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BRIDGING LAW SHAPE FOR LONG FIBRE COMPOSITES AND
ITS FINITE ELEMENT CONSTRUCTION∗

VLADISLAV KOZÁK † AND ZDENEK CHLUP‡

Abstract. Ceramic matrix composites reinforced by unidirectional long fibres are very perspec-
tive materials. Especially glass matrix composites reinforced by unidirectional long ceramic fibres
are very complicated materials for modelling thanks their common acting of various micromecha-
nisms like pull out, crack bridging, matrix cracking etc. Crack extension is simulated by means of
element extinction algorithms. The principal effort is concentrated on the application of the cohesive
zone model with the special traction separation law (bridging). Determination of micro-mechanical
parameters is based on the combination of static tests, microscopic observation and numerical cali-
bration procedures. The paper is oriented to the construction of the new type of element for FEM
program (Abaqus).
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1. Introduction. Crack growth modelling achieved during last decade great
success and progress. The finite element and boundary element method, molecular
dynamic success and actually ”ab initio” computation found their use in the material
research long time ago. Some of mentioned methods are modified, e.g. parallel
approach implementation, which comes into their own in case of the multiprocessor
applications. In some cases only the small improvement of the standard procedures
is coming. The finite element method as a well known procedure has in this case the
special position. It seemed that the boundary of material and geometry nonlinearities
will be reached later. Procedures based on the fracture mechanics approach derived
benefit from knowledge of global parameters like the stress intensity factor and J
integral are. These parameters were used with the combination of the remeshing
ahead the crack tip a bit later.

The special element implementation responding damage and crack growth intro-
duced so-called ”damage mechanics”. The cohesive elements are similar; the origin
can be found in the contact elements and is based on the vanishing elements and the
new surface creation [1]. The phenomenological description characterizing material
behaviour is realized using the traction-separation law, thanks this the local damage
is predicted. Many models published within last five years can be found in literature
for laminates, composites, long fibre composites etc.

Although the cohesive zone modelling is used more than one decade, the physical
interpretation of the cohesive zone is still discussed. This zone has practically zero
thickness which can be in contradiction of the classical fracture mechanic approach.
Characteristics of the physical cohesive zones peak traction, critical separation, work
of separation (T0, δ0 ,Γ0 ) can be derived by the strain and stress analysis in narrow
bands [2]. Since the cohesive model is a phenomenological model, there is no evidence,
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which form is to be taken for the cohesive law. Thus cohesive law has to be assumed
independently of specific material as a model of the separation process. Most authors
take their own formulation for the dependence of the traction on the separation. The
exponential model is used by many authors for both the ductile and the cleavage
fracture. The T −δ response follows an irreversible path with unloading always direct
to origin. This model represents all the features of the separation process by: (1) the
shape of the cohesive traction-separation curve T − δ, (2) the local material strength
by the peak traction T0, and the work of separation Γ0 given by the area under T − δ
curve.

Cohesive model use is realized by two types of elements. The first one is described
by the classical continuum; the second one is the linking cohesive element. The
separation of the cohesive element is computed from the displacement of the standard
element. In general terms the separation is dependent on the normal and shear
stress constituent and their operation on the linking element [3], [4]. Composite
damage modelling on the base of knowledge of crucial micromechanisms is one of
the good approaches how to ensure compliance to the prediction and experiment.
When the crack is propagates in the composite in the direction perpendicular to the
strengthen fibres, the damage is then determined by these basic micromechanisms:
matrix cracking, delamination of an interface fibre and matrix, fibre cracking, fibre
pull out [5]. The critical problem is to predict interface behaviour between the fibre
and the matrix. This interaction plays crucial role in the determination of the final
fracture toughness, fracture strength and the general fracture behaviour.

¿From the micromechanical point a view, every element has its own microstruc-
ture, it comes out from the representative volume element (RVE) approach and the
material separation and damage is described and determined by the cohesive element.
In this manner we separate material behaviour into two distinctively different areas.
Crack propagation through the element is described by the fracture mechanic and by
the cohesive model. This model is simpler than the classical models and is parame-
ters are determined experimentally [6], [7], [8]. The cohesive models are widely used
in case of the crack growth and fragmentation simulation for metals, polymers and
ceramics [8], [9].

Outstanding progress in the crack growth modelling has been achieved by onset
of the extended finite element method (X-FEM) in the last years. This method seems
be very perspective, no remeshing is used and crack growth goes through the element.
By this way one can avoid various numerical problems which is necessary to solve by
using the connection elements of interface type [10], [11]. Last innovation for the
crack growth modelling without remeshing is the combination of the extended finite
element method and application of the cohesive law as a controlling procedure for the
crack growth modelling.

2. Traction-separation law. For a general constitutive modelling of materials
whose fracture may be described by means of a cohesive crack, we need to define three
main ingredients: (1) The stress-strain behaviour of the material in absence of cohesive
cracks, as described by classical constitutive modelling. (2) The initiation criterion,
which determines the conditions in which a crack will form and the orientation of
the newly formed cohesive crack. (3) The evolution law for the cohesive crack, which
relates the stresses transferred between its faces to the relative displacement between
the crack lips.

The cohesive crack model may serve to predict structural behaviour or to analyze
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experimental results. However, it can also be used to analyze certain wider aspects
of material or structural behaviour. This requires, in general, a certain type of spe-
cialization: the type of softening curves and the range of sizes or geometries must be
selected and then a systematic analysis carried out from which general conclusions can
be drawn about the aspects that have been studied. In the particular model the cohe-
sive elements are surrounded by the classical elements. When the cohesive elements
are damaged the crack is extended over the boundaries of the classical elements. In
general, the crack is propagated only in areas where the cohesive elements are inserted
and the crack growth direction is predicted before the numerical computation.

In common for all cohesive laws: (a) comprises two material parameters δ0, T0,
(b) after the material damage the stress becomes zero, T (δ > δ0) = 0, for normal
and tangential separation (this condition is not exactly fulfilled for all cohesive laws).
The area below the traction-separation curve whether for tangential or for normal
direction gives us the energy dissipated by the cohesive element Γ0 . A schematic
diagram for the long fibre composite can be seen in Fig. 2.1. A leading edge up to
maximal stress looks like Dirac function; it is clear that from the numerical point a
view this shape of the traction-separation law is the source of instabilities and the
numerical solution probably is going to diverge. It is necessary this singularity smooth
away for ∆u = 0, respectively introduce the strength J0.

∆u

σ b
r

∆Jss

∆u1 ∆u0

σ1= ∆JSS/2(∆u0∆u1)1/2

T0= σ0

Fig. 2.1. A shape of the bridging law for long fibre composite.

3. Bridging law and FE modelling. Let us think over a body having crack
perpendicular to the direction of oriented fibres. If we found a relation between
the bridging stress σbr and fracture energy, then by means of fracture mechanics
one can predict crack growth and propagation. The bridging law in the form of
σ = σ(δ) is identical in every point of bridging zone. In case of shock loading the
damage of fibres comes straightaway, therefore is inevitable to suppose an existence
of characterizing opening δ0, which determines the moment when the bridging effect
is vanishing. Contrary of the crack resistance curve (R curve or J − ∆ curve) the
bridging law is accepted such as the material characteristic. Fracture energy splitting
by means of J integral on the crack surface and the crack vicinity gives:

J =
∫ δ∗

0

σ(δ)dδ + JTIP ,(3.1)



356 V. KOZÁK and Z. CHLUP

where JTIP is the J integral evaluated around the crack tip (during cracking is equal
to the fracture energy of the tip, J0). The total energy is then dissipated in the
bringing zone and δ∗ is the maximum opening of the bridging zone at the notch root.
The bridging law can be determined by differentiating Eq. 3.1:

σ(δ∗) =
∂JR
∂δ

,(3.2)

JR is the value of J integral during the crack growth. Initially the crack is without
the bridging stress and the initiations starts when JR = JTIP = J0. Special shapes of
the bridging law can be found in [12]. The shape of the bridging law can be described
by Eq. 3.3, it seems to be very suitable for the long fibre composites. When the end
opening of the bridging zone reaches δ0 the steady state value of fracture energy is
reached, see Fig. 3.1,

JR(δ∗) = J0 + ∆JSS(
δ∗

δ0
)1/2.(3.3)

They are many shapes of the cohesive laws and many ways how to implement this
law in the commercial standard FEM package. The authors come out from the long-
standing knowledge of Abaqus system, where the user procedure UEL enables very
effectively implement the new element into this package and eventually to change the
shape of the bridging law. The function in Eq. 3.4 is declared in literature [12] and
[13] as a very convenient for the application on the long fibre composites

σbr(δ) =
∆JSS
2δ0

(
δ

δ0
)
−1/2

.(3.4)
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Fig. 3.1. Optimized shape of the bridging law.

The Fig. 3.1 shows the optimized shape of the cohesive law, a leading edge in
the chart plays important role for the numerical stability of the interface element.
The element is made up of two quadratic line elements for 2D plane elements or two
quadratic plane elements for 3D. The node numbering is chosen according to number-
ing according to Abaqus conventions. Two surfaces of the interface element initially
lie together in initial stage; it is in the unstressed deformation state. The relative
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displacements of the element faces create normal and shear displacements depending
on the constitutive equation. Now we suppose the quadratic line element for 2D sim-
ulations. This element has 12 degrees of freedom and the nodal displacement vector
is given by Eq. 3.5

dN = (d1
x, d

1
y, d

2
x, d

2
y, ...d

6
x, d

6
y).(3.5)

The plane interface element (for 3D) has 48 (3x16) degrees of freedom. The elements
ordering follows from the standard conventions, then the opening of the connection
element is determined as a difference in displacements between the top (TOP) and
bottom (BOT) nodes:

∆u = uTOP − uBOT .(3.6)

Then we can define the interface opening in terms of nodal displacements of paired
nodes:

∆uN = ΦdN = [−I6x6 | I6x6]dN .(3.7)

where I6x6 is unity matrix with 6 rows and columns, uN is a 6x1 vector. From the
nodal positions the crack opening is interpolated to the integration points with the
help of standard shape functions. Let Ni(ξ) be the shape function for node pair i (i
= 1,2,3), where ξ stands position in the local coordinate system −1 < ξ < 1. The
relative displacement between the nodes within the elements is then given:

∆u(ξ) =
(

∆ux(ξ)
∆uy(ξ)

)
= H(ξ)∆uN ,(3.8)

where H(ξ) is matrix 2x6 containing the quadratic shape function. For 2D element
the shape of this matrix is following:

H(ξ) =
(
N1(ξ) 0 N2(ξ) 0 N3(ξ) 0

0 N1(ξ) 0 N2(ξ) 0 N3(ξ)

)
.(3.9)

As a result, we get

∆u(ξ) = H(ξ)ΦdN = B(ξ)dN ,(3.10)

where B(ξ) has a dimension 2x12 and ∆u(ξ) 2x1, thereby describing the continuous
displacement field in both direction within the element. For large deformations, the
element requires a local coordinate system to compute local deformations in normal
and tangential directions. It leads to use the middle points of two element faces. If the
coordinates of the initial configuration are given by the vector xN and the deformation
state is defined by the vector dN , the reference surface coordinates xRN are computed
by linear interpolation between the top and bottom nodes in their deformed state:

xRN =
1
2

(I6x6 | I6x6)(xN + dN ).(3.11)

The coordinates of the specific point are derived analogically such as in Eq. 3.8:

xR(ξ) =
(
xR(ξ)
yR(ξ)

)
= H(ξ)xRN .(3.12)
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The differentiation of the vector of global coordinates with respect to local coordinates
and dividing its norm we obtain the unit length vector t1. The vector tn perpendicular
to the vector t1 is derived by the same way:

t1 =
1

‖∂xR

∂ξ ‖
(
∂xR

∂ξ
,
∂yR

∂ξ
)T .(3.13)

The norm of the vector is given by the standard definition:

‖∂x
R

∂ξ
‖ =

√
(
∂xR

∂ξ
)2 + (

∂yR

∂ξ
)2.(3.14)

The vectors t1 and tn represent the direction cosines of the local coordinates system
to global one, thus defining transformation tensor Θ:

Θ = [t1, tN ].(3.15)

This relates the local and global displacements as follows:

∆u loc = ΘT∆u .(3.16)

Subsequently we can mark by symbol t loc vector describing the bridging stress relates
to the local relative displacement with help of the constitutive relation for interface
(cohesive) element:

t loc =
(
σ1

σN

)
= Cloc(∆u loc)∆u loc.(3.17)

The constitutive relation can be expressed by linear displacement for ∆u or more
complicated, where ∆u contains the nonlinear dependence. Just then in this is the
trick of good numerical construction and new finite element creation. Preferred pro-
cedure depends on the shape of the constitutive equation. In Eq. 3.4 we used the
nonlinear equation; it means that we come out from the relation:

t loc =
(
σ1

σN

)
= Cloc∆u

−1/2
loc .(3.18)

Matrix Cloc is a constant now and does not depend on the displacement. The element
stiffness matrix and the vector of the right hand side nodal force must be generated
for the users’ subroutine UEL. detJ is the Jacobian defined by the transformation of
the global coordinates to the element coordinates. Jacobian needs to be derived for
each integration point; in our case the Eq. 3.4 give us the stability of the computation.
The stiffness matrix K (12x12 for 2D, 48x48 for 3D) is defined:

Kel = −∂f
el
N

∂del
,(3.19)

where

f elN =
∫ 1

−1

BTΘt locdetJdξ.(3.20)
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With the derivation one can found:

K = −W
∫ 1

−1

BTΘDlocΘTBdetJdξ.(3.21)

And the stiffness matrix D is defined:

Dloc =
∂t loc
∂∆u loc

.(3.22)

Or using Eq. 3.17

Dloc =
∂C(∆u)
∂∆u

∆u + C(∆u).(3.23)

4. Main results. First material (A) used for the bridging stresses modelling
was a commercially available SiC Nicalon fibre reinforced borosilicate glass matrix
composite. Properties of the glass matrix, SiC fibres and composite were: Young’s
modulus 63, 198, 118 GPa, Poisson ratio 0.22, 0.20, 0.21, tensile strength 60, 2750,
600-700 MPa. The fracture toughness determined using the bodies with Chevron
notch were 24.6 MPam0.5. Experimentally determined values were calibrated and the
final values are: J0 = 6200 J/m2 (experiment), ∆JSS = 18500 J/m2(experiment and
calibration), u0 = 0.1 mm (the end of the traction-separation law experiment), u1

= 0.013 mm (calibration), α = 1 (tested in range 〈1, 5〉). The final shape for the
bridging law is in Fig. 4.1.
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Fig. 4.1. Final shape of the bridging law for material A

Second material (B) used for the bridging stresses modelling was a Nextel 720
fibres reinforced fully pyrolyzed polysiloxane resin. Properties of the resin matrix,
Nextel fibres and composite were: Young’s modulus 70, 260, 180 GPa, Poisson ratio
0.22, 0.20, 0.21. The fracture toughness determined using the bodies with Chevron
notch were 5 MPam0.5. Experimentally determined values were calibrated and the
final values are: J0 = 5010 J/m2 (experiment), ∆JSS = 6050 J/m2 (experiment and
calibration), u0 = 0.05 mm (the end of the traction-separation law experiment), u1

= 0.01 mm (calibration), α = 1. The final shape for the bridging law is in Fig. 4.2.



360 V. KOZÁK and Z. CHLUP

0 0.01 0.02 0.03 0.04 0.05

∆u [mm]

0

200

400

600

800

1000

σ b
r [

M
Pa

]

σ0   = 661 MPa

∆u2 = 5,25 .10-3 mm

Fig. 4.2. Final shape of the bridging law for material B

Fig. 4.3. Fracture surface of material A and B

Conclusions. The special finite element reflecting the bridging law for the long
fibre composites has been created. This interface element was implemented into the
standard Abaqus program using the user subroutine UEL. At the same time the
experimental techniques needed for obtaining the experimental data were tested. The
results can be characterized by following:

• The crack growth modelling for the long fibre composites is dependent on the
bridging law shape. The stability of the interface element strongly depends
on the first part of the bridging law, on the leading edge.

• The second key role is the mesh size, the application of the RVE seems to be
necessary.

• Obtained results of the numerical modelling and running analysis of the mi-
crostructure enables combine the extended finite element method with cohe-
sive zone method. The crack branching and crack creations modelling will be
closer the material reality.

Vanishing elements for the crack growth simulation were tested and numerical stable
shape of the traction separation law was suggested for SiC Nicalon fibres reinforced
borosilicate glass matrix composite and Nextel 720 fibres reinforced fully pyrolyzed
polysiloxane resin.
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