
Proceedings of ALGORITMY 2012
pp. 250–260

EXPLOITING LIMITED ACCESS DISTANCE OF ODE SYSTEMS
FOR PARALLELISM AND LOCALITY IN EXPLICIT METHODS∗

MATTHIAS KORCH†

Abstract. The solution of initial value problems of large systems of ordinary differential equa-
tions (ODEs) is computationally intensive and demands for efficient parallel solution techniques
that take into account the complex architectures of modern parallel computer systems. This article
discusses implementation techniques suitable for ODE systems with a special coupling structure,
called limited access distance, which typically arises from the discretization of systems of partial
differential equations (PDEs) by the method of lines. It describes how these techniques can be ap-
plied to different explicit ODE methods, namely embedded Runge–Kutta (RK) methods, iterated
RK methods, extrapolation methods, and Adams–Bashforth (AB) methods. Runtime experiments
performed on parallel computer systems with different architectures show that these techniques can
significantly improve runtime and scalability. By example of Euler’s method it is demonstrated that
these techniques can also be applied to devise high-performance GPU implementations.

Key words. ordinary differential equations, initial value problems, parallelism, locality

AMS subject classifications. 65L05, 65Y05, 65Y20

1. Introduction. This article considers the parallel solution of initial value
problems (IVPs) of a special class of systems of ordinary differential equations (ODEs).
General first order ODE IVPs can be defined by

y′(t) = f(t,y(t)), y(t0) = y0, t ∈ [t0, te] (1.1)

with the right-hand-side function f : R × Rn → Rn, the wanted solution function
y : R → Rn, its initial value y0, and the integration interval [t0, te]. The typical
solution procedure consists in a step-by-step integration of the right-hand-side func-
tion f walking through the integration interval [t0, te] using a sequence of time steps
κ = 1, 2, . . . such that at each time step an approximation yκ+1 ≈ y(tκ+1) is com-
puted. There exist many different sequential and parallel solution methods, which are
distinguished by the computations performed at each time step. Some of the parallel
methods proposed are iterated Runge–Kutta (iterated RK, IRK) methods [14, 19],
extrapolation methods [6], and peer two-step methods [18]. One important classifi-
cation criterion is whether the computation of the new approximation yκ+1 involves
yκ+1 itself and, hence, a non-linear system of equations has to be solved. Such meth-
ods are called implicit. Methods which use only yκ or preceding approximations are
called explicit. IVPs which are only tractable by implicit methods are called stiff ;
IVPs which can be solved by explicit methods are called non-stiff.

Most of the methods proposed support an arbitrary coupling between the equa-
tions of the ODE system, i.e., an evaluation of the right-hand-side function f for a
component j, fj(t,y) may access all components of the argument vector y. However,
many ODE systems possess a special coupling structure that can be exploited to op-
timize (parallel) performance. In particular, many large ODE systems are sparse, i.e.,

∗This work was supported by DFG Grants No.: Ra 524/7-1, Ra 524/7-2, Ra 524/17-1, and Ra
524/17-2.
†University of Bayreuth, Applied Computer Science 2, 95440 Bayreuth, Germany

(korch@uni-bayreuth.de).

250

EXPLOITING LIMITED ACCESS DISTANCE FOR PARALLELISM AND LOCALITY 251

j

d d d B d

y

f(t,y)

1 n

Figure 1.1. Dependence pattern of ODE systems with limited access distance.

fj(t,y) needs only a small number of components of the argument vector y. This
article considers the class of ODE systems with limited access distance, where fj(t,y)
only uses components of y located nearby j. More precisely, the access distance d(f)
is the smallest value d, such that each component functions fj(t,y), j = 1, . . . , n,
accesses only the subset {yj−d, . . . , yj+d} of the components of the argument vector
y (Fig. 1.1). The access distance of f is limited if d(f) � n. Large ODE systems
with limited access distance arise, for example, from the spatial semi-discretization of
systems of partial differential equations (PDEs) by the method of lines.

A limited access distance generally leads to a band-structured Jacobian of f with
bandwidth d(f). Usually, one can choose between different orderings of the equations
which may influence the bandwidth/access distance. Several heuristic and exact opti-
mization algorithms exist, e.g., [12, 20], which aim at a minimization of the bandwidth
of sparse symmetric matrices and thus can be used for many ODE systems to find an
ordering of the equations which provides a limited access distance.

This article discusses implementation techniques for explicit ODE methods which
are applicable to ODE systems with limited access distance. Target architectures
are modern shared- and distributed-memory parallel CPU-based computers, but also
GPUs. The implementation techniques lead to a better utilization of the memory hi-
erarchy and to lower communication overhead in parallel implementations, and thus
to increased performance and scalability. As examples of explicit ODE methods, we
consider embedded RK methods, iterated RK methods, extrapolation methods, and
Adams–Bashforth (AB) methods on CPU-based parallel computers. All these imple-
mentations were developed using C as programming language and MPI or POSIX
Threads (Pthreads) for parallelization. Euler’s method is used as example to demon-
strate the applicability of these techniques to GPUs. Detailed runtime experiments
on several parallel systems with different architectures are shown to evaluate the
resulting performance of the optimization techniques.

2. Optimized communication pattern. Parallel ODE methods can exploit
three different types of parallelism or combinations of these types [4]. Parallelism
across the method carries out calculations intrinsic to the method itself in parallel,
e.g., independent stages as in [18]. Usually, the exploitation of parallelism across the
method leads to only a small number of coarse-grained tasks. Parallelism across time
(also called parallelism across the steps) refers to solving different parts of the time
range at the same time. This type of parallelism can be exploited on a small scale
by overlapping adjacent time steps as proposed, e.g., by Miranker and Lininger [13].
But it can also be exploited for massive parallelism [1]. In this article, we focus on
parallelism across the system, which can naturally be exploited by any ODE method
by distributing the equations of the ODE system to different processor cores. The
precondition for this kind of parallelization is that the dimension of the ODE system

252 M. KORCH

is large enough to provide a sufficient amount of work for each processor core.

General implementations of ODE methods, i.e., implementations suitable for
ODE systems with arbitrary coupling, must provide to each evaluation of a com-
ponent function fj(t,y) the entire argument vector y. Therefore, in a system-parallel
execution, all processor cores must have access to the entire argument vector or a
copy of it. In case of a distributed address space, this requires a replicated storage of
the argument vector, where each copy of the argument vector is automatically located
in the local memory of the corresponding processor core. Typically, each processor
core computes a subset, usually a block of the components of an argument vector,
and the final replicated argument vector (i.e., all its copies) has to be assembled from
the local subsets by a multibroadcast operation (e.g., MPI Allgatherv()).

In case of a shared address space, we can choose between replicated and shared
storage of the argument vector. While a replicated storage requires explicit memory
copy operations which act as a multibroadcast operation, a shared storage allows that
the function evaluations directly access the shared argument vector. To understand
the possible impact on performance of the two storage strategies, we have to consider
the physical layout of the memory. Most of today’s shared-address-space computers
have a NUMA (non-uniform memory access) architecture with physically distributed
memory (e.g., each multi-core CPU has a locally attached memory), and memory
pages are allocated by a first touch policy (a page is allocated in the local memory of
the multi-core CPU that first writes to it). Consequently, copies of replicated vectors
as well as the locally computed blocks of components of a shared vector can be located
in the local memories of the corresponding processor cores. However, for a dense ODE
system, either of the two storage strategies does involve a large number of expensive
remote memory accesses.

If the ODE system has a limited access distance, we can exploit this property to
apply a completely local storage strategy with scalable neighbor-to-neighbor commu-
nication involving only a small number of vector components as it is used in many do-
main decomposition approaches (Fig. 2.1). Each of the p processor cores stores locally
its block of n/p components of the argument vector and, additionally, d(f) compo-
nents at each of the two borders of its range of components, which are copied from the
adjacent neighbor processor core (ghost cells). The copying of these components can
be realized by single transfer operations, and often it can be overlapped with compu-
tations (e.g., using the non-blocking operations MPI Isend() and MPI Irecv()). Due
to the NUMA architecture of modern shared-address-space computers, this storage
strategy is favorable also in case of a shared address space. Even though, in case of a
shared address space, a shared storage would avoid the need for explicitly copying the
components within the access distance d(f) from the neighbor processor cores, these
components would nevertheless be accessed by the function evaluations and thus be
implicitly transferred to the neighboring processor cores. Moreover, page sharing may
occur at adjacent borders and adversely affect the performance if the distribution of
the components to the processor cores is not aligned at page granularity.

3. Pipelining and diamond-like tiling schemes. The application of the op-
timized communication pattern described in the previous section already leads to a
high scalability since it replaces expensive global communication by local neighbor-to-
neighbor communication so that the resulting communication costs are independent
of the number of participating processor cores. For highest parallel efficiency, it is
however necessary to also optimize the per-core performance.

EXPLOITING LIMITED ACCESS DISTANCE FOR PARALLELISM AND LOCALITY 253

f(t,y)

y

Pi−1d dd d Pid dd d Pi+1d dd d

Figure 2.1. Optimized communication pattern for ODE systems with limited access distance.

...
1 2 4
3 5
6

7 11
8 12

9 13

15
16

17
181014

nB

Figure 3.1. Pipeline computation order.

The per-core performance of data-intensive applications such as ODE methods
applied to ODE systems of large dimension mainly depends on how well the memory
hierarchy can be utilized to reduce the number of expensive memory accesses. A
standard approach for improving cache efficiency is the use of loop tiling to break
down the working spaces of loops iterating over large vectors or matrices to the size(s)
of the cache(s). While general implementations often already allow some form of loop
tiling, the assumption that a component function fj(t,y) may access all components
of the argument vector y prevents that all loops across the system dimension can be
fused and tiled, because all n components of y have to be computed in a loop before
the function evaluations fj(t,y), j = 1, . . . , n, can be performed in another loop.
Since for large ODE systems the storage space of a n-vector is larger than the cache
size, argument vector components and function results cannot be reused as desirable.

Often, more advanced loop transformations can be applied if the ODE system has
a limited access distance. All these transformations are based on the observation that
a function evaluation fj(t,y) can be started as soon as the 2d(f) + 1 components of
y within the access distance of fj(t,y) have been computed. Assuming a block-based
subdivision into nB = dn/Be blocks of size B ≥ d(f), the function evaluation of a
block J ∈ {1, . . . , nB} defined by

fJ(t,y) = (f(J−1)B+1(t,y), f(J−1)B+2(t,y), . . . , f(J−1)B+min{B,n−(J−1)B}(t,y))
(3.1)

can be started as soon as the blocks J − 1, J , and J + 1 of y are available.
For a sequence of steps consisting of the computation of an argument vector

y and a function evaluation f(t,y), this block-based dependence pattern allows a
reorganization of the loop structure such that the loop over the system dimension
becomes the outermost loop by delaying the computation of the steps of the sequence
by one block. This results in the pipeline-like computation scheme illustrated in
Fig. 3.1. The advantage of this scheme is that it can process several steps of the
sequence in a single sweep, thus creating a small working space that consists of the
vector components accessed by computing one pipeline diagonal. If this working space
is small enough to fit in the cache, this leads to a reuse of vector elements between
successive pipeline diagonals and thus to a high cache efficiency.

For long sequences of steps, it may not be efficient to span the pipeline across

254 M. KORCH

Figure 3.2. Diamond-like tiling.

all steps, because the resulting working space would exceed the cache size. Instead,
one can span the pipeline across only a small number of steps and perform several
sweeps across the system dimension. An even better performance might be obtained
by a modification of the pipelining scheme resulting in diamond-like tile shapes as
illustrated in Fig. 3.2, which have been proposed in [15, 16] to partition the two-
dimensional problem domain of a finite-difference time-domain (FDTD) application.

4. Embedded RK methods. The computation scheme of one time step of an
s-stage embedded RK method with method coefficients ali, ci, and bl is given by

wl = yκ + hκ

l−1∑
i=1

alif(tκ + cihκ,wi), l = 1, . . . , s,

yκ+1 = yκ + hκ

s∑
l=1

blvl, ŷκ+1 = yκ + hκ

s∑
l=1

b̂lvl .

(4.1)

The second, embedded approximation, ŷκ+1 ≈ y(tκ), provides an efficient means to
estimate the local error for stepsize control.

In the general case, an implementation of the classical RK scheme needs to hold
at least s+ 1 vectors of size n (so called registers) to store yκ, w2, . . . ,ws, and yκ+1,
where n is the dimension of the ODE system. One additional register (ŷκ+1 or an
error estimate) is required for the implementation of a stepsize controller which can
reject and repeat steps.

System-parallel implementations of embedded RK methods, which make no as-
sumptions about the method coefficients or the coupling of the ODE system, have
to compute the stages l = 1, . . . , s one after the other and have to exchange the
current argument vector wl between all participating processors at every stage. The
scalability of general implementations is therefore often not satisfactory.

For ODE systems with limited access distance, we can apply the optimizations
suggested in Sections 2 and 3 to the stage computations (cf. [10]). It is possible to
replace the global multibroadcast operation to exchange wl between the stages by
neighbor-to-neighbor communication, and the sequence of stages can be processed
using the pipelining scheme. Since the number of stages is usually small (s = 13
for DOPRI 8(7), often s < 10), the pipeline can in most scenarios be spanned across
all s stages. The resulting working space illustrated in Fig. 4.1 (left) has a size of
Θ(1

2s
2B). By overlapping the storage locations of the vectors (Fig. 4.1 (right)), the

storage space can be reduced to 2n+Θ(1
2s

2B). While other approaches to reduce the
storage space to 2n or 3n such as [2, 3, 5, 8, 17] require special method coefficients
and only some of these methods provide embedded solutions, the pipelining scheme
does not impose restrictions on the choice of coefficients of the RK method and can
thus be used with popular embedded RK methods such as the methods of Dormand
and Prince, Verner, Fehlberg and others.

EXPLOITING LIMITED ACCESS DISTANCE FOR PARALLELISM AND LOCALITY 255

e
∆y
w4
w3
w2

yκ = w1

1 J nB

......

w2
w3

w4
∆y

e

...
...

...
...

...

...

Figure 4.1. Left: Illustration of the working space of one pipelining step of an embedded RK
method. Blocks required for function evaluations are marked by crosses. Blocks updated using results
of function evaluations are marked by squares. Right: Illustration of the overlapping of the vectors
∆y, e and w2, . . . ,ws in the low-storage implementation.

0 100 200 300 400 500
0

50

100

150

200
HLRB 2, POSIX Threads, DOPRI 8(7), N=2000

Number of threads

S
p

e
e

d
u

p

general

opt. comm.

opt. comm. + pipel.

0 200 400 600 800 1000
0

200

400

600

800

1000
HLRB 2, MPI, DOPRI 8(7), N=2000

Number of MPI processes

S
p

e
e

d
u

p

general

opt. comm.

opt. comm. + pipel.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

HLRB 2, POSIX Threads, DOPRI 8(7), N=2000

Number of threads

E
ff
ic

ie
n
c
y

general

opt. comm.

opt. comm. + pipel.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

HLRB 2, MPI, DOPRI 8(7), N=2000

Number of MPI processes

E
ff
ic

ie
n
c
y

general

opt. comm.

opt. comm. + pipel.

Figure 4.2. Scalability of embedded RK implementation variants.

Runtime experiments to evaluate the performance of shared- and distributed-
address-space implementations of embedded RK methods optimized for limited access
distance have been performed on several parallel computer systems with different ar-
chitectures. In Fig. 4.2 we show parallel speedups and efficiency obtained on HLRB 2
at LRZ Munich. HLRB 2 is an SGI Altix 4700 system equipped with 9728 Intel
Itanium 2 Montecito processors at 1.6 GHz. The test problem is BRUSS2D-MIX [4],
a typical example of a PDE discretized by the method of lines, with limited access
distance d(f) = 2N and system size n = 2N2. As RK method, DOPRI 8(7) was used.

While the general Pthreads implementation can obtain reasonable speedups, the
general MPI implementation does not scale due to the expensive MPI Allgatherv()

operation. Speedups and efficiency of the MPI implementations with optimized com-
munication are very high. Pipelining improves the performance in particular for
small numbers of processor cores, because for large numbers of processor cores the
total amount of data processed per time step per processor core fits in the cache.

5. Iterated RK Methods. Based on the classical implicit RK methods, explicit
IRK methods suitable for non-stiff equations introduce the iteration process

Y
(k)
l = yκ + hκ

s∑
i=1

aliF
(k−1)
i , Fi = f(tκ + cihκ,Yi), l = 1, . . . , s, k = 1, . . . ,m.

(5.1)

256 M. KORCH

0 5 10 15 20 25 30
0

0.5

1

Number of threads

S
p

e
e

d
u

p

gen. (k−i−j−l)

gen. (k−j−i−l)

opt. comm. + pipel. (j−k−i−l)

0 50 100 150 200
0

20

40

60

Number of threads

S
p

e
e

d
u

p

gen. (k−i−j−l)

gen. (k−j−i−l)

opt. comm. + pipel. (j−k−i−l)

Figure 5.1. Scalability of shared-address-space IRK implementations variants.

We choose the ‘trivial’ predictor Y
(0)
l = yκ, l = 1, . . . , s, to start the iteration process

and execute a fixed number of m = p − 1 corrector steps (5.1), where p is the order
of the underlying implicit RK method (cf. [19]). Two approximations to y(tκ+1) of
different order, yκ+1 and ŷκ+1, are then computed by

yκ+1 = yκ + hκ

s∑
l=1

blF
(m)
l and ŷκ+1 = yκ + hκ

s∑
l=1

blF
(m−1)
l . (5.2)

In contrast to embedded RK methods, the stages of IRK methods can be computed
in parallel. But here we focus on purely system-parallel implementations.

For general system-parallel implementations, the i-loop, the l-loop, and the j-loop
across the system dimension, are fully permutable, i.e., they can be interchanged and
loop tiling can be applied. But them corrector steps have to be computed sequentially,

and the s vectors Y
(k)
1 , . . . ,Y

(k)
s have to be exchanged between the corrector steps.

If the access distance of the ODE system is limited, we can switch to scalable
neighbor-to-neighbor communication and process the corrector steps in pipeline order.
Fig. 5.1 shows speedups obtained by shared-address-space IRK implementations on
HLRB 2 for the test problem BRUS2D-MIX with N = 1000 using Radau IA(5) as base
method. The pipelining implementation with optimized communication outperforms
the general implementations for small numbers of processor cores, because the working
space of a pipelining step fits in the cache while the working space of a time step
exceeds the cache size. It also delivers the best performance if the number of processor
cores is large, because in this situation the optimized communication pattern with
distributed storage is more efficient than the barrier synchronization combined with
shared storage used in the general implementations.

6. Extrapolation methods. At each time step κ of an extrapolation method,
r independent approximations υ(1), . . . ,υ(r) to y(tκ+1) of increasing accuracy are
computed. Then, based on these approximations, yκ+1 is extrapolated using the
Aitken–Neville algorithm [7]. To compute the r approximations, the IVP y′(t) =
f(t,y(t)), y0 = yκ is solved r times on the same interval [tκ, tκ+1] by a base method

computing sequences of micro-steps with different constant stepsizes h
(1)
κ > h

(2)
κ >

· · · > h
(r)
κ . Here, we use the explicit Euler method as base method.

The micro-step sequences can be computed in parallel on different groups of pro-
cessor cores. If the ODE system has a limited access distance, a micro-step sequence
computed by a group of processor cores can be processed using the pipelining scheme
and the optimized communication pattern can be applied. Fig. 6.1 shows speedups
and efficiency of different shared- and distributed-address-space implementation vari-

EXPLOITING LIMITED ACCESS DISTANCE FOR PARALLELISM AND LOCALITY 257

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400
HLRB 2 shared−memory speedup

Number of threads

S
p

e
e

d
u

p

cons−gnrl

glin−gnrl

gext−gnrl

cons−neigh

glin−neigh

gext−neigh

cons−pipe

glin−pipe

gext−pipe

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000
HLRB 2 distributed−memory speedup

Number of processors

S
p

e
e

d
u

p

cons−gnrl

glin−gnrl

gext−gnrl

cons−neigh

glin−neigh

gext−neigh

cons−pipe

glin−pipe

gext−pipe

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000
JUROPA distributed−memory speedup

Number of processors

S
p

e
e

d
u

p

cons−gnrl

glin−gnrl

gext−gnrl

cons−neigh

glin−neigh

gext−neigh

cons−pipe

glin−pipe

gext−pipe

50 100 150

0.5

0.6

0.7

0.8

0.9

1

1.1
HLRB 2 shared−memory efficiency

Number of threads

E
ff

ic
ie

n
c
y

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

HLRB 2 distributed−memory efficiency

Number of processors

E
ff

ic
ie

n
c
y

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

JUROPA distributed−memory efficiency

Number of processors

E
ff

ic
ie

n
c
y

Figure 6.1. Scalability of implementation variants of extrapolation methods.

ants on HLRB 2 and JUROPA using r = 16 and the test problem BRUSS2D with
N = 2000. JUROPA, operated by the Jülich Supercomputing Centre (JSC), consists
of 2 208 nodes equipped with two quad-core Intel Xeon X5570 (Nehalem-EP) proces-
sors running at 2.93 GHz. For a detailed description of the implementation variants
see [11]. As for embedded RK methods, we observe that only the MPI implementa-
tions with the optimized communication pattern (*-neigh and *-pipe) are scalable.
The use of the pipelining scheme is most successful for small numbers of processor
cores, where the total working space of a micro-step does not fit in the cache.

7. Adams-Bashforth methods. AB methods defined by

yκ+1 = yκ + h

k∑
l=1

βlf(tκ−l+1,yκ−l+1) (7.1)

belong to the class of explicit linear k-step methods. If a constant stepsize is used
for all time steps, a limited access distance of the ODE system can be exploited to
process the time steps in pipeline order and to apply the optimized communication
pattern. Since the number of time steps can be very large, the pipeline should not be
spanned across all time steps. Instead, we introduce an implementation parameter
which determines the pipeline length. Runtime experiments on HLRB 2 and JUROPA
(Fig. 7.1) confirm that the optimized communication pattern is needed to obtain scal-
able MPI implementations. Also, pipelining outperforms the other implementations
for small numbers of processor cores where the working space of a pipelining step fits
in the cache, but the working space of a time step is larger than the cache.

8. GPU implementation of the explicit Euler method. As a first step to
investigate the potential scalability of ODE solvers on GPUs, we investigate OpenCL
implementations of the explicit Euler method

yκ+1 = yκ + h · f(tκ,yκ) (8.1)

258 M. KORCH

8 16 32 64 128 256 510
0

0.2

0.4

0.6

0.8

1

HRLB 2, Pthreads, BRUSS2D−MIX, N=3000, k=6

Number of threads

E
ff

ic
ie

n
c
y

gen.

opt. comm

opt. comm. + pipel.

8 16 32 64 128 256 510 1020 2040
0

0.2

0.4

0.6

0.8

1

HRLB 2, MPI, BRUSS2D−MIX, N=3000, k=6

Number of MPI processes

E
ff

ic
ie

n
c
y

gen.

opt. comm.

opt. comm. + pipel.

8 16 32 64 128 256 512 1000
0

0.2

0.4

0.6

0.8

1

JUROPA, MPI, BRUSS2D−MIX, N=3000, k=6

Number of MPI processes

E
ff

ic
ie

n
c
y

gen.

opt. comm.

opt. comm. + pipel.

Figure 7.1. Scalability of AB implementation variants.

Figure 8.1. From left to right: row-diamond, diagonal-diamond, and hexagon tiling scheme.

with constant stepsize. For best performance on a GPU it is crucial to utilize the
small but fast local memories of the multiprocessors of the GPU, in particular if the
GPU has no cache. For ODE systems with limited access distance, we investigate
different diamond-like shapes of tiles (Fig. 8.1,) where the computation of a tile can
be performed completely in local memory (cf. [9]).

Runtime experiments on an NVIDIA GTX 580 GPU with BRUSS2D-MIX and a
second test problem (vibrating string [7]), a discretized 1D PDE with access distance
d(f) = 3, show that it depends on the ODE system if diamond tiling leads to better
performance than a general implementation (Fig. 8.2). For BRUSS2D-MIX with a
large access distance of d(f) = 2N , the general implementation is most efficient, be-
cause the L2 cache of the GTX 580 reduces the benefit of the use of local memories
and the computations of the diamond tiling implementations are not perfectly bal-
anced. For the vibrating string test problem, the diamond tiling implementations can
outperform the general implementation, because the smaller access distance enables
a more efficient utilization of the local memories. The hexagon implementation can
often deliver the best performance, in particular for large system sizes.

9. Conclusions. Optimization techniques for explicit parallel ODE solvers spe-
cialized in ODE systems with limited access distance have been presented and dis-
cussed. If the ODE system has a limited access distance, scalable neighbor-to-neighbor
communication can be used and cache efficiency can be increased for sequences of steps
consisting of the computation of an argument vector and a function evaluation by pro-
cessing the steps in a pipeline- or diamond-like fashion. These techniques have been
applied to embedded and iterated RK methods, extrapolation methods and AB meth-
ods for CPU-based parallel computer systems. Additionally, GPU implementations
of the explicit Euler method with diamond-like tile shapes have been discussed. Run-
time experiments have shown that the techniques described can significantly improve
the performance of the methods considered on different architectures.

EXPLOITING LIMITED ACCESS DISTANCE FOR PARALLELISM AND LOCALITY 259

 6e−07

 8e−07

 1e−06

 1.2e−06

 1.4e−06

 1.6e−06

 1.8e−06

 20000 125000 320000 500000

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

System size n

GTX 580, BRUSS2D−MIX

General
Row−Diamond
Diagonal−Diamond

 1e−07

 2e−07

 3e−07

 4e−07

 5e−07

 6e−07

 7e−07

 8e−07

 9e−07

 1e−06

 100000 1e+06 1e+07N
o
rm

a
liz

e
d
 r

u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

System size n

GTX 580, vibrating string

General
Row−Diamond
Hexagon

Figure 8.2. Normalized runtime of explicit Euler implementations on a GPU.

Acknowledgments. We thank the Jülich Supercomputing Centre (JSC) and the
Leibniz Computing Centre (LRZ) Munich for providing access to their supercomputer
systems JUROPA and HLRB 2.

REFERENCES

[1] P. Amodio and L. Brugnano, Parallel solution in time of ODEs: some achievements and
perspectives, Appl. Numer. Math., 59 (2009), pp. 424–435. Selected papers NUMDIFF-11.

[2] J. Berland, C. Bogey, and C. Bailly, Optimized explicit schemes: matching and bound-
ary schemes, and 4th-order Runge–Kutta algorithm, in 10th AIAA/CEAS Aeroacoustics
Conference, 10–12 May, Manchester, UK, 2004, pp. 1–34. AIAA Paper 2004-2814.

[3] , Low-dissipation and low-dispersion fourth-order Runge–Kutta algorithm, Computers &
Fluids, 35 (2006), pp. 1459–1463.

[4] K. Burrage, Parallel and Sequential Methods for Ordinary Differential Equations, Oxford
University Press, New York, 1995.

[5] M. Calvo, J. M. Franco, and L. Rández, Short note: A new minimum storage Runge–Kutta
scheme for computational acoustics, J. Comp. Phys., 201 (2004), pp. 1–12.

[6] R. Ehrig, U. Nowak, and P. Deuflhard, Massively parallel linearly-implicit extrapolation
algorithms as a powerful tool in process simulation, in Parallel Computing: Fundamentals,
Applications and New Directions, Elsevier, 1998, pp. 517–524.

[7] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I:
Nonstiff Problems, Springer, Berlin, 2nd rev. ed., 2000.

[8] C. A. Kennedy, M. H. Carpenter, and R. M. Lewis, Low-storage, explicit Runge–Kutta
schemes for the compressible Navier-Stokes equations, Appl. Numer. Math., 35 (2000),
pp. 177–219.

[9] M. Korch, J. Kulbe, and C. Scholtes, Diamond-like tiling schemes for efficient explicit
euler on GPUs, in The 11th Int. Symp. on Parallel and Distributed Computing (ISPDC
2012), IEEE, June 2012.

[10] M. Korch and T. Rauber, Parallel low-storage Runge-Kutta solvers for ODE systems with
limited access distance, Int. J. High Perf. Comput. Appl., 25 (2011), pp. 236–255.

[11] M. Korch, T. Rauber, and C. Scholtes, Scalability and locality of extrapolation methods on
large parallel systems, Concurrency Computat.: Pract. Exper., 23 (2011), pp. 1789–1815.

[12] R. Mart́ı, V. Campos, and E. Piñana, A branch and bound algorithm for the matrix bandwidth
minimization, European Journal of Operational Research, 186 (2008), pp. 513–528.

[13] W. L. Miranker and W. Liniger, Parallel methods for the numerical integration of ordinary
differential equations, Mathematics of Computation, 21 (1967), pp. 303–320.

[14] S. P. Nørsett and H. H. Simonsen, Aspects of parallel Runge–Kutta methods, in Numerical
Methods for Ordinary Differential Equations, no. 1386 in LNM, 1989, pp. 103–117.

[15] D. Orozco and G. Gao, Mapping the FDTD application to many-core chip architectures, in
The 38th Int. Conf. on Parallel Processing (ICPP-2009), IEEE, 2009.

[16] D. Orozco, E. Garcia, and G. Gao, Locality optimization of stencil applications using data
dependency graphs, in Proceedings of the 23rd Int. Conf. on Languages and Compilers for
Parallel Computing (LCPC’10), Berlin, Heidelberg, 2011, Springer, pp. 77–91.

[17] S. J. Ruuth, Global optimization of explicit strong-stability-preserving Runge–Kutta methods,
Math. Comp., 75 (2005), pp. 183–207.

[18] B. A. Schmitt, R. Weiner, and S. Jebens, Parameter optimization for explicit parallel peer

260 M. KORCH

two-step methods, Appl. Numer. Math., 59 (2008), pp. 769–782.
[19] P. J. van der Houwen and B. P. Sommeijer, Parallel iteration of high-order Runge–Kutta

methods with stepsize control, J. Comput. Appl. Math., 29 (1990), pp. 111–127.
[20] Q. Wang, Y. C. Guo, and X. W. Shi, An improved algorithm for matrix bandwidth and

profile reduction in finite element analysis, Progress In Electromagnetics Research Letters,
9 (2009), pp. 29–38.

