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NUMERICAL MODELLING OF COMPRESSIBLE INVISCID AND
VISCOUS FLOW IN TURBINE CASCADES ∗

PETR LOUDA† , KAREL KOZEL‡ , AND JAROMÍR PŘÍHODA §

Abstract. Mathematical models for inviscid and also viscous transonic flows through tur-
bine cascades are presented. For numerical solution, finite volume upwind explicit (Runge-Kutta)
and implicit (backward Euler) methods are considered. The flux splitting methods include AUSM,
AUSMPW+ and HLLC Riemann solvers. The mathematical models are applied to flow through
VKI and SE1050 turbine cascades.
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1. Introduction. In this work some shock capturing upwind methods are used
to solve compressible subsonic and transonic flow through 2D axial turbine cascades.
The problems are formulated either for inviscid case or viscous case with the two-
equation k-ω turbulence model. The formulation of boundary conditions allows sub-
sonic inflow and outflow Mach numbers.

Several upwind flux splitting schemes are tested and compared in terms of quality
of the results and CPU time requirement, by using explicit scheme in time and inviscid
problem. For turbulent case and implicit scheme the CPU cost of the upwinding is
less critical and easy linearization and extensibility to 3D problems is important. The
simulated cases include subsonic and transonic flows through VKI and SE1050 turbine
cascades. The results are compared also with available experimental data.

2. Mathematical models. The model for inviscid flow is based on Euler equa-
tions in Cartesian coordinates∫

V

∂W

∂t
dV +

∮
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F IdS = 0, (2.1)
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where V is control volume, ni outer unit normal vector of its surface, t time, ρ density,
ui velocity vector, E total energy per unit volume, H = E+p/ρ is total enthalpy and
p static pressure. The magnitude of normal velocity uc = uini. Equation of state for
perfect gas is prescribed

E =
1

γ − 1

p

ρ
+

1

2
(u2

1 + u2
2), (2.2)
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Fig. 2.1. Solution domain

with the ratio of specific heats γ = 1.4. The typical solution domain for 1 period of
turbine cascade is shown in Fig. 2.1. For subsonic Mach numbers computed from ve-
locity component normal to the boundary, 3 boundary conditions are to be prescribed
on the inlet boundary Γi and 1 condition on the outlet boundary Γo.

Γi: inlet: prescribed inlet flow angle α1, total density ρ0 and total static pressure
p0.

Γo: outlet: prescribed mean value of static pressure p2 (non-reflecting condition)
according to the given outlet isentropic Mach number M2is:∫

Γo
pdS∫

Γo
dS

= p2, p2

(
1 +

γ − 1

2
M2

2is

) γ
γ−1

= p0 (2.3)

Γw: wall: normal velocity component uini = 0
Γp: periodic boundary: W (t, ri + Pi) = W (t, ri), where Pi is periodicity of the

cascade.
Further, mathematical model for turbulent flow is considered. It includes laminar

diffusion as well as turbulent transport phenomena. The model is based on Favre-
averaged Navier-Stokes (NS) equations, see e.g. Wilcox [11]. The system of averaged
NS equations is then ∫

V

∂W

∂t
+

∮
∂V

F IdS =

∮
∂V

FV dS (2.4)

FV =


0

ti1 + τi1
ti2 + τi2

(tij + τij)uj − qi − qti + dti

ni

(2.5)

where W, F I have the same form as in Eq. (2.1). The molecular stress tensor and
heat flux vector respectively are assumed in the form

tij = µ2Sij , Sij =
1

2
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− 2
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δij

∂uk

∂xk
, (2.6)
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where δij is Kronecker delta. The dynamic viscosity µ and Prandtl number

µ = const, P r = const . (2.8)

The total energy now includes the turbulent energy k

E =
1

γ − 1

p

ρ
+

1

2
(u2

1 + u2
2) + k. (2.9)

The effect of turbulent fluctuations is present by the Reynolds stress tensor τij and
turbulent heat flux qti , which need to be modelled. An eddy viscosity model assumes

τij = µt2Sij −
2

3
δijρk (2.10)

qti = qi
Pr

µ

µt

Prt
(2.11)

where µt is eddy viscosity and the turbulent Prandtl number is set Prt = 0.91.
For turbulent scales, a two-equation model is solved. In the k-ω variant it can be

written∫
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(2.12)

where the turbulent production Pk = τij
∂ui

∂xj
, the α, β, β∗, σk, σω are model coef-

ficients and CD a cross-diffusion term. The eddy viscosity µt ∼ k/ω. For used SST
(Shear Stress Transport) model see Menter [9].

The boundary conditions for inviscid system are completed taking into account
for diffusive terms and turbulence model equations:

Γi : prescribed α1, p0, ρ0 and inlet local turbulence intensity I and inlet eddy
viscosity µt1. Then

∂T

∂n
= 0, k =

3

2
I2(u2

1 + u2
2), ω = ρk/µt1, (2.13)

where T is temperature. The value µt1 has been chosen 10µ.
Γo : The outlet integral pressure (non-reflecting condition) p2 is prescribed ac-

cording to the given outlet isentropic Mach number M2is. Further one re-
quires

∂T

∂n
=

∂k

∂n
=

∂ω

∂n
= 0. (2.14)

Γw : The blade surface is adiabatic and smooth. Then

u1 = u2 =
∂T

∂n
= k = 0, ω ∼ µ

ρy2w1

, (2.15)

where yw1 is a sufficiently small measure comparable to viscous sublayer thick-
ness.

Γp: periodic boundary: W (t, ri + Pi) = W (t, ri), where Pi is periodicity of the
cascade.
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3. Numerical solution. The system of equations (2.4), (2.12) can be rewritten
in the form

∂

∂t

∫
WdV +

∮
(F I − FV )dS −

∫
QdV = 0, (3.1)

where F I , FV , Q are inviscid flux, viscous flux and source terms respectively.
For spatial discretization we use a cell centered finite volume method with quadri-

lateral finite volumes (cells) denoted by indices i, j and composing a structured grid.
The unknown Wi,j is considered as cell-average value in the finite volume. The inte-
grals in Eq. (3.1) are approximated using mid-point rule, leading to

dWi,j

dt
∆Vi,j +Rez(W )i,j∆Vi,j = 0, (3.2)

Rez(W )i,j =
1

∆Vi,j

4∑
α=1

(F I
α − FV

α )i,j∆Si,j,α −Qi,j , (3.3)

where ∆Vi,j is area of the cell, ∆Si,j,α length of its face.
The numerical inviscid flux F I

α on the interface α is easily formulated in supersonic
flow, by cell-average values of F I from the upwind side of the interface. In subsonic
cases, approximate solutions of the Riemann problem will be used. The AUSM (Ad-
vection Upstream Splitting Method) flux vector splitting [6, 7] treats convective and
acoustic (pressure) terms separately.

F I
1/2 = uc1/2
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0
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0
0
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 , [·]L/R =

{
[·]L for uc1/2 ≥ 0,

[·]R otherwise,
(3.4)

where L, R denote states on the left and right hand side of the interface 1/2 and
uc1/2, p1/2 are suitably defined interface velocity and pressure depending on Mach
number. Nevertheless, to diminish possible wiggles of pressure, pressure weighted
formulations of uc1/2 were later developed. In this work the AUSMPW+ variant [4]
is also used.

The other approximate solution of Riemann problem assumes 3 wave speeds and
leads to the HLLC flux proposed by Toro et al [10] who extended Harten-Lax-van
Leer (HLL) flux based on only 2 acoustic waves by contact discontinuity solution.
The formulation was further refined by Batten et al [2].

The L, R states on the left or right from the interface considered are needed in all
upwind methods. Taking cell-averages in the finite volumes adjacent to the interface,
first order accuracy method is obtained. For higher accuracy needed for turbulent
flow computations, the linear extrapolation for conservative variables with limiter was
applied. Considering e.g. the face i+ 1/2 between cells (i, j) and (i+ 1, j) we have

WL = Wi,j +
1

2
Ψ(rL)∆

−, WR = Wi+1,j −
1

2
Ψ(rR)∆

+,

Ψ(r) =
r + |r|
|r|+ 1

, rL =
∆+ ϵ

∆− + ϵ
, rR =

∆+ ϵ

∆+ + ϵ
, ϵ = 10−17,

∆− = Wi −Wi−1, ∆ = Wi+1 −Wi, ∆+ = Wi+2 −Wi+1, (3.5)
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where Ψ is the van Leer limiter, switching to first order upwind at occurrence of a
local extremum of W (adjacent slopes ∆ have opposite sign).

The discretization of diffusive flux is central. The approximation of cell face
derivatives needed in diffusive terms uses quadrilateral dual finite volumes constructed
over each face of primary volume – the vertices are located at end of primary face
and in centres of adjacent primary volumes. The mid-point rule quadrature formula
is again used, with face value of velocity defined as average of values in vertices of
dual cell [8].

For time discretization, the explicit Runge-Kutta method and the backward Euler
scheme (implicit) were used. The multi-stage Runge-Kutta method can be written

W
(0)
i,j = Wn

i,j (3.6)

W
(l)
i,j = W

(l)
i,j − α(l)∆tRez(W (l−1))i,j (3.7)

Wn+1
i,j = W

(m)
i,j , (l = 1, . . . ,m), (3.8)

For e.g. 3-stage scheme the α1 = α2 = 1/2, α3 = 1.
The backward Euler scheme can be written

Wn+1
i,j −Wn

i,j

∆t
= Rez(Wn+1)i,j (3.9)

where the steady residual at new time level is approximated by linear extrapolation

Rez(Wn+1)i,j = Rez(Wn)i,j +
∑
α∈S

∂Rez(Wn)i,j
∂Wα

(Wn+1
α −Wn

α ) (3.10)

The Jacobi matrices ∂Rez(Wn)i,j/∂Wα are obtained as derivatives of discrete expres-
sion for Rez with respect to nodal values Wα from the stencil S of implicit operator.
We chose

S = { (i, j), (i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1) } (3.11)

which leads to block 5-diagonal system of linear equations. The system is solved iter-
atively by a block relaxation method with direct block tri-diagonal solver on selected
family of grid lines. Note that the extension of the method to 3D is straightforward
and indeed has been done. Numerical solutions of some 3D cases of incompressible
flow are given in [8].

4. Numerical results. The model of inviscid flow is applied to the MUR43 test
case of the VKI turbine cascade [1]. The outlet Mach number is M2is = 0.84 and the
flow is almost completely subsonic. The results are scaled by chord length and p0 and
ρ0. In the table 4.1, computational times for different upwind schemes are compared.
The time scheme is Runge-Kutta, thus the computation of upwind flux takes most
time and total CPU time can represent the CPU demand of an upwind flux. As can
be seen, the HLLC scheme requires considerably more CPU time than the simplest
AUSM scheme. However, in viscous flow, the difference becomes much smaller and
in implicit schemes the linear solver consumes most of the time. For implicit method,
we prefer AUSM or AUSMPW+ over HLLC for easier linearization.

The convergence history for inviscid MUR43 is shown in Fig. 4.1 in the form of L2

norm of steady residual of total energy E. The convergence is not particularly good
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Table 4.1
Relative CPU times for different upwind schemes, Runge-Kutta method in time

AUSM AUSMPW+ HLLC
1 1.20 1.36
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Fig. 4.1. Convergence histories for inviscid MUR43 case

for either method, however is best for AUSMPW+ explicit and implicit schemes. The
corresponding number of time steps is 40000 for Runge-Kutta method and 2000 for
implicit method.

The next Fig. 4.2 compares pressure on the blade with measurement. All more
diffusive schemes (AUSMPW+, HLLC) give same results, less diffusive AUSM is
slightly different on a part of suction side, where the deviation from measurement is
largest. This suggests an influence of boundary layer not captured in the numerical
simulation.

The Fig. 4.3 shows isolines of Mach number for inviscid MUR43 case and 3 meth-
ods. The results are very similar.

The qualitative errors of a numerical method can be observed on enthalpy–entropy
diagram of the cascade. For the above results it is shown in Fig. 4.4. The enthalpy h
and entropy s are defined respectively

h = H − 1

2
(u2

1 + u2
2), s = cv ln

(
1

r

p

ργ

)
, (4.1)

where cv is specific heat at constant volume and r gas constant. Since the simulation
does not explicitely depend on cv and r, they are set to 1 for the purpose of h–s
diagram. The values Eq. (4.1) are computed locally over 1 period of the cascade,
for 20 uniformly distributed cuts x = const. In the Fig. 4.4 one can see for AUSM
scheme wiggles on both ends of the graph, which correspond to regions near the
inlet and the outlet boundary. The unphysical decrease of entropy is then caused by
boundary conditions interacting with the numerical method. The enthalpy decreases
from leading edge to the trailing edge, otherwise is approximately constant. The
entropy is constant up to the leading edge, then starts to slowly increase. However,
for all methods except for AUSM there is slight decrease of entropy approximately
for 0.25 < x/c < 0.40, which is error of the simulation and correlates with the largest
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Fig. 4.2. Pressure on the blade for inviscid MUR43 case

Fig. 4.3. Isolines of Mach number for inviscid MUR43 case. From left to right: Runge-Kutta
HLLC method, Runge-Kutta AUSMPW+ method, implicit AUSMPW+ method

difference vs. measurement, see Fig. 4.2. The cause of this error might be the inviscid
model in the first place. There is large jump in entropy near the trailing edge, where
the numerical viscosity of the method plays a role.

Next we consider flow through the SE1050 turbine cascade [13, 12]. Four regimes
with sonic to supersonic outlet Mach number are considered. The M2is = {1.007,
1.100, 1.198, 1.313}, the inlet angle α1 = 19.3◦ and inlet turbulence intensity was
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Fig. 4.4. Enthalpy–entropy diagram of the MUR43 case
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Fig. 4.5. Pressure and friction on the blade surface, SE1050 cascade

estimated I = 2%.
The finite volume grid is of multiblock type with O-grid around blade and H-type

grid in the remaining domain, consisting of approx. 22 500 finite volumes and refined
near the blade. The problem is solved by the implicit AUSMPW+ method with the
van Leer limiter.

The transonic case withM2is = 1.198 was compared by authors with experimental
results in terms of static pressure on the blade and isolines of Mach number in the
paper [5]. The results compare well also with laminar results of several different
schemes [3].

The pressure and friction on the blade for all regimes are shown in Fig. 4.5. One
can see the shock wave decreasing in intensity and moving towards trailing edge with
increasing Mach number. The isolines of Mach number for all regimes are shown
in Fig. 4.6. Finally the enthalpy–entropy diagram is shown in Fig. 4.7. There is no
unphysical phenomenon except for very slight decrease of entropy in the vicinity of
the leading edge.

5. Conclusions. Mathematical models for inviscid and also turbulent compress-
ible flow through 2D turbine axial cascades with subsonic inlet were presented. The
numerical solution of the models, based on cell-centered finite volume discretization
was shown in the form of explicit Runge-Kutta method and implicit Euler method
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(a) M2is = 1.007 (b) M2is = 1.100

(c) M2is = 1.198 (d) M2is = 1.313

Fig. 4.6. Isolines of Mach number for different outlet Mach numbers, SE1050 cascade

considering AUSM and HLLC flux splitting. The results were obtained for VKI
and SE1050 turbine cascades. The physical correctness of the results was observed by
means of enthalpy–entropy diagram. Some minor violation of second law of thermody-
namics has been observed and shown to correlate with deviation from measurement.
For turbulent simulations, the implicit discretization is necessary and AUSMPW+
flux splitting provides acceptable accuracy, robustness and computational cost.
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