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NUMERICAL SIMULATION OF INTERACTION BETWEEN
INCOMPRESSIBLE FLOW AND AN ELASTIC WALL∗

MARTIN HADRAVA† , MILOSLAV FEISTAUER‡ , AND PETR SVÁČEK§

Abstract. The present paper is devoted to the numerical solution to flow in time-dependent
domains with elastic walls. This problem has several applications in engineering and medicine. The
flow is described by the system of Navier-Stokes equations supplemented with suitable initial and
boundary conditions. A part of the boundary of the region occupied by the fluid is represented by an
elastic wall, whose deformation is driven by a hyperbolic partial differential equation with initial and
boundary conditions. Its right-hand side represents the force by which the fluid flow acts on the elastic
wall. A numerical method for solving this coupled problem is elaborated, based on the finite element
method and the arbitrary Lagrangian-Eulerian (ALE) formulation of the equations describing the
flow. The formulation and analysis of the problem together with discretization, algorithmization
and programming of modules, which were added to an existing software package, is presented. The
developed method is applied to solving test problems.

Key words. fluid-structure interaction, Navier-Stokes equations, arbitrary Lagrangian-Eulerian
method, finite element method, string equation
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1. Introduction. Interaction of flow with an elastic structure plays an impor-
tant role in contemporary research and industry. Among the most significant areas
of application one can mention aerospace engineering, civil engineering, car industry
or medicine. The presented work is concerned with medical applications by modeling
fluid flow in a channel with elastic walls, which may represent the walls of human vo-
cal folds or vessels. This subject is in the center of attention particularly with respect
to modelling and simulation of cardio-vascular systems. Various aspects are treated,
e.g., in [4], [6] and [7], where a general framework of the fluid-structure coupling and
some iterative procedures can be found.

In this article we describe a numerical method developed for the simulation of the
vibrations of an elastic wall induced by viscous incompressible flow. The fluid flow
is described by the system of incompressible Navier-Stokes equations supplemented
with the continuity equation. Movement of the elastic wall of the two-dimensional
channel occupied by the fluid is described by the string hyperbolic partial differential
equation. The time dependence of the domain occupied by the fluid is taken into
account by the arbitrary Lagrangian-Eulerian (ALE) method. Both the fluid and
the structure problem are then semi-discretized in time by the backward-difference
formula of second order and the resulting equations are discretized in space using
a conforming finite element method (FEM). The applicability of the developed method
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is demonstrated by numerical experiments.

Fig. 1.1. Plane channel with elastic walls.

2. Governing equations.

2.1. Structure of the domain occupied by the fluid. We deal with incom-
pressible flow in a bounded plane domain Ωt ⊂ R2 depending on time t ∈ [0, T ),
T > 0. Figure 1.1 shows an example of such domain with two elastic walls. For the
sake of simplicity, only a single elastic wall will be considered. The boundary ∂Ωt of
the domain occupied by the fluid is split according to prescribed boundary conditions
into three disjoint parts, ∂Ωt = ΓD ∪ ΓO ∪ ΓWt . The part of the boundary ΓD repre-
sents the inlet and fixed impermeable parts of the walls. ΓO represents the outlet of
the channel. Finally, ΓWt represents the elastic wall and is time-dependent.

2.2. The Navier-Stokes equations. We use the notation

M = {(x, t); x ∈ Ωt, t ∈ (0, T )} and Γ̃ = {(x, t); x ∈ ΓWt , t ∈ (0, T )} .

The fluid flow is described by the following system of equations and boundary and
initial conditions:

∂u

∂t
+ (u · ∇)u +∇p− ν∆u = 0 in M, (2.1)

divu = 0 in M, (2.2)
u = uD on ΓD × (0, T ), (2.3)

−pn + ν
∂u

∂n
= −prefn on ΓO × (0, T ), (2.4)

u = w on Γ̃, (2.5)
u = u0 in Ω0, (2.6)

where the velocity of viscous incompressible flow is denoted by u and the kinematic
pressure of the fluid is denoted by p. We consider the incompressible Navier-Stokes
equations in the form (2.1) supplemented with the continuity equation (2.2). Here
the constant ν > 0 denotes the kinematic viscosity of the fluid. On ΓD the Dirichlet
boundary condition (2.3) is prescribed, where uD is a given function. On ΓO the so-
called “do-nothing” boundary condition (2.4) is prescribed, where n denotes the unit
outer normal to Ωt and pref denotes a reference pressure prescribed on the outlet.
On the moving wall ΓWt the Dirichlet boundary condition (2.5) is prescribed, where
w denotes the velocity of the elastic wall deformation. A rigorous definition of the
quantity w is given below (cf. equation (2.10)). The system of equations is finally
completed by the initial condition (2.6), where u0 is a given function.



INTERACTION BETWEEN INCOMPRESSIBLE FLOW AND AN ELASTIC WALL 211

2.3. String equation. Deformation of the elastic wall is described by the fol-
lowing initial boundary-value problem:

∂2η

∂t2
− a

∂2η

∂x2
1

+ bη − c
∂3η

∂t∂x2
1

+ d
∂η

∂t
= H in Q, (2.7)

η = η0,
∂η

∂t
= η1 in (0, L) at t = 0, (2.8)

η = 0,
∂η

∂t
= 0 in (0, T ) at x1 = 0 and x1 = L, (2.9)

where the string hyperbolic partial differential equation (2.7) is valid in the domain
Q = (0, L)× (0, T ), L > 0. Here the function η denotes the deformation of the wall in
the direction of the x2-axis, a, b, c, d are positive constants characterizing properties
of the wall and the function H represents the x2-component of the force by which the
fluid acts on the elastic wall. Equation (2.7) is supplemented with the initial conditions
(2.8), where η0 and η1 are given functions, and the homogeneous boundary conditions
(2.9). The derivation of the presented model can be found in [10]. We assume that
the elastic wall ΓWt

can be parametrized by a smooth function σ = σ0+η, σ : Q → R,
where σ0 parametrizes ΓWt at t = 0 and η represents the deformation of the elastic
wall. The right-hand side H of equation (2.7) is defined by the relation

H =
1

ρwhw

2∑

j=1

njτj2,

where n = (n1, n2) is the unit outer normal to Ωt, ρw > 0 is the constant density of
the elastic wall, hw > 0 is its constant thickness and τ = (τij)2i,j=1 is the fluid stress
tensor (cf. [3]). Finally, the velocity of the elastic wall deformation is defined by

w =
(

0,
∂η

∂t

)
. (2.10)

From the presented equations it follows that the fluid flow problem depends on
the solution to the string deformation problem through the boundary condition (2.5)
and the string deformation problem depends on the solution to the fluid flow problem
through the right-hand side H of equation (2.7).

Fig. 3.1. ALE mapping At.

3. ALE formulation. In order to simulate flow in a time-dependent domain the
ALE method is employed. Let us denote the reference configuration by Ωref = Ω0,
i.e. the reference configuration is the computational domain Ωt at time t = 0. A
smooth, one-to-one mapping of Ωref onto Ωt at time t (the so-called current configu-
ration) is denoted by At (cf. [8], see Fig. 3.1), i.e.

At : Ωref → Ωt, At : X 7→ x = At(X).
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The ALE mapping At serves as a basis for the definition of the domain velocity

w̃(X, t) =
∂

∂t
At(X), X ∈ Ωref , t ∈ (0, T ),

w(x, t) = w̃(X, t), X = A−1
t (x), x ∈ Ωt, t ∈ (0, T ).

We use the symbol w to denote the ALE velocity since its restriction to ΓWt is the
velocity of the elastic wall (see equation (2.10)). The ALE derivative of a function
f = f(x, t) is defined as

DAf

Dt
(x, t) =

∂f̃

∂t
(X, t),

where

f̃(X, t) = f(At(X), t), X = A−1
t (x) ∈ Ωref , x ∈ Ωt, t ∈ (0, T ).

From the chain rule it follows that
DAf

Dt
=

∂f

∂t
+(w ·∇)f , which yields the ALE form

of the Navier-Stokes equations

DAu

Dt
+ ((u−w) · ∇)u +∇p− ν∆u = 0. (3.1)

4. Discretization of the Navier-Stokes equations.

4.1. Time discretization. For the time semi-discretization of equations (2.2)
and (3.1) the second-order backward difference formula is applied. We introduce
a uniform partition 0 = t0 < · · · < tN = T , tk = kτ , of the time interval [0, T ] with
a constant time step τ > 0. The exact solution (u, p) to the Navier-Stokes system at
time tn is approximated by the couple (un, pn). The time derivative of u is discretized
as

DAu

Dt
(x, tn+1) ≈ 3un+1(x)− 4ûn(x) + ûn−1(x)

2τ
, x ∈ Ωtn+1 , (4.1)

where ûj = uj ◦ Atj ◦ A−1
tn+1

, j = n− 1, n. Replacing the ALE derivative of the fluid
velocity u with the term on the right-hand side of approximation (4.1) yields a system
of stationary PDEs

3un+1 − 4ûn + ûn−1

2τ
+

(
(un+1 −wn+1) · ∇)

un+1 +∇pn+1 − ν∆un+1 = 0, (4.2)

divun+1 = 0

for unknown functions un+1, pn+1. By wn+1 we denote the approximation of the
function w(·, tn+1).

4.2. Space discretization.

4.2.1. Weak formulation. Space discretization is carried out using a conform-
ing finite element method (FEM). In this section we simply write u, p, Ω and w
instead of un+1, pn+1, Ωtn+1 and wn+1. At first, equations (4.2) are multiplied by
test functions v ∈ X and q ∈ Q respectively, where

X =
{
v ∈ (H1(Ω))2; v|ΓD∪ΓWt

= 0
}
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and Q = L2(Ω), H1(Ω) is the Sobolev space of L2(Ω) functions with the first-order
derivatives in L2(Ω) and L2(Ω) is the Lebesgue space of square-integrable functions
on Ω. We further write W = (H1(Ω))2. Integrating the resulting equations over Ω,
summing them and using Green’s theorem for the terms containing ∆u and ∇p, the
weak formulation of equations (4.2) is obtained: Find U = (u, p) ∈ W ×Q such that

a(U,U, V ) = f(V ) for all V = (v, q) ∈ X ×Q. (4.3)

We assume that the function u satisfies the boundary conditions (2.3) and (2.5) at
time tn+1. The terms a(U,U, V ) and f(V ) are defined by

a(U∗, U, V ) =
3
2τ

(u, v)Ω + (((u∗ −w) · ∇)u,v)Ω − (p, divv)Ω + ν((u,v))Ω

+ (divu, q)Ω,

f(V ) =
1
2τ

(4ûn − ûn−1,v)Ω −
∫

ΓO

prefv · n dS,

where U∗ = (u∗, p) ∈ W × Q, U = (u, p) ∈ W × Q, V = (v, q) ∈ X × Q and
(f, g)Ω =

∫
Ω

fg dx denotes the scalar product in L2(Ω) or in (L2(Ω))2 and ((u, v))Ω
denotes the bilinear form

((u, v))Ω =
∫

Ω

∇u · ∇v dx =
2∑

i,j=1

∫

Ω

∂ui

∂xj

∂vi

∂xj
dx,

where u = (u1, u2) and v = (v1, v2). The couple (u, p) represents the approximate
solution to the fluid flow problem at the time level tn+1.

4.2.2. Finite element method. We approximate the spaces W, X and Q from
the weak formulation (4.3) by finite dimensional subspaces Wh, Xh and Qh, h ∈
(0, h0), h0 > 0, where Xh =

{
vh ∈ Wh; vh|ΓD∪ΓWt

= 0
}
. We define the discrete

problem to find Uh = (uh, ph) ∈ Wh ×Qh such that the equation

a(Uh, Uh, Vh) = f(Vh)

is satisfied for all Vh = (vh, qh) ∈ Xh ×Qh and uh approximately satisfies prescribed
boundary conditions. Because of the stability of the method, finite-dimensional spaces
Xh, Qh that satisfy the Babuška-Brezzi condition (cf. [1]) are chosen. This means that
there exists a positive constant c > 0 such that

sup
0 6=v∈Xh

(p, divv)Ω
|v| ≥ c||p||

holds for all p ∈ Qh, h ∈ (0, h0). Here | · | denotes the (H1(Ω))2 semi-norm defined by
|v| = ((v, v))1/2

Ω and || · || denotes the L2(Ω) norm defined by ||p|| = (p, p)1/2
Ω .

In practical realization the domain Ω is assumed to be a polygonal approximation
of the region occupied by the fluid at time tn+1. Th denotes the triangulation of the
domain Ω with standard properties from the FEM. Figure 4.1 shows an example of
a triangular mesh of the domain Ω. We employ the Taylor-Hood P 2/P 1-elements
(cf. [1]), where the pressure p is approximated by a continuous function ph, which is
linear on each triangle K ∈ Th, and the fluid velocity u is approximated by a continu-
ous function uh, which is quadratic in each component on each triangle K ∈ Th. The
couple (Xh,Qh) defined in this way satisfies the Babuška-Brezzi condition (cf. [1]).
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Fig. 4.1. Triangular mesh Th of the domain Ω.

4.2.3. Linearization. The resulting strongly non-linear problem is linearized by
the application of the Oseen iterative process (cf. [3], page 599). Each Oseen iteration
is equivalent to the system of linear algebraic equations with a non-symmetric matrix

(
A B + C
BT 0

)(
U
P

)
=

(
F
G

)
, (4.4)

where the vector U denotes the coefficients of an approximation of the discrete fluid
velocity with respect to the chosen basis of the space Wh and the vector P denotes
the coefficients of an approximation of the discrete pressure with respect to the chosen
basis of the space Qh.

The solution to the system (4.4) is realized by the direct solver UMFPACK
(cf. [2]), which works sufficiently fast for systems with up to 105 equations.

5. Discretization of the string equation. In this section we denote x = x1.
The string equation (2.7), which is of the second order in time, is transformed to
the couple of the first-order differential equations

∂ξ

∂t
− a

∂2η

∂x2
+ bη − c

∂2ξ

∂x2
+ dξ = H,

∂η

∂t
= ξ, (5.1)

where ξ denotes the velocity of the elastic wall deformation. Equations (5.1) are semi-
discretized in time with the aid of the backward-difference formula of second order of
accuracy, similarly as in the time semi-discretization of the Navier-Stokes equations.
The resulting equations are then discretized in space employing the conforming finite
element method with linear elements. The resulting stiffness matrix S is block-banded,
indefinite and non-symmetric. Since the number of degrees of freedom in this case
is low, the solution to the wall deformation problem can be obtained with the aid of
a direct solver.

6. Numerical experiments.

6.1. Complete discrete problem. The following numerical experiments were
obtained using a modified software package FEMFLUID (cf. [9]). Numerical methods
for solving the flow problem and the wall deformation problem separately were pre-
sented in the preceding sections. Prior to presenting results of the main test problem
we introduce a method to deal with the interaction problem. A technique based on the
so-called predictor-corrector method is employed. At the time level tn the right-hand
side H of equation (2.7) is computed. The obtained result is then used to compute an
approximation to the wall deformation η at time tn+1 and subsequently an approxi-
mation of the domain occupied by the fluid at time tn+1 is obtained. Now we solve
numerically the flow problem at the time level tn+1 and use the obtained results to
update the approximation of the right-hand side H of equation (2.7). If H changes
by more than a prescribed tolerance, we repeat the whole process to obtain a better
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Fig. 6.1. Evolution of the deformation of the elastic wall in time.

approximation of the wall deformation η and subsequently a better approximation of
the flow problem solution.

6.2. Test problem. In the presented numerical experiment it is assumed that
the upper wall movement is prescribed by a sufficiently smooth time-periodic function.
The upper wall movement induces movement of the lower elastic wall. The main
parameters of the numerical experiment are given as follows: τ = 0.01, T = 40, ν =
0.01. The corresponding Reynolds number Re is defined by the relation Re = UL/ν
and therefore equals 100. Here U denotes the characteristic velocity (in our case
the prescribed flow velocity at the channel inlet) and L denotes the characteristic
length (in our case the width of the channel at the inlet). Figure 6.1 shows the
evolution of the deformation of the elastic wall in time. Figure 6.2 shows the graph
of the movement of two points of the elastic wall with the first coordinate given by
x1 = −1.4 and x1 = 0. Finally, Figure 6.3 shows the velocity field at time t = 7.9.
The triangular mesh used in this example has 1600 elements. The number of degrees
of freedom in the fluid flow problem is 7503, while the number of degrees of freedom
in the elastic wall deformation problem is 46. The computational time on a standard
dual-core laptop was approximately 12 hours. Details about the numerical experiment
can be found in [5].
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Fig. 6.2. Graph of the movement of a point with the first coordinate x1 = −1.4 (left) and
x1 = 0 (right).
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Fig. 6.3. Velocity field u at time t = 7.9. Here X = x1 and Y = x2.

6.3. Estimated rate of convergence. In the case of the presented numerical
example the estimated order of convergence (EOC) of the approximate solution to
the elastic wall deformation was numerically computed. Triangular meshes of the
computation domain with spatial steps h = 1, 0.5, 0.25 and 0.125 were constructed.
Then the approximate solutions to our problem with time steps τ = 0.16, 0.08, 0.04,
0.02 and 0.01 for all available spatial meshes were computed. From the numerical
results we could then deduce whether the estimate of the error, measured in the
L2-norm, is dominated by the term dependent on the spatial step h or the term
dependent on the time step τ . Since the exact solution is unknown, we used the
approximate solution obtained with a very fine triangular mesh (h = 0.00625) and a
very small time step (τ = 0.005). Our aim was to compare the so-called weak coupling
(i.e. computing the predictor only) with the so-called strong coupling (in our case,
computing the predictor and subsequently 3-times the corrector) of the fluid-structure
problem.

Figure 6.4 shows a comparison of the elastic wall deformation using different
time steps at several time instants, employing both the predictor and the predictor-
corrector technique. Table 6.2 shows the EOC of the approximate solution of the
elastic wall deformation to the exact solution (assuming that it exists) in time, while
Table 6.1 shows the EOC in space. Finally, Table 6.3 shows the average EOC both
in time and space.

h = 0.125 Time value t
τ 5.76 7.36 8.64
0.16 / 0.08 0.705 0.237 0.526
0.08 / 0.04 1.078 0.985 1.016
0.04 / 0.02 1.133 1.782 1.193
0.02 / 0.01 0.972 0.218 0.853

h = 0.125 Time value t
τ 5.76 7.36 8.64
0.16 / 0.08 0.973 1.752 2.093
0.08 / 0.04 1.016 1.519 0.761
0.04 / 0.02 1.152 1.383 0.714
0.02 / 0.01 1.677 1.557 1.274

Table 6.1
Estimated order of convergence in time using the predictor technique (left) and the predictor-

corrector technique (right).

τ = 0.005 Time value t
h 5.76 7.36 8.64
1 / 0.5 1.324 0.855 0.298
0.5 / 0.25 1.796 1.865 3.215

τ = 0.005 Time value t
h 5.76 7.36 8.64
1 / 0.5 1.445 1.236 0.347
0.5 / 0.25 2.423 2.389 4.243

Table 6.2
Estimated order of convergence in space using the predictor technique (left) and the predictor-

corrector technique (right).
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Fig. 6.4. Comparison of the elastic wall deformation using different time steps at time t = 5.76
(top), t = 7.36 (middle) and t = 8.64 (bottom) using the predictor technique (left) and predictor-
corrector technique (right).

From the tables it can be seen that the EOC differs largely using different couples
of triangular meshes or time steps and observing the estimated errors at different
time instants. Nevertheless, the figures clearly indicate that choosing the predictor-
corrector technique allows us to set a larger time step while preserving a similar or even
better accuracy in comparison to the predictor technique. Moreover, it also seems that
the EOC improves when strong coupling is employed. For more rigorous statements
additional computation must be performed and analyzed. Since the computation of
the corrector is usually very cheap (a very good initial guess of the solution from the
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previous iteration is available), it is recommended to use the strong coupling technique
whenever it is possible.

Rate of convergence Technique
variable Predictor Predictor-Corrector
h 0.8915 1.3226
τ 1.5588 2.0138

Table 6.3
Mean average EOC of the predictor and the predictor-corrector technique.

7. Conclusion. We developed a numerical method and a program code for solv-
ing interaction between the two-dimensional viscous incompressible fluid flow in time-
dependent domains and elastic walls. We focused on a single elastic wall located on
the lower side of the channel. A modification which would account for a couple of
elastic walls is fairly straight-forward. The resulting algorithm was programmed in
the C language. The obtained results suggest that the developed numerical scheme
for the solution to the problem of interaction is sufficiently robust and it is possible
to extend its scope of application by further development.

In the future work the authors would like to extend the presented model to a more
complicated problem of the interaction between incompressible or compressible flow
and an elastic vibrating two-dimensional body with two degrees of freedom. The
model will then be applied to computing airflow around a vibrating airfoil, which can
be deformed, move in the vertical direction and rotate around its elastic axis.
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[10] A. Zaušková, 2D Navier-Stokes equations in a time dependent domain, PhD Dissertation,
Faculty of Mathematics, Physics and Informatics, Comenius Univ. Bratislava, 2006.


