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SOME SECOND ORDER TIME ACCURATE FOR A FINITE
VOLUME METHOD FOR THE WAVE EQUATION USING A

SPATIAL MULTIDIMENSIONAL GENERIC MESH∗

ABDALLAH BRADJI†

Abstract. The present work is an extension of the previous one [1] which dealt with error
analysis of a finite volume scheme of first order (both in time and space) for second order hyperbolic
equations on general nonconforming multidimensional spatial meshes introduced recently in [4]. The
aim of this contribution is to get some second–order time accurate schemes for a finite volume method
for second order hyperbolic equations using the same class of spatial generic meshes stated above. We
present a family of implicit time schemes to approximate the wave equation. The time discretization
is performed using a one–parameter Newmark method. We prove that, when the discrete flux is
calculated using a stabilized discrete gradient, the convergence order is k2 +hD, where hD (resp. k)
is the mesh size of the spatial (resp. time) discretization. This estimate is valid for discrete norms
L∞(0, T ;H1

0 (Ω)) and W1,∞(0, T ;L2(Ω)) ! under the regularity assumption u ∈ C4([0, T ]; C2(Ω)) for
the exact solution u. These error estimates are useful because they allow to obtain approximations
to the exact solution and its first derivatives of order k2 + hD.
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ond order time accurate; Stabilized discrete gradient; Fully discretization scheme; Multidimensional
spatial domain
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1. Motivation and aim of this paper. We consider the wave equation, as a
model for second order hyperbolic equations:

utt(x, t)−∆u(x, t) = f(x, t), (x, t) ∈ Ω× (0, T ), (1.1)

where Ω is an open polygonal bounded subset in IRd, T > 0, and f is a given function.
An initial condition is given by: for given functions u0 and u1 defined on Ω

u(x, 0) = u0(x) and ut(x, 0) = u1(x) x ∈ Ω, (1.2)

Homogeneous Dirichlet boundary conditions are given by

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ). (1.3)

Recently, in the previous work [1], it is provided an implicit finite volume scheme
approximating the wave problem (1.1)–(1.3). The feature of the finite volume scheme
presented in [1] is that the spatial meshes considered are ones used in [4] to approx-
imate stationary equations. The general class of nonconforming multidimensional
meshes, see Definition 2.1 given below, introduced recently in [4] has the following
advantages:

• The scheme can be applied on any type of grid: conforming or non conform-
ing, 2D and 3D, or more, made with control volumes which are only assumed
to be polyhedral (the boundary of each control volume is a finite union of
subsets of hyperplanes).
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• When the family of the discrete fluxes are satisfying some suitable conditions,
the matrices of the generated linear systems are sparse, symmetric, positive
and definite.

• A discrete gradient for the exact solution is formulated and converges to the
gradient of the exact solution.

It is proved that the implicit scheme presented in [1] is of order one in both space
and time. The aim of the present contribution is to improve the order with respect
to time using the same mesh described in Definition 2.1. For this reason, we shall use
a Newmark’s method as a discretization in time. Newmark methods are used as a
discretization in time for the wave equation for instance when the spatial discretization
is performed using finite difference method in [8], the variational methods in [9],
spectral methods in [10], or finite element methods in [7].

2. Definition of the scheme. The discretization of Ω is performed using the
mesh D = (M, E ,P) described in [4, Definition 2.1] which we recall here for the sake
of completeness.

Definition 2.1 (Definition of the spatial mesh, cf. [4]). Let Ω be a polyhedral
open bounded subset of IRd, where d ∈ IN \ {0}, and ∂Ω = Ω \ Ω its boundary. A
discretization of Ω, denoted by D, is defined as the triplet D = (M, E ,P), where:

1. M is a finite family of non empty connected open disjoint subsets of Ω (the
“control volumes”) such that Ω = ∪K∈MK. For any K ∈M, let ∂K = K\K
be the boundary of K; let m (K) > 0 denote the measure of K and hK denote
the diameter of K.

2. E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such
that, for all σ ∈ E, σ is a non empty open subset of a hyperplane of IRd,
whose (d− 1)–dimensional measure is strictly positive. We also assume that,
for all K ∈ M, there exists a subset EK of E such that ∂ K = ∪σ∈EK

σ. For
any σ ∈ E, we denote by Mσ = {K; σ ∈ EK}. We then assume that, for
any σ ∈ E, either Mσ has exactly one element and then σ ⊂ ∂ Ω (the set
of these interfaces, called boundary interfaces, denoted by Eext) or Mσ has
exactly two elements (the set of these interfaces, called interior interfaces,
denoted by Eint). For all σ ∈ E, we denote by xσ the barycentre of σ. For all
K ∈M and σ ∈ E, we denote by! nK,σ the unit vector normal to σ outward
to K.

3. P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M, such
that for all K ∈M, xK ∈ K and K is assumed to be xK–star-shaped, which
means that for all x ∈ K, the property [xK , x] ⊂ K holds. Denoting by
dK,σ the Euclidean distance between xK and the hyperplane including σ, one
assumes that dK,σ > 0. We then denote by DK,σ the cone with vertex xK
and basis σ.

The time discretization is performed with a constant time step k = T
N+1 , where

N ∈ IN?, and we shall denote tn = nk, for n ∈ J 0, N + 1K. Throughout this paper,
the letter C stands for a positive constant independent of the parameters of the space
and time discretizations and its values may be different in different appearance.
We define the space XD as the set of all

(
(vK)K∈M , (vσ)σ∈E

)
, and XD,0 ⊂ XD is the

set of all v ∈ XD such that vσ = 0 for all σ ∈ Eext. Let HM(Ω) ⊂ L2(Ω) be the
space of piecewise constant functions on the control volumes of the mesh M. For all
v ∈ XD, we denote by ΠM v ∈ HM(Ω) the function defined by ΠM v(x) = vK , for
a.e. x ∈ K, for all K ∈M.
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For all ϕ ∈ C(Ω), we define PDϕ =
(
(ϕ(xK))K∈M , (ϕ(xσ))σ∈E

)
∈ XD. We denote

by PMϕ ∈ HM(Ω) the function defined by PM ϕ(x) = ϕ(xK), for a.e. x ∈ K, for all
K ∈M.
In order to analyze the convergence, we need to consider the size of the discretization
D defined by hD = sup{diam(K),K ∈ M} and the regularity of the mesh given by

θD = max
(

max
σ∈Eint,K,L∈M

dK,σ
dL,σ

, max
K∈M,σ∈EK

hK
dK,σ

)
. The scheme we want to consider

in this note (A detailed work [3] which includes general framework is in progress.) is
based on the use of the discrete gradient given in [4]. For u ∈ XD, we define, for all
K ∈M

∇D u(x) = ∇K,σ u, a. e. x ∈ DK,σ, (2.1)

where DK,σ is the cone with vertex xK and basis σ and

∇K,σu = ∇K u+

( √
d

dK,σ
(uσ − uK −∇K u · (xσ − xK))

)
nK,σ, (2.2)

where ∇K u =
1

m(K)

∑
σ∈EK

m(σ) (uσ − uK) nK,σ and d is the space dimension.

The family of finite volume schemes approximating (1.1)–(1.3) we want to study in
this work is based on the use of a Newmark’s method as discretization in time, see
[7, 9, 10]. For a parameter γ ∈] 1

2 , 1], we define the finite volume approximate solution
as (unD)N+1

n=0 ∈ X
N+2
D,0 with unD =

(
(unK)K∈M , (unσ)σ∈E

)
, for all n ∈ J0, N + 1K and

1. discretization of the initial conditions (1.2):

〈u0
D, v〉F = −

(
∆u0,ΠM v

)
L2(Ω)

, ∀ v ∈ XD,0, (2.3)

and

〈 u
1
D − u0

D
k

, v〉F = −
(

∆ ū1,ΠM v
)

L2(Ω)
, ∀ v ∈ XD,0, (2.4)

2. discretization of equation (1.1): for any n ∈ J 1, NK, v ∈ XD,0

(
∂2 ΠM un+1

D ,ΠM v
)

L2(Ω)
+

1
2
〈 γ un+1

D + 2(1− γ)unD + γ un−1
D , v〉F

=
1
2

( γ f(tn+1) + 2(1− γ)f(tn) + γ f(tn−1),ΠM v)L2(Ω) , (2.5)

where

〈u, v〉F =
∫

Ω

∇D u(x) · ∇D v(x)dx, ∀u, v ∈ XD, (2.6)

∂2 vn+1 =
vn+1 − 2vn + vn−1

k2
, ∀n ∈ J 1, NK, (2.7)

ū1 = u1 +
k

2
(∆u0 + f(0)), (2.8)

and ( ·, ·)L2(Ω) denotes the L2 inner product.
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As stated before, for the sake of simplicity we will only focus on the case γ ∈] 1
2 , 1].

The case γ ∈ [0, 1
2 ] will be detailed in [3]. It is useful to mention that it is possible

to obtain a convergence order four (instead of two for general values of γ ∈ [0, 1],
see Theorem 3.1 below) in time (with optimal order in space) when γ = 1

6 when
modifying slightly the expression (2.8) of ū1.

3. Main results. The main result of the present contribution is the following
theorem.

Theorem 3.1 (Error estimates for the finite volume scheme (2.3)–(2.5) when
1
2 < γ ≤ 1). Let Ω be a polyhedral open bounded subset of IRd, where d ∈ IN \ {0},
and ∂Ω = Ω\Ω its boundary. Assume that the solution (weak) of (1.1)–(1.3) satisfies
u ∈ C4([0, T ]; C2(Ω)). Let k = T

N+1 , with N ∈ IN?, and denote by tn = nk, for
n ∈ J 0, N + 1K. Let D = (M, E ,P) be a discretization in the sense of Definition 2.1.
Assume that θD satisfies θ ≥ θD.
Then there exists a unique solution (unD)N+1

n=0 ∈ X
N+2
D,0 for problem (2.3)–(2.5).

For any n ∈ J 0, N + 1K and for any γ ∈] 1
2 , 1], we define the error enM ∈ HM(Ω) in

the level n by:

enM = PM u(tn)−ΠM unD. (3.1)

Then, for all 1
2 < γ ≤ 1, the following error estimates hold

• Discrete L∞(0, T ;H1
0 (Ω))–estimate: for all n ∈ J 0, N + 1K

‖ enM‖1,2,M ≤ C(k2 + hD)‖u‖C4([0,T ]; C2(Ω)), (3.2)

• Discrete W1,∞(0, T ; L2(Ω))–estimate: for all n ∈ J 1, N + 1K

‖ ∂1 enM‖L2(Ω) ≤ C(k2 + hD)‖u‖C4([0,T ]; C2(Ω)), (3.3)

where ∂1vn =
1
k

(
vn − vn−1

)
.

• Error estimate in the gradient approximation: for all n ∈ J 0, N + 1K

‖∇D unD −∇u(tn)‖L2(Ω) ≤ C(k2 + hD)‖u‖C4([0,T ]; C2(Ω)). (3.4)

The following lemma will help us to prove Theorem 3.1.
Lemma 3.2 (An a priori estimate for the family of finite volume schemes (2.3)–

(2.5) when 1 ≥ γ > 1
2). Let Ω be a polyhedral open bounded subset of IRd, where

d ∈ IN \ {0}, and ∂Ω = Ω \ Ω its boundary. Let k = T
N+1 , with N ∈ IN?, and denote

by tn = nk, for n ∈ J 0, N + 1K. Let D = (M, E ,P) be a discretization in the sense of
Definition 2.1. Assume that θD satisfies θ ≥ θD. Assume in addition that there exists
( ηnD)N+1

n=0 ∈ X
N+2
D,0 such that for any n ∈ J 1, NK, for all v ∈ XD,0

(
ΠM ∂2 ηn+1

D ,ΠM v
)

L2(Ω)
+

1
2
〈 γ ηn+1

D + 2(1− γ)ηnD + γ ηn−1
D , v〉F

= (Sn,ΠM v)L2(Ω) , (3.5)

where Sn ∈ L2(Ω), for all n ∈ J 1, NK and γ is a parameter satisfying γ ∈] 1
2 , 1].

Then the following estimates hold, for all j ∈ J 1, NK

‖ΠM ∂1 ηj+1
D ‖2L2(Ω) + (2γ − 1)C | ηj+1

D |2X

≤ C
(
‖ΠM ∂1 η1

D‖2L2(Ω) + |η1
D|2X + |η0

D|2X + (S)2
)
, (3.6)



346 A. BRADJI

where

S =
N

max
n=1
‖ Sn‖L2(Ω). (3.7)

Proof. The following simple equality will be useful

ηn+1
K − ηn−1

K = k(∂1ηn+1
K + ∂1ηnK). (3.8)

Taking v = ηn+1
D − ηn−1

D in (3.5) and using (3.8) to get

‖∂1 ΠM ηn+1
D ‖2L2(Ω) − ‖∂

1 ΠM ηnD‖2L2(Ω) + (1− γ)
(
〈 ηnD, ηn+1

D 〉F − 〈 ηnD, ηn−1
D 〉F

)
+
γ

2
(
〈 ηn+1
D , ηn+1

D 〉F − 〈 ηn−1
D , ηn−1

D 〉F
)

=
(
Sn,ΠM (ηn+1 − ηn−1)

)
L2(Ω)

. (3.9)

On the other hand

(1− γ)
(
〈 ηnD, ηn+1

D 〉F − 〈 ηnD, ηn−1
D 〉F

)
+
γ

2
(
〈 ηn+1
D , ηn+1

D 〉F − 〈 ηn−1
D , ηn−1

D 〉F
)

= 〈 ηn+1
D , ηnD〉F − 〈 ηnD, ηn−1

D 〉F +
γ

2
〈 ηn+1
D − ηnD, ηn+1

D − ηnD〉F

− γ

2
〈 ηnD − ηn−1

D , ηnD − ηn−1
D 〉F . (3.10)

Thanks to (3.10), (3.9) can be written as

En+1
D − EnD =

(
Sn,ΠM (ηn+1 − ηn−1)

)
L2(Ω)

, (3.11)

where

En+1
D = ‖∂1 ΠM ηn+1

D ‖2L2(Ω) + 〈 ηn+1
D , ηnD〉F

+
γ

2
〈 ηn+1
D − ηnD, ηn+1

D − ηnD〉F . (3.12)

Summing (3.11) over n ∈ J 1, jK, where j ∈ J 1, NK, we get

Ej+1
D =

j∑
n=1

(
Sn,ΠM (ηn+1 − ηn−1)

)
L2(Ω)

+ E1
D, (3.13)

We have, using (3.12)

Ej+1
D = ‖∂1 ΠM ηj+1

D ‖2L2(Ω) +
γ

2

(
〈 ηj+1
D , ηj+1

D 〉F + 〈 ηjD, η
j
D〉F

)
+ (1− γ)〈 ηj+1

D , ηjD〉F . (3.14)

On the other hand, we can justify easily that

〈 ηj+1
D , ηjD〉F ≥ −

1
2

(
〈 ηj+1
D , ηj+1

D 〉F + 〈 ηjD, η
j
D〉F

)
. (3.15)

This with (3.14) yields that (recall that 1 ≥ γ which means that 1− γ ≥ 0)

Ej+1
D ≥ ‖∂1 ΠM ηj+1

D ‖2L2(Ω) +
2γ − 1

2

(
〈 ηj+1
D , ηj+1

D 〉F + 〈 ηjD, η
j
D〉F

)
. (3.16)
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This with (3.13) leads to

‖∂1 ΠM ηj+1
D ‖2L2(Ω) +

2γ − 1
2

(
〈 ηj+1
D , ηj+1

D 〉F + 〈 ηjD, η
j
D〉F

)
≤

j∑
n=1

(
Sn,ΠM (ηn+1 − ηn−1)

)
L2(Ω)

+ E1
D. (3.17)

Gathering (3.17) with (3.8), the fact that 〈 ηjD, η
j
D〉F ≥ 0 (which stems from [4, Lemma

4.2, Page 1026]), γ > 1
2 , the triangle inequality and the Cauchy Schwarz inequality

leads to (recall that S is defined in (3.7))

‖∂1 ΠM ηj+1
D ‖2L2(Ω) +

2γ − 1
2
〈 ηj+1
D , ηj+1

D 〉F ≤ 2kS
j+1∑
n=1

‖∂1 ΠM ηnD‖L2(Ω)

+ E1
D. (3.18)

This with the inequality ab ≤ ε a2 +b2/ε, for all ε > 0, and [4, Lemma 4.2, Page 1026]
implies, for all j ∈ J 1, NK (recall that k(N + 1) = T and k/T = 1/(N + 1) ≤ 1/2)

‖ΠM ∂1 ηj+1
D ‖2L2(Ω) + (2γ − 1)C | ηj+1

D |2X

≤ 2k
T

j∑
n=2

(
‖ΠM ∂1 ηnD‖2L2(Ω) + (2γ − 1)C | ηnD|2X

)
+ 2E1

D + 8T 2 (S)2 + ‖ΠM ∂1 η1
D‖2L2(Ω). (3.19)

On the other hand, using the fact that γ ≤ 1, 〈 η1
D−η0

D, η
1
D−η0

D〉F ≥ 0 (which stems
from [4, Lemma 4.2, Page 1026]), (3.12) implies

E1
D ≤ ‖∂1 ΠM η1

D‖2L2(Ω) +
M

2
(
|η1
D|2X + |η0

D|2X
)
. (3.20)

This with (3.19), the discrete version of the Gronwall’s lemma and the fact that
(N + 1)k = T implies the required estimate (3.6) of Lemma 3.2.

Sketch of the proof of Theorem 3.1: The uniqueness of (unD)n∈J 0,N+1K sat-
isfying (2.3)–(2.5) can be deduced from the [4, Lemma 4.2]. As usual, we can use
this uniqueness to prove the existence. To prove (3.2)–(3.4), we compare the solu-
tion (unD)n∈J 0,N+1K satisfying (2.3)–(2.5) with the solution (it exists and it is unique
thanks to [4, Lemma 4.2]): for any n ∈ J 0, N +1K, find ūnD ∈ XD,0 such that, see (2.6)

〈 ūnD, v〉F = −〈 ūnD, v〉F = − ( ∆u(tn),ΠM v)L2(Ω) , ∀ v ∈ XD,0. (3.21)

Taking n = 0 in (3.21), using the fact that u(0) = u0, and comparing this with (2.3),
we get the following property which will be used below

ū0
D = u0

D. (3.22)

One remarks that the solution of (3.21) is the same one of [2, (12)], one can use error
estimates [2, (13), (15), and (16)] as error estimates for the solution of (3.21).
Writing (3.21) in the steps n + 1 and n − 1 yields, for all n ∈ J 0, NK and for all
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v ∈ XD,0

1
2
〈 γūn+1

D + 2(1− γ)ūnD + γūn−1
D , v〉F

= −1
2

( γ∆(tn+1) + 2(1− γ)∆(tn) + γ∆(tn−1),ΠM v)L2(Ω) . (3.23)

Subtracting the previous equation from (2.5) to get(
ΠM ∂2 ηn+1

D ,ΠM v
)

L2(Ω)
+

1
2
〈 γηn+1

D + 2(1− γ)ηnD + γηn−1
D , v〉F

= (Sn,γD ,ΠM v)L2(Ω) , (3.24)

where ηnD = unD − ūnD, for all n ∈ J 0, N + 1K and

Sn,γD =
1
2

( γ f(tn+1) + 2(1− γ) f(tn) + γ f(tn−1))

+
1
2

( γ∆u(tn+1) + 2(1− γ)∆u(tn) + γ∆u(tn−1))

− ΠM∂2ūn+1
D . (3.25)

Equation (3.24) with Lemma 3.2 and (3.22) (which yields η0
D = 0) implies that, for

all n ∈ J 1, NK

‖ΠM ∂1 ηn+1
D ‖2L2(Ω) + (2γ − 1)C| ηn+1

D |2X

≤ C
(
‖ΠM ∂1 η1

D‖2L2(Ω) + |η1
D|2X + (S)2

)
, (3.26)

with S is defined by (3.7) by replacing Sn with Sn,γD .
To estimate the terms on the right hand side of the previous inequality, we consider

ξnD = ūnD − PD u(·, tn), ∀n ∈ J 0, N + 1K. (3.27)

It is useful to remark that (recall that ηnD = unD − ūnD)

unD − PD u(tn) = ηnD + ξnD. (3.28)

1. Estimate of ‖ΠM ∂1 η1
D‖L2(Ω): using (3.28), we get

‖ΠM ∂1 η1
D‖L2(Ω) ≤

4∑
i=1

Ti, (3.29)

where

T1 = ‖ΠM∂1ξ1
D‖L2(Ω), T2 = ‖ΠM ∂1 u1

D − ū1‖L2(Ω),

T3 = ‖ ū1 − ∂1 u(t1)‖L2(Ω), T4 = ‖ ∂1 u(t1)− PM∂1 u(t1)‖L2(Ω). (3.30)

Estimate [2, (15)], when j = 1, with (3.27) leads to

T1 ≤ C hD‖u‖C1([0,T ]; C2(Ω)). (3.31)
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Equation (2.4) can be written as

〈 ∂1 u1
D, v〉F = −

(
∆ ū1,ΠM v

)
L2(Ω)

, ∀ v ∈ XD,0. (3.32)

This with [4, (4.25)] and the triangle inequality implies that

T2 ≤ C hD‖u‖C1([0,T ]; C2(Ω)). (3.33)

Using the Taylor expansions to get

T4 ≤ C hD‖u‖C1([0,T ]; C1(Ω)). (3.34)

A convenient Taylor expansion implies that

T3 ≤ Ck2‖u‖C3([0,T ]; C(Ω)). (3.35)

Thanks to (3.29), (3.31), and (3.33)–(3.35) we have

‖ΠM ∂1 η1
D‖L2(Ω) ≤ C (k2 + hD)‖u‖C3([0,T ]; C2(Ω)). (3.36)

2. Estimate of |η1
D|X : let us first remark that thanks to (2.3) and (2.4), we have

〈u1
D, v〉F = −

(
∆ (u0 + kū1),ΠM v

)
L2(Ω)

, ∀ v ∈ XD,0. (3.37)

In order to bound |η1
D|X = |u1

D − ū1
D|X , we use the triangle inequality to get

|η1
D|X ≤ |u1

D − PD (ω)|X + | PD (ω)− PD u(t1)|X
+ | PD u(t1)− ū1

D|X , (3.38)

where, using (1.1) and (1.2)

ω = u0 + kū1 = u0 + kut(0) +
k2

2
utt(0). (3.39)

This with the proof of [4, (4.29)] and suitable Taylor expansions, we get

|η1
D|X ≤ C (k2 + hD)‖u‖C3([0,T ]; C2(Ω)). (3.40)

3. Estimate of S: substituting f by utt − ∆u, see (1.1), in the expansion of
Sn,γD , we get

Sn,γD =
1
2

( γ utt(tn+1) + 2(1− γ)utt(tn) + γ utt(tn−1))

− ΠM∂2ūn+1
D . (3.41)

Thanks to the Taylor expansion, [2, (15)] (when j = 2), we have

S ≤ C (k2 + hD)‖u‖C4([0,T ]; C2(Ω)). (3.42)

Gathering now (3.26), (3.36), (3.40), and (3.42) yields, for all n ∈ J 2, N + 1K

‖ΠM ∂1 ηnD‖L2(Ω) ≤ C (k2 + hD)‖u‖C4([0,T ]; C2(Ω)), (3.43)

and

| ηnD|X ≤ C (k2 + hD)‖u‖C4([0,T ]; C2(Ω)). (3.44)

We now combine (3.43)–(3.44) with [2, (13), (15), and (16)] to prove the required
estimates (3.2)–(3.4).
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- Proof of estimate (3.2): estimate (3.44) with [4, (4.6)] implies, for all n ∈
J 2, N + 1K

‖ΠM ηnD‖1,2,M ≤ C (k2 + hD)‖u‖C4([0,T ]; C2(Ω)). (3.45)

This with (3.28), the fact that ΠM ξnD = ΠMūnD − PM u(tn) , estimate [2,
(13)] , and the triangle inequality implies estimate (3.2) for all n ∈ J 2, N+1K.
The case when n = 1 in (3.2) can be proved by gathering (3.40), [4, (4.6)],
and the case n = 1 of [2, (13)]. Property (3.22) with the case n = 0 of [2,
(13)] yields the case n = 0 of (3.2).

- Proof of estimate (3.3): the case when n ∈ J 2, N+1K of (3.3) can be proved by
gathering (3.43), the case when j = 1 in [2, (15)], and the triangle inequality.
The case n = 1 of (3.3) can be proved by gathering (3.36), the case when
n = 1 and j = 1 in [2, (15)], and the triangle inequality.

- Proof of estimate (3.4): gathering (3.40) and (3.44), and [4, Lemma 4.2] leads
to, for all n ∈ J 1, N + 1K

‖∇DηnD‖L2(Ω) ≤ C (k2 + hD)‖u‖C4([0,T ]; C2(Ω)). (3.46)

Combining (3.46), [2, (16)], and the triangle inequality yields (3.4) for all
n ∈ J 1, N + 1K. The case n = 0 of (3.4) can be deduced directly from the
case n = 0 of [2, (16)] by using (3.22).

The proof Theorem 3.1 is completed. �
The following corollaries are useful applications of Theorem 3.1.

Corollary 3.3 (Approximation of order two in time for the exact solution u and
its first spatial derivatives). Consider the case γ ∈] 1

2 , 1] in the finite volume schemes
(2.3)–(2.5). Under the same assumptions of Theorem 3.1, let (unD)N+1

n=0 ∈ X
N+2
D,0 be

the unique solution of problem (2.3)–(2.5). Then:
1. ΠMunD approximates u(tn) by order (k2 +hD), in L2(Ω)–norm, uniformly in

n.
2. The i–th component of the discrete gradient ∇DunD, defined by (2.1)–(2.2) by

replacing u with unD, approximates the i–th component of the gradient ∇u(tn)
by order (k2 + hD) uniformly in n, in L2(Ω)–norm.

Corollary 3.4 (Approximation of order two in time for the time derivative ut).
Consider the case γ ∈] 1

2 , 1] in the finite volume schemes (2.3)–(2.5). Under the same
assumptions of Theorem 3.1, let (unD)N+1

n=0 ∈ X
N+2
D,0 be the unique solution of problem

(2.3)–(2.5). We consider the element ( ΞnD)N+1
n=0 ∈ X

N+2
D given by: Ξ0

D = PD(u1),

ΞnD =
un+1
D − un−1

D
2k

, ∀n ∈ J 1, NK, and ΞN+1
D =

3uN+1
D − 4uND + uN−1

D
2k

.

The following error estimate holds

‖PM ut(tn)−ΠM ΞnD‖L2(Ω) ≤ C (k2 + hD)‖u‖C4([0,T ]; C2(Ω)). (3.47)

3.1. A numerical example supporting Theorem 3.1. The present subsec-
tion is devoted to provide a numerical test to justify theoretical results provided in
Theorem 3.1 in two dimensions and γ = 1 in (2.5). We consider Ω = (0, 1)2 meshed
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with the rectangular meshes described as in [6, Pages 756–758] (which is a particular
case of the mesh introduced recently in [4]), with uniform meshes with mesh size h.
For the sake of simplicity, we will consider the discrete gradient described in [5, (211)–
(212), Page 333] (which is also a particular case of the discrete gradient introduced
recently in [4]). The exact solution is given by u(x, y, t) = sin(π x) sin(π y) cos(

√
2π t),

where (x, y, t) ∈ (0, 1)2 × (0, 1). By this way u0(x, y) = sin(π x) sin(π y), (x, y) ∈
(0, 1)2, u1 ≡ 0, and f ≡ 0 in (1.1)–(1.3).
By some computations, we find that the discrete gradient is given by, for Kij =
](i− 1)h, ih[×](j − 1)h, jh[

∇DuD|Kij
=
(
ui+1,j − ui−1,j

2h
,
ui,j+1 − ui,j−1

2h

)
, Kij ∩ ∂Ω = ∅, (3.48)

and with slightly modification when Kij ∩ ∂Ω 6= ∅.
The following results are obtained using a Scilab programme with k = h:

1/h
|Error|W 1,∞(L2)

k2 + h

|Error|L∞(H1)

k2 + h

|Gradient of Error|L∞(L2)

k2 + h
55 4.7915629 1.0453143 1.0348686
60 4.8074899 0.9630278 0.9524088
65 4.8204142 0.8926979 0.8820714
70 4.8310864 0.8319055 0.8213756

From the previous tests, we remark that the error has the same behavior as k2 + h =
h2 + h which supports our theoretical results quoted in Theorem 3.1.

4. Conclusion. The present work is an extension of the previous work [1] which
dealt with error analysis of a finite volume scheme for second order hyperbolic equa-
tions on general nonconforming multidimensional spatial meshes introduced recently
in [4]. We considered the wave equation (as a model for second order hyperbolic
equations). We presented a one–parameter family of finite volume schemes in which
the spatial discretization is performed using the generic mesh introduced in [4] and
the discretization in time is performed using a second order Newmark’s method.
The considered family of the finite volume schemes can be applied on any type of
spatial grid: conforming or non conforming, 2D and 3D, or more, made with control
volumes which are only assumed to be polyhedral. The matrices generated by these
scheme are sparse, symmetric, positive and definite. We proved that the convergence
order of the stated family of finite volume schemes is optimal in space and is two in
time. The analysis of the convergence order is performed in several discrete norms
which allow us to derive approximations for not only the exact solution but also for
its first derivatives whose the convergence order is optimal in space and is two in time.
For the sake of simplicity, we only studied the case when the parameter γ involved
in (2.5) is satisfying 1 ≥ γ > 1

2 . The case when γ is satisfying 1
2 ≥ γ ≥ 0 will be

detailed together with a general framework in [3].
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