h2 to be close to the equilibrium while the smallest
value let h2 to be almost constant over Ω2.

The setting just described admits an analytical solution in a form of Fourier series,
which can be used as the reference solution (hd, qd), d = 1, 2. For computation of the
numerical solution (h̃d, q̃d), d = 1, 2, we have used incompatible unstructured regular
meshes with diameter of triangles in Ω2 proportional to δ2 = 2−k and elements in
Ω1 proportional to δ1 = δ2/ρ. We have performed calculations for k = 2, . . . , 8 and
ρ = 0.5, 1, 2. To approximate the errors

η(hd) =
∥∥h̃d − hd

∥∥
L2(Ωd)

, and η(qd) =
∥∥q̃d − qd

∥∥
L2(Ωd)

, d = 1, 2

we have used the midpoint rule on every element. Since we can expect at most
quadratic convergence order forRT 0 finite elements (see [8]), the midpoint rule should
provide sufficient precision.

method P0  method P1
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Fig. 5.1. Approximative L2-norm of the error for the pressure head and the velocity on both
domains and for both methods with σ = 100.
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Before we proceed to the analysis of the order of convergence, we should discus
the role of the parameter ρ. It is known from the theory of mortar methods that
discretization of the mortar interface (fracture in our case) should not be finer then
discretization of the surrounding sub-domains (see [9, Assumption 2.1]). This condi-
tion is not very restrictive in practice, however we can demonstrate it in Figure 5.1
that displays errors for the most sensitive case σ = 100. All black lines, which corre-
sponds to ρ = 2, have smaller slope at the right hand part of plot that corresponds
to the fine meshes. It means that the order of convergence is slightly deteriorated for
large values of ρ in particular for the method P0 and for the error of h1. On the other
hand, for smaller values of ρ, the method P0 exhibits quite large errors on coarse
meshes. This is caused by bad conditioning of the linear system. In fact for ρ = 0.2
(not on the plot), we get completely wrong solution on coarse meshes. The conclusion
is that the method P0, unlike the method P1, requires δ1 to be close to δ2.

Table 5.1
Estimated order of convergence of approximated L2-error for the pressure head and the velocity.

pressure head velocity

ρ = 0.5 ρ = 1 ρ = 0.5 ρ = 1

1d 2d 1d 2d 1d 2d 1d 2d
method P0 2.1 1.60 1.87 1.55 1.82 0.6 1.43 0.56
method P1 2.1 1.68 1.87 1.55 1.82 0.6 1.60 0.56

compatible mesh 1.9 1.9 1.9 1.9 1.9 1 1.9 1

For estimation of the order of convergence, we have used linear regression and
analysis of variance to determine factors that influence the order of convergence. The
results are summarized in Table 5.1. On the last line, there are also results for the
convergence of solution on a compatible mesh. The values for both methods were
very close and different values are reported only when the difference was statistically
significant. Surprisingly the ratio ρ has stronger impact then the choice of the method.
Value of the parameter σ has no significant influence on the order of convergence. On
the other hand, the absolute magnitude of all errors save the error η(v2) was two
times larger for the method P0 then for the method P1.

Comparing to the compatible case, which exhibits almost optimal orders of con-
vergence, the substantial difference is namely for η(h2) (about 3/2 for our method)
and for η(v2). Indeed, the order of convergence of the error η(v2) should be about
1/2 since we have constant error ε on all elements along Ω1 due to the bad resolution
of the jump in the velocity, then

η(v2) >
√

1/δ2ε2δ2
2 = ε

√
δ2.

The last thing, we want to mention is conditioning of the discrete system. As
was already mentioned, the system resulting from the discretization is indefinite, but
one can apply Schur complements to obtain a reduced positive definite system. We
have used CG solver to solve this system and as the side effect we have obtained
approximative eigenvalues, which allows us to compute estimate of the condition
number. The method P0 and the compatible case has similar condition numbers, but
surprisingly the method P1 had condition numbers about ten times smaller, which
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leads to the less than half number of iterations. This property is unaffected by σ, ρ
or δ2.

6. Conclusions. We have presented two new methods for the mixed-hybrid
discretization of couplings between dimensions. Both methods were tested on a simple
2d-1d problem that provides an analytical solution. The experimentally determined
orders of convergence are almost same for both methods, but the absolute errors
are smaller for the method P1. This method also results into linear systems with
better condition numbers and is more robust. The main drawback of both methods
is worse resolution of the velocity near the fractures compared to the compatible
discretization. This is natural since we use continuous approximation of the velocity
over the fractures where the exact velocity field has a jump. To get better velocity
field near the fractures one should enrich the discrete space with base functions that
have unit jump over the fracture.

Unfortunately, nothing is known about theoretical properties of the proposed
methods. The theory for approximation of mixed problems due to Brezzi and Fortin
[2] is not directly applicable. This is obviously an important open question and space
for further research.
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