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NUMERICAL APPROXIMATION OF NONLINEAR
FLUID-STRUCTURE INTERACTION PROBLEMS∗

PETR SVÁČEK†

Abstract. This paper is concerned with the numerical approximation of nonlinear fluid-
structure interaction problems, with a detailed description of numerical approximation of turbulent
flow by stabilized finite element method. The interaction of flow with flexibly supported airfoil with
aileron is numerically analyzed. The motion of the airfoil is described with the aid of system of ordi-
nary differential equations (ODE) for three degrees of freedom coupled with the Reynolds Averaged
Navier-Stokes system of equations completed by the k−ω turbulence model. The flow and structural
problems are coupled via strong coupling algorithm. Numerical results showing the comparison of
computation carried out by the k − ω and Spalart-Allmaras methods are presented.
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1. Introduction. Fluid-structure interactions are important in many technical
applications, cf. [14], where usually only simplified linearized problems are used. The
solution of nonlinear problems can be important, e.g., in modeling of post-flutter
behaviour. In this paper we address the problem of numerical approximation of
turbulent flow interactions with an airfoil, whose motion is described with the aid
of three degrees of freedom. An extension of previously published analysis of flow
interactions with an airfoil with two and three degrees of freedom (DOF) is considered,
see [20], [4]. Similar problem was studied in [23], where the motion of airfoil with
3-DOF was analyzed with the aid of Theodorsen’s theory. Further, the analytical and
numerical analysis of the aeroelastic response of 3-DOF airfoil was also considered in
[18] and also in [13], where an active flutter control methods were considered.

This paper focuses on the numerical modeling of the interactions of incompressible
turbulent two-dimensional flow with a flexibly supported airfoil with an aileron. The
flow is modeled with the aid of the incompressible Reynolds Averaged Navier-Stokes
(RANS) equation. For the approximation the stabilized finite element method (FEM)
is used, cf. [2], [5], [8], [9], [12], [16], [17], [21]. The turbulent viscosity is modeled
by k − ω turbulence model, cf. [10], [22]. The k − ω turbulence model is written in
ALE form, time discretized and linearized, and numerically approximated by FEM.
The detailed description of such a approximation is given. The structure motion is
described by system of ordinary differential equations, see [4]. The time-dependent
computational domain is taken into account by the Arbitrary Lagrangian-Eulerian
method, see [15], [20]. The applicability of the developed method is demonstrated
by numerical experiments comparing the results obtained with this method, Spalart-
Allmaras turbulence method and NASTRAN calculation.
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Fig. 2.1. A sketch of the aeroelastic model of airfoil with aileron in a displaced position
given by h, α and β.

2. Mathematical description.

2.1. Flow model. In what follows we shall be concerned with the approximation
of two-dimensional incompressible turbulent flow in time-dependent computational
domain Ωt ⊂ R2, t ∈ [0, T ]. In order to treat the time dependence of the domain
occupied by fluid, the Arbitrary Lagrangian-Eulerian (ALE) method will be used. We
assume that there exists a smooth one-to-one transformation At (ALE mapping) of a
reference computational domain Ω0 onto Ωt for any t ∈ [0, T ]. Further, by wD(x, t)
the (ALE) domain velocity and by DA/Dt the ALE derivative shall be denoted, cf.
[15], [20], [4]. The flow is modeled by the incompressible RANS equations written in
the ALE form:

DAv
Dt −∇ · (2νeffS(v)) + (w · ∇)v +∇p = 0,

divv = 0,
in Ωt, (2.1)

where v = (v1(x, t), v2(x, t)) denotes the mean part of the velocity vector, p = p(x, t)
denotes the mean part of the kinematic pressure (i.e. pressure divided by the constant
fluid density ρ), νeff = ν + νT , ν denotes the kinematic viscosity, νT is the turbulent
viscosity, w = v−wD and S(v) = 1

2

(∇v +∇T v
)
. System(2.1) is equipped with the

initial condition v(x, 0) = v0(x), and boundary conditions

a) v(x, t) = vD(x) for x ∈ ΓD,
b) v(x, t) = wD(x, t) for x ∈ ΓWt,
c) −pn + 1

2 (v · n)−v + ν ∂v
∂n = 0 on ΓO,

(2.2)

considered for t ∈ (0, T ). Here, ΓD represents the inlet and fixed impermeable walls,
ΓWt is the boundary of the airfoil, ΓO is the outlet, and n denotes the unit outward
normal to ∂Ωt.

2.2. Turbulence model. The turbulent viscosity νT is determined with the aid
of the two-equations turbulence k−ω model, cf. [22]. This means that the turbulent
viscosity νT is defined by the relation

νT =
k

ω
(2.3)
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where the turbulent kinetic energy k = k(x, t) and the turbulent specific dissipation
rate ω = ω(x, t) defined for x ∈ Ωt, t ∈ [0, T ] are solutions of the following initial-
boundary value problem (written in the ALE form):

DAk
Dt + (w · ∇)k = Pk − β∗ωk +∇ · (εk∇k),

DAω
Dt + (w · ∇)ω = Pω − βω2 +∇ · (εω∇ω) + CD.

(2.4)

Here εk = ν + σkνT , εω = ν + σωνT and σk, σω are coefficients given later. The
following initial and boundary conditions are considered:

a) k(x, t) = 0 ω(x, t) = ωw for x ∈ ΓWt t ∈ (0, T ),
b) k(x, t) = kD ω(x, t) = ωD for x ∈ ΓD t ∈ (0, T ),
c) ∂k

∂n (x, t) = 0 ∂ω
∂n (x, t) = 0 for x ∈ ΓO t ∈ (0, T ),

(2.5)

where kD, ωD and ωw are prescribed constants used on inlet and walls. The source
terms Pk, Pω and CD are defined by

Pk = νT S(v) : S(v), Pω =
αωω

k
Pk, CD =

σD

ω
(∇k · ∇ω)+.

The closure coefficients β, β∗, σk, σω, αω are chosen according to [10], i.e. the values
β = 0.075, β∗ = 0.09, σω = 0.5, σk = 2

3 , κ = 0.41, σD = 0.5, αω = β/β∗ − σω
κ2

β∗1/2

are used.

2.3. Equations of motion. The motion of the airfoil with aileron is described
by the system of linear ordinary differential equations (cf. [3])

mḧ + Sαα̈ + Sβ β̈ + khh = −L,

Sαḧ + Iαα̈ + (∆̃Sβ + Iβ)β̈ + kαα = Mα,

Sβ ḧ + (∆̃Sβ + Iβ)α̈ + Iβ β̈ + kββ = Mβ ,

(2.6)

where h is the vertical displacement, α is the angle of rotation of the airfoil around
its elastic axis (EA), β is the angle of rotation of the aileron around the aileron
axis (EF)(see Fig. 2.1), m is the mass of the airfoil, Sα is the static moment around
the axis EA, Iα is the inertia moment around the axis EA, Sβ is the static moment
of the aileron around the axis EF, Iβ is the inertia moment of the aileron around the
axis EF, and ∆̃ is the distance of EF from EA. In the case of large displacements the
nonlinear form of Eqs. (2.6) is considered, cf. [4]. By kh, kα and kβ the stiffnesses of
springs are denoted. Further, L is the aerodynamic lift force, Mα is the aerodynamic
moment acting on the airfoil, and Mβ is the aerodynamic moment acting on the
aileron. System (2.6) is equipped by initial conditions prescribing the initial values
h(0), α(0), β(0), ḣ(0), α̇(0), β̇(0).

2.4. Coupling conditions and coupled problem. The airfoil time dependent
boundary ΓWt is divided into the aileron part ΓFt and into the front part ΓBt, see
Fig. 2.1. The lift force L and the torsional moments Mα, Mβ are defined by

L = − l

∫

ΓW t

2∑

j=1

τ2jnjdS, Mα = l

∫

ΓW t

2∑

i,j=1

τijnjr
ort
i dS, (2.7)

and

Mβ = l

∫

ΓF t

2∑

i,j=1

τijnjr
ortEF
i dS, (2.8)
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where rort
1 = −(x2 − xEA2), rort

2 = x1 − xEA1, rortEF
1 = −(x2 − xEF2), rortEF

2 =
x1−xEF1, and where xEA = (xEA1, xEA2) and xEF = (xEF1, xEF2) denotes the position
of the elastic axis EA and EF, respectively. By l the depth of the airfoil section is
denoted. Further, the components of the stress tensor are computed by

τij = ρ

[
−pδij + νeff

(
∂vi

∂xj
+

∂vj

∂xi

)]
. (2.9)

The coupled aeroelastic problem consists of system (2.1) with boundary con-
ditions (2.2), system (2.4) with boundary conditions (2.5), relation (2.3) and the
initial-value problem for ODE system (2.6) and coupling conditions (2.7), (2.8).

3. Numerical approximation.

3.1. Time discretization. In order to discretize the problem, an equidistant
partition 0 = t0 < t1 < · · · < T , tk = k∆t of the time interval [0, T ] with a constant
time step ∆t is considered. The velocity and pressure are approximated at each
time level by v(tn) ≈ vn, p(tn) ≈ pn. Similarly kn, ωn and νn

T are approximations of
k(tn), ω(tn) and νT (tn), respectively. Further wn

D is the approximation of the domain
velocity wD at time tn, and we set wn+1 = vn+1 − wn+1

D . The ALE derivative is
approximated by the second-order two-step backward difference formula

DAv
Dt

≈ 3vn+1 − 4v̂n + v̂n−1

2∆t
, (3.1)

where we use the notation v̂i = vi ◦ Ati ◦ A−1
tn+1

, obtained by the transformation of
vn and vn−1 to the domain Ω := Ωtn+1 . Similarly, the ALE derivative of functions k
and ω are approximated by

DAk

Dt
≈ 3kn+1 − 4k̂n + k̂n−1

2∆t
,

DAω

Dt
≈ 3ωn+1 − 4ω̂n + ω̂n−1

2∆t
,

where k̂i = ki ◦Ati ◦A−1
tn+1

, ω̂i = ωi ◦Ati ◦A−1
tn+1

are transformations of functions kn,
kn−1, ωn, ωn−1 onto domain Ωtn+1 .

The time discretized problem then reads: Find the functions v = vn+1, p := pn+1

and k := kn+1, ω := ωn+1 defined in the domain Ω := Ωtn+1 such that

3v−4v̂n+v̂n−1

2τ + (wn+1 · ∇)v +∇p−∇ · (νeff (∇v +∇T v)
)

= 0,
∇ · v = 0,

3k−4k̂n+k̂n−1

2∆t + (wn+1 · ∇)k + β∗ωk −∇ · (εk∇k) = Pk,
3ω−4ω̂n+ω̂n−1

2∆t + (wn+1 · ∇)ω + βω2 −∇ · (εω∇ω) = Pω + CD,

where νeff = ν + νn+1
T , and v, k, ω satisfy boundary conditions (2.2), (2.5).

3.2. Space discretization of RANS equations. In the finite element solution
of incompressible RANS equations one has to overcome several obstacles. First, the
finite element velocity/pressure pair has to satisfy the Babuška-Breezi condition (cf.
[6]) and the dominating convection requires to introduce some additional stabilization,
as, e.g. up-winding or streamline-diffusion method (also called SUPG method). In
practical computations we assume that the domain Ω is a polygonal approximation
of the region occupied by the fluid at time tn+1 and T∆ is a regular triangulation
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in Ω. The fluid velocity and pressure are sought in the finite element space X∆ of
continuous piecewise quadratic (vector) functions and the finite element space Q∆ of
continuous piecewise linear functions, respectively.

The fully stabilized problem reads: Find U = (v, p) ∈ X∆ × Q∆ such that v
satisfies approximately the Dirichlet boundary conditions (2.2) a),b) and the identity

a(U, V ) + L(U, V ) + P(U, V ) = f(V ) + F(V ), (3.2)

for all V = (z, q) ∈ X∆ × Q∆, where a(U, V ) and f(V ) are the Galerkin terms,
L(U, V ) and F(V ) are the SUPG/PSPG stabilizing terms, and P(U, V ) is the div-div
stabilizing term. These forms are defined in the following way:

a(U, V ) =

(
3v

2∆t
+ wn+1 · ∇v, z

)

Ω

+ (νeff∇v,∇z)Ω − (p,∇ · z)Ω + (∇ · v, q)Ω ,

L(U, V ) =
∑

K∈T∆

δK

( 3v

2∆t
−∇ · (2νeffS(v)

)
+

(
wn+1 · ∇)

v +∇p,
(
wn+1 · ∇)

z +∇q
)

K
,

F(V ) =
∑

K∈T∆

δK

(4v̂n − v̂n−1

2∆t
,
(
wn+1 · ∇)

z +∇q
)

K
,

f(V ) =

(
4v̂n − v̂n−1

2∆t
, z

)

Ω

,

P(U, V ) =
∑

K∈T∆

τK(∇ · v,∇ · z)K .

The following choice of parameters τK , δK is used

τK = 1, δK = h2
K ,

where hK denotes the local element size measured in the streamwise direction, see
also [5].

3.3. Space discretization of the k-ω turbulence model. The numerical ap-
proximation of the time discretized equations of the turbulence model is realized by
the application of the SUPG stabilized finite element method, where the nonlinear
terms of k − ω equations (2.4) are linearized. In order to avoid non-physical under-
shoots/overshoots of the approximations of k := kn+1 and ω := ωn+1, the additional
nonlinear crosswind diffusion method is applied, cf. [1], [8], [9]. First, the equa-
tions (2.4) are formulated in a weak sense: Find k, ω ∈ H1(Ω) such that they satisfy
boundary conditions (2.5)a),b) and B(wn+1, νT ; Λ, Φ) = L(Φ) for all ϕk, ϕω ∈ V,
V = {ψ ∈ H1(Ω) : ψ = 0 on ΓD ∪ ΓWt}, where the forms

B(w, νT ; Λ, Φ) = (εk∇k,∇ϕk)Ω +
(

3k

2∆t
+ (w · ∇) k + 2β∗ωnk, ϕk

)

Ω

+(εω∇ω,∇ϕω)Ω +
(

3ω

2∆t
+ (w · ∇) k + 2βωnω, ϕω

)

Ω

,

L(Φ) =
(4k̂n − k̂n−1

2∆t
+ Pk + β∗knωn, ϕk

)
Ω

+
(4ω̂n − ω̂n−1

2∆t
+ β(ωn)2 + Pω + CD, ϕω

)
Ω

are defined with the use of the linearization of the nonlinear terms of equations (2.4)
is used

β∗ωk|t=tn+1 = 2β∗ω̂nkn+1 − β∗ω̂nk̂n,
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βω2|t=tn+1 = 2βω̂nωn+1 − β(ω̂n)2,

and the viscous coefficients εk, εω, turbulent viscosity νT and production terms Pk,
Pω, CD were taken from the previous time levels, i.e. we set

εk|tn+1 = ν + σkν̂T (tn), εω|tn+1 = ν + σkν̂T (tn), νT = ν̂T (tn),

and

Pk|tn+1 = P̂k(tn), Pω|tn+1 = P̂ω(tn), CD|tn+1 = ĈD(tn),

Further, based on the triangulation T∆ the function spaces H1(Ω) and V are
approximated by the finite element subspaces H∆, V∆ of continuous piecewise linear
functions, i.e.

H∆ =
{
ϕ ∈ C(Ω) : ϕ|K ∈ P1(K) ∀K ∈ T∆

}
,V∆ = H∆ ∩ V.

To overcome the possible instability of the Galerkin approximations due to the dom-
inating convection, the SUPG stabilization is applied, i.e.

BS(w, νT ; Λ,Φ) =
∑

K∈T∆

δK

( 3k

2∆t
+ w · ∇k + 2β∗ω̂nk +∇ · (εk∇k) ,w · ∇ϕk

)
K

+
∑

K∈T∆

δ̂K

( 3ω

2∆t
+ w · ∇ω + 2βω̂nω +∇ · (εω ∇ω) ,w · ∇ϕω

)
K

,

LS(w; Φ) =
∑

K∈T∆

δK

(4k̂n − k̂n−1

2∆t
+ Pk + β∗k̂nω̂n,w · ∇ϕk

)
K

+
∑

K∈T∆

δ̂K

(4ω̂n − ω̂n−1

2∆t
+ βω̂2

n, Pω + CD,w · ∇ϕk)
)

K
,

where the parameters δK , δ̂K are defined by

δ−1
K =

4|εk|∞,K

h2
K

+
2|w|∞,K

hK
+ 2β∗|ω̂n|∞,K , δ̂K

−1
=

4|εω|∞,K

h2
K

+
2|w|∞,K

hK
+ 2β|ω̂n|∞,K ,

and where | · |∞,K denotes the norm in L∞(K).
The use of SUPG stabilization still does not avoid local oscillations near sharp

layers, which possibly can lead to negative values of the approximation of the turbulent
viscosity νT . Therefore the stabilization techniques based on an additional dissipation
in crosswind direction is applied, cf. [7], [1]. The nonlinear stabilized problem reads:
Find Λ = (k, ω) ∈ H2

∆ such that satisfy approximately boundary conditions (2.5)a),b)
and

B(wn+1, νT ; Λ,Φ)+BS(wn+1, νT ; Λ, Φ)+BA(wn+1, νT ; Λ, Φ) = L(Φ)+LS(wn+1; Φ),

holds for all Φ = (ϕk, ϕω) ∈ V2
∆, where

BA(w, νT ; Λ, Φ) =
∑

K∈T∆

(
αK∇k,∇ϕk

)
K

+
∑

K∈T∆

(
α̂K∇ω,∇ϕω

)
K

+
∑

K∈T∆

∫

K

(
(αK − α′K)+ − αK

) ∇k ·
(

w ⊗w
‖w‖2K

)
∇ϕkdx.

+
∑

K∈T∆

∫

K

(
(α̂K − α̂′K)+ − α̂K

) ∇ω ·
(

w ⊗w
‖w‖2K

)
∇ϕωdx.
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Here α′K and α̂′K are defined by

α′K = δK ‖wn+1‖0,∞,K , α̂′K = δ̂K ‖wn+1‖0,∞,K

and αK , α̂K are defined in the following way: We define the local element residuals

res1(k) =
3k − 4k̂n + k̂n−1

2∆t
+ wn+1 · ∇k + 2β∗ω̂nk − β∗ω̂nk̂n − Pk −∇ · (εk∇k)

and

res2(ω) =
3ω − 4ω̂n + ω̂n−1

2∆t
+ wn+1 · ∇ω + 2βω̂nω − β∗ω̂2

n − Pω − CD −∇ · (εω∇ω)

We set
αK =

1

2
AKhK

‖res1(k)‖K

‖∇k‖K
, α̂K =

1

2
AKhK

‖res2(ω)‖K

‖∇ω‖K

if ‖∇k‖K 6= 0 and ‖∇ω‖K 6= 0. Otherwise we put αK = 0 and α̂K = 0. Finally,

AK,1 =
(
0.7− 2εk

‖a1‖KhK

)+

and AK,2 =
(
0.7− 2εω

‖a2‖KhK

)+

, with a1 = res1(k)
‖∇k‖2K

∇k, and

a2 = res2(ω)
‖∇ω‖2K

∇ω.
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(a) Far field velocity U∞ = 2m/s
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(b) Far field velocity U∞ = 4m/s

Fig. 4.1. Comparison of aeroelastic response h, α, β for far field velocity U∞ = 2m/s
and U∞ = 4m/s computed by k − ω turbulence model.

4. Numerical results. Conclusion.. The developed technique was applied for
approximation of an aeroelastic problem for the airfoil NACA 0012 with three degrees
of freedom. The following choice of parameters was employed: kh = 105.109 N/m,
kα = 3.69558N m/rad, kβ = 0.2N m/rad, m = 0.086622 kg, Sα = −0.0007796 kg/m
and Iα = 0.00048729 kg m2. Sβ = 0.0 kg/m and Iβ = 3.411037 × 10−5 kg m2, see
[11] or [4], where laminar flow model was used. The elastic axis EA is located at
40% of the airfoil and the elastic axis of the aileron EF is located at 80% of the
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(a) Far field velocity U∞ = 8m/s
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(b) Far field velocity U∞ = 10m/s

-6

-4

-2

 0

 2

 4

 6

 8

 0  0.5  1  1.5  2

h[
m

m
]

t[s]

-3

-2

-1

 0

 1

 2

 3

 0  0.5  1  1.5  2

α[
de

g]

t[s]

-15

-10

-5

 0

 5

 10

 15

 0  0.5  1  1.5  2

β[
de

g]

t[s]

(c) Far field velocity U∞ = 11m/s
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(d) Far field velocity U∞ = 12m/s

Fig. 4.2. Comparison of aeroelastic response h, α, β for far field velocity U∞ = 8m/s,
U∞ = 10m/s and U∞ = 12m/s computed by k−ω turbulence model and compared to results
computed by Spalart-Allmaras turbulence model.

airfoil. The depth of the section is 7.9 cm. The results of Theodorsen’s linear theory
computed by NASTRAN predicts the aeroelastic instability was predicted for far
field velocities higher or equal to U∞ = 11.3m/s, where the instability is caused
by coupling of α − β motion, cf. [11]. The results were computed for far field flow
velocities in the range from U∞ = 2 m/s to U∞ = 12 m/s with the aid of the presented
finite element approach and the aeroelastic responses are shown in Figs. 4.1 and 4.2,
where the graphs show the angle of rotation α, the angle of rotation of the aileron
β and the vertical displacement h of the profile in dependence on time. The initial
conditions were specified by h(0) = −6mm, ḣ(0) = 0mm/s, α(0) = 3◦, α̇(0) = 0◦/s.
Fig. 4.1 shows damped vibrations for far field velocities bellow the critical velocity.
Similarly, Fig. 4.2 shows damped vibrations for velocities lower than 10 m/s, whereas
for increasing far field velocities the damping is decreasing, and for velocity U∞ =
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Fig. 4.3. Flow patterns during the first cycle of aeroelastic response after release of the
profile, magnitude of flow velocity for U∞ = 8m/s.

12m/s undamped vibrations appears. This behaviour is in a good agreement with
the linear theory. Furthermore, the comparison of the results computed by k − ω
turbulence model to the numerical results computed with the aid of one equation
Spalart-Allmaras turbulence model is shown in Figs. 4.2. Similar behaviour is shown,
only small difference of the results computed by two mentioned turbulence models
can be seen.

The numerical approximation of the flow field during aeroelastic simulation for
far field velocity U∞ = 8, m/s is shown in Fig. 4.3, where velocity magnitude is shown
around the airfoil and in a detail nearby the aileron. Particularly, the flow through
the gap between the airfoil and the aileron can be observed, which influences the
aeroelastic behaviour of the system. The numerical results shows that the numerical
algorithm for approximation of the turbulent flow interacting with a moving airfoil is
applicable and leads to acceptable results for the considered technical application.
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