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STRUCTURE-PRESERVING FINITE DIFFERENCE SCHEME FOR
VORTEX FILAMENT MOTION ∗

TETSUYA ISHIWATA † AND KOTA KUMAZAKI ‡

Abstract. Finite difference scheme for the model equation of vortex filament in three dimen-
sional fluid is proposed. We show that the scheme inherits length-preserving and energy structures
from the original model. We also show that solvability of the scheme since the scheme is implicit
and nonlinear and give an error estimate of the iteration. Finally, numerical results are shown.
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1. Introduction. The Localized Induction Equation(LIE) is a model of the
movement of a vortex filament in three dimensional fluid [2, 1]. In this model, vortex
filament is described by a space curve. The position of the vortex filament is denoted
by x(s, t) = (x1(s, t), x2(s, t), x3(s, t)) ∈ R3, where s and t mean the arc length and
time, respectively. Then, (LIE) model is described by

xt = xs × xss.

Here, × denotes the exterior product. By introducing a new variable u(s, t) := xs(s, t),
we have the following equation:

ut = u× uss, (1.1)

where u = u(s, t) = (u1(s, t), u2(s, t), u3(s, t)) ∈ R3. By taking an inner product of
(1.1) with u, it is easily shown that u(s, t) ≡ u(s, 0) for any s and t > 0, that is, the
solution of the above equation keeps its length at each point. Thus, in this paper we
impose the initial condition

u(s, 0) = u0(s), |u0| = 1

for s ∈ Ω = [0, L] and periodic boundary condition for simplicity.
Next, we consider the energy-structure. Let E(u(t)) := ||us(t)||2L2(Ω) be the en-

ergy. Then, we have the energy conservation property:

E(u(t)) = E(u0) (1.2)

for any t > 0. In [5, 6], the first author proposed a structure-preserving finite difference
scheme for the Landau-Lifshitz equation and show that the scheme satisfies (i) length-
preserving property and (ii) energy dissipation or conservation property and also show
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the convergence result. However, an iteration procedure is needed for each time step
since the proposed scheme is implicit and nonlinear. Then, by a finite termination
of the iteration, there appears errors on the length at each point and the energy.
(Note that some estimates of termination errors of the iteration are also shown in
[6].) However, the length-preserving property is directly connected to a stability of
the scheme and also length of the solution curve to (LIE) model. Thus, in this paper
we propose a finite difference scheme and also an iteration which keeps the length of
the solution in spite of a finite termination. Moreover, we give an error estimate on
the energy in the iteration procedure.

The paper is organized as follows: In the next section, we propose a finite dif-
ference scheme which inherits the length-preserving property and energy-structure
and also length-preserving iteration for each time step. In Section 3, we analyze the
iteration and show some error estimates. In Section 4, test numerical calculation are
presented for exact solution. In the last section we mention conclusion remarks.

2. Proposed scheme and iteration.

2.1. Structure-preserving scheme. We set a spatial mesh size ∆s > 0 as
L = N∆s for some integer N and also set a time step ∆t > 0 arbitrary. We discretize
the problem as follows : (S)

U j+1
n − U j

n

∆t
= U (j,j+1)

n ×∆dU
(j,j+1)
n , 0, 1, · · · , N − 1, j = 0, 1, 2, · · · , (2.1)

U0
n = u0(n∆x), n = 0, 1, 2, · · ·N − 1, (2.2)

U j
N = U j

0 , U j
−1 = U j

N−1, j = 0, 1, 2, · · · . (2.3)

Here, U j
n = (U j

1,n, U j
2,n, U j

3,n) denote a finite difference solution at sn = n∆s, tj = j∆t.

The notation U
(j,j+1)
n and the discrete Laplace operator ∆d are defined by

U (j,j+1)
n :=

U j+1
n + U j

n

2

and

∆dUn :=
Un+1 − 2Un + Un−1

∆s2
= D+D−Un

where

D+Un :=
Un+1 − Un

∆s
, D−Un :=

Un − Un−1

∆s
.

Here, we introduce the following norms:

||U ||2 =
(N−1∑

n=0

|Un|2∆s

)1/2

, ||U ||∞ = max
0≤n≤N−1

|Un|.

The following shows that (S) inherits the length-preserving property and energy
structure from the original problem.

Proposition 2.1. For any mesh size, we have

|U j
n| = 1
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for any j and n and

Ed(U j) = Ed(U0)

for any j. Here, Ed(U) := ||D+U ||22.
Proof. By taking an inner product of (2.1) with U

(j,j+1)
n , it is easily shown that

|U j+1
n | = |U j

n| for any n and j. Thus, we have the first assertion.
Next, we show the energy equality. By taking an inner product of (2.1) with

∆dU
(j,j+1)
n , we have

U j+1
n − U j

n

∆t
∆dU

(j,j+1)
n = 0.

Summing up through all n, we have

||D+U j+1||22 = ||D+U j ||22.

Here, we use the summation by parts:

N−1∑
n=0

(D−an)bn = −
N−1∑
n=0

an(D+bn)

where an and bn are N -periodic. Hence, we have the second assertion.
Remark 2.2. We can easily construct a structure-preserving finite difference

scheme for the Dirichlet and the Neumann boundary conditions.

2.2. Proposed iteration method for (S). Since the scheme (S) is implicit
and nonlinear, we need an iterative procedure to obtain {U j+1} from {U j}. We here
introduce a length preserving iteration. For each time step j, we construct a sequence
V m

n by the following iteration:

V m+1
n − U j

n

∆t
=

V m+1
n + U j

n

2
×∆d

V m
n + U j

n

2
, (2.4)

n = 0, 1, 2, · · · , N − 1, m = 0, 1, 2, · · · ,

V 0
n = U j

n, n = 0, 1, 2, · · · , N − 1, (2.5)
V m
−1 = V m

N−1, V m
N = V m

0 , m = 0, 1, 2, · · · . (2.6)

By taking an inner product of (2.4) with V m+1
n + U j

n, we have |V m+1
n | = |V m

n | and
also |V m

n | = 1 by (2.5) for any m,n. Thus, the above iteration has a length-preserving
property.

We can rewrite the above iteration into a matrix form:

Am,nV m+1
n = Bm,nU j

n. (2.7)

Here, Am,n and Bm,n are the following matrices:

Am,n =




1 −c
(3)
m,n c

(2)
m,n

c
(3)
m,n 1 −c

(1)
m,n

−c
(2)
m,n c

(1)
m,n 1


 and Bm,n =




1 c
(3)
m,n −c

(2)
m,n

−c
(3)
m,n 1 c

(1)
m,n

c
(2)
m,n −c

(1)
m,n 1



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where c
(k)
m,n (k = 1, 2, 3) are the k-th component of the vector ∆t∆d(V m

n + U j
n)/4.

Now, we see that there exists an inverse of Am,n since det Am,n = 1 + (c(1)
m,n)2 +

(c(2)
m,n)2 + (c(3)

m,n)2 ≥ 1. Therefore, we can solve (2.7) as

V m+1
n = Am,n

−1Bm,nU j
n. (2.8)

That is, this procedure is explicit and thus we can easily calculate V m+1 from V m.
The convergence of {V m

n }∞m=0 is shown in the next subsection. We here suppose
that there exists the limit. Then, the limit satisfies the scheme (S) as U j+1

n . For
numerical calculation, we set a proper threshold kj > 0 for each j and terminate the
iteration when the inequality

||V m+1 − V m||∞ ≤ kj (2.9)

holds. Let mj be the number m at the termination. Then, we set

U j+1
n := V mj+1

n (2.10)

for all n. Obviously, this U j+1
n satisfies |U j+1

n | = 1 for all n.

2.3. Solvability of (S). We here show the convergence of {V m
n }∞m=0.

Theorem 2.3. If

η :=
∆t

(∆s)2
<

1
2
, (2.11)

then,

||V m+2 − V m+1||∞ ≤ ρ||V m+1 − V m||∞, (2.12)

where ρ = 2η/(1− 2η). Moreover, if η < 1/4, then {V m
n }∞m=0 has a limit as m tends

to infinity for each n.
Proof. Let Wm

n = (V m
n +U j

n)/2. Obviously, |Wm
n | ≤ 1 since |V m

n | = |U j
n| = 1. By

taking a difference between (2.4) at m and (m + 1) steps, we obtain

V m+2
n − V m+1

n

∆t
= Wm+2

n ×∆dW
m+1
n −Wm+1

n ×∆dW
m
n

= Wm+2
n ×∆dW

m+1
n −Wm+1

n ×∆dW
m+1
n

+Wm+1
n ×∆dW

m+1
n −Wm+1

n ×∆dW
m
n

=
V m+2

n − V m+1
n

2
×∆dW

m+1
n + Wm+1

n ×∆d
V m+1

n − V m
n

2
.

Thus, we have

||V m+2 − V m+1||∞
∆t

≤ 2
(∆s)2

||V m+2 − V m+1||∞ +
2

(∆s)2
||V m+1 − V m||∞

and thus

(1− 2η)||V m+2 − V m+1||∞ ≤ 2η||V m+1 − V m||∞.

Since 1− 2η > 0, we have ρ > 0 and

||V m+2 − V m+1||∞ ≤ ρ||V m+1 − V m||∞.
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Thus, we have the first assertion.
If η < 1/4, then 0 < ρ < 1. For any ` > m > 0, we have

||V ` − V m||∞ ≤ ρm

1− ρ
||V 1 − V 0||∞.

Hence, we have the second assertion.

3. Analysis of iteration. We already show the proposed iteration has a length-
preserving property in the previous section. We here estimate a truncation error of
the energy.

Theorem 3.1. Assume the assumption in the previous theorem, that is,

∆t

∆x2
<

1
4
.

Then, the solution U j+1
n := V

mj+1
n satisfies the following estimate:

∣∣∣∣||D+U j+1||22 − ||D+U j ||22
∣∣∣∣ ≤ 4Lkj . (3.1)

Proof. We first note that the iteration at m = mj is the following:

V
mj+1
n − U j

n

∆t
=

V
mj+1
n + U j

n

2
×∆d

V
mj
n + U j

n

2
. (3.2)

By taking an inner product with ∆d(V
mj
n + U j

n), we get

(V mj+1
n − U j

n)∆d(V mj+1
n + U j

n) + (V mj+1
n − U j

n)∆d(−V̂n) = 0,

where V̂n = V
mj+1
n − V

mj
n . By taking the summation and using the summation by

parts, we have

−||D+V mj+1||22 + ||D+U j ||22 =
N−1∑
n=0

∆x(V mj+1
n − U j

n)∆dV̂n

=
N−1∑
n=0

∆x∆t
V

mj
n + U j

n

2
×∆d

V
mj
n + U j

n

2
∆dV̂n.

Therefore,

∣∣∣∣−||D+V mj+1||22 + ||D+U j ||22
∣∣∣∣ ≤

4∆t

∆s2

∣∣∣∣
N−1∑
n=0

∆s∆dV̂n

∣∣∣∣

≤ 4L||V̂ ||∞
≤ 4Lkj .

Thus, we have the assertion.
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max
0≤sn≤1,0≤tj≤1

∣∣|U j
n| − 1

∣∣ 3.11708125× 10−16

max
0≤tj≤1

∣∣∣∣
Ed(Un)− Ed(U0)

Ed(U0)

∣∣∣∣ 1.0758463× 10−10

Table 4.1
Maximum error of length and maximum relative error of the energy

4. Numerical result. We check the efficiency of the proposed scheme and iter-
ation using an exact solution [7].

Let α, k ∈ R and set
u1(s, t) = sin α cos(ks− (|k|2 cos α)t),
u2(s, t) = sin α sin(ks− (|k|2 cos α)t),
u3(s, t) = cos α.

Then, the function u(s, t) = (u1(s, t), u2(s, t), u3(s, t)) is a exact solution.
We use the parameters: k = 4π, α = 1 and also use the numerical parameters:

L = 1, ∆s = 0.02 (N = 50), ∆t = 0.00008 and kj = k = 1.0× 10−15, respectively.
Figure 4.1 shows a view of the first component of the numerical solution in (a)

and the exact solution in (b) and also shows the behavior of the energy of numerical
solution in (c). Figure 4.2 shows a time evolution of the vortex filament curves
x = x(s, t). We see that coiled curve moves upward and the solution curve keeps
its shape during a time evolution. Table 4.1 shows the maximum error of the length
and maximum relative error of the energy in the time interval [0, 1]. We see that
the numerical solution approximates the exact one and inherits length-preserving and
energy conservative properties sufficiently.

5. Conclusion remarks. We construct the finite difference scheme which in-
herits length-preserving property and energy-structure. Moreover, we also propose
length-preserving iteration. From these properties, we have a stability of the scheme
by the boundedness of the length of the solution and the energy. We also show the
solvability of the scheme and error estimate of energy in the iterative procedure with
the termination. We finally show numerical results and check the efficiency of the
proposed scheme. We here remark that we can construct the structure-preserving
scheme for other boundary conditions, for example, the Dirichlet and the Neumann
boundary conditions. Moreover, we can show the convergence of the finite difference
solution to the solution of the original problem. However, by the limit of page, we
skip this point. We show this in forthcoming paper and the presentation.
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