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NUMERICAL STUDIES OF VARIATIONAL-TYPE
TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN

PROBLEM

NAVEED AHMED∗ AND GUNAR MATTHIES†

Abstract. In this paper, we combine continuous Galerkin-Petrov (cGP) and discontinuous
Galerkin (dG) time stepping schemes with local projection method applied to inf-sup stable dis-
cretization of the transient Oseen problem. Using variational-type time-discretization methods of
polynomial degree k, we show that the cGP(k) and dG(k) methods are accurate of order k+1, in the
whole time interval. Moreover, in the discrete time points, the cGP(k)-method is super-convergent
of order 2k and the dG(k)-method is of order 2k+ 1. Furthermore, the dependence of the results on
the choice of the stabilization parameters are discussed.
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1. Introduction. In this paper, we consider the numerical solution of the
transient Oseen equations in the case of dominant convection. It is well known
that standard Galerkin finite element methods are unsuitable for the solution of
convection-dominated problem. On the other hand, if the mesh size in space be-
comes small then often the system obtained by space discretization becomes more
and more stiff. To this end, one needs a stable time and space discretization. The
classical stabilization method are the streamline-upwind Petrov-Galerkin (SUPG) [1]
and pressure-stabilization Petrov-Galerkin (PSPG) [2] methods. Concerning steady
incompressible flow problems, this class of residual based stabilization techniques is
still very popular. Besides the robustness of the method, a fundamental drawback is
the addition of several terms for ensuring the strong consistency of the method. Using
inf-sup stable pairs of finite element spaces for approximating velocity and pressure,
we can skip the PSPG term to obtain a so-called reduced stabilized scheme [4, 3]. Nu-
merical studies of time-dependent incompressible flow problems can be found in [5]
where finite difference schemes in time are combined with SUPG in space. The ex-
tension to the transient Stokes problem of different stabilization methods including
Galerkin/least squares (GLS) method in small time step limit are studied in [6, 7, 8].
In [7], it has been shown for the small time step limit that even the first order back-
ward difference methods perturbs the stability of the numerical scheme. This behavior
is caused by the finite difference operator appearing in the stabilization terms of the
SUPG to guarantee consistency and produces a non-symmetric term which is difficult
to handle.

Furthermore, the strong coupling between velocity and pressure in the stabi-
lization terms makes the analysis difficult. In order to relax the strong consistency
in the SUPG or PSPG type stabilization, there are stabilization techniques such as
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continuous interior penalty CIP [9, 10] or local projection stabilization methods as
two-level [11, 12] and one-level enrichment approach [13], we will use the one-level
LPS method [13]. When applied to time-dependent problems, time derivative needs
not to be included into the stabilization term in contrast to the SUPG method. Also,
the stabilization terms of CIP and the two-level variant of LPS introduce additional
coupling between the degrees of freedom that do not belong to the same cell. Hence,
the sparsity of the element matrices decreases and one needs appropriate data struc-
tures. Although, the LPS method is weakly consistent only, the consistency error can
be bounded such that the optimal order of convergence is maintained.

In order to handle the difficulty of stiff systems, we will consider two classes of
variational type time discretizations to solve the time-dependent problems. The first
one is the discontinuous Galerkin (dG) time stepping scheme in which both trial and
test functions are discontinuous in time. In the second scheme, the trial functions are
continuous in time whereas the test functions are discontinuous in time. This method
can be viewed as a Galerkin-Petrov method. The continuous Galerkin-Petrov (cGP)
method has been studied in [14] for heat equation. A numerical comparison of cGP
and dG methods applied to the heat equation is given in [15] and to transient Stokes
equations in [16]. Recently, in [17, 18], the cGP method has been investigated for
linear and nonlinear ordinary differential equations. The cGP methods are A-stable
whereas it is well-known that the dG methods are even strongly A-stable (or L-stable
according to [19]). The space-time dG-method for nonstationary convection-diffusion-
reaction problems has been analyzed in [20]. The local projection stabilization meth-
ods for incompressible flow problems has been studied in [11, 12, 13, 21].

2. Model problem. Find u : Ω× (0, T )→ R2 and p : Ω× (0, T )→ R such that

u′ − ν∆u+ b · ∇u+ σu+∇p = f in Ω× (0, T )
∇ · u = 0 in Ω× (0, T ) (2.1)

u = 0 on ∂Ω
u(·, 0) = u0 in Ω.

Here Ω ⊂ Rd (d = 2, 3) is a bounded domain with polyhedral boundary ∂Ω, u(t, x)
is the fluid velocity, p(t, x) is the fluid pressure, f(t, x) is vector function representing
the external force, and u0 is the initial velocity. For the sake of simplicity, the simplest
homogeneous Dirichlet boundary conditions will be considered.

Let us introduce some standard notation. The space of square integrable functions
in a domain Ω is denoted by L2(Ω) and the space of functions whose distributional
derivatives of order up to m ≥ 0 belong to L2(Ω) by Hm(Ω). We denote by (·, ·) the
inner product in L2(Ω) and by ‖ · ‖0 the associated L2-norm. The norm in Hm(Ω) is
defined as

‖v‖m =

 ∑
|α|≤m

‖Dαv‖20

1/2

with the seminorm |v|m =

 ∑
|α|=m

‖Dαv‖20

1/2

.

We also use the Bochner spaces. Let X be a Banach space with norm ‖ · ‖X and let
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m be an integer. Then we define:

C
(
[0, T ];X

)
:=
{
v : [0, T ]→ X : v continuous

}
,

L2
(
0, T ;X

)
:=
{
v : (0, T )→ X :

∫ T

0

‖v‖2X dt <∞
}
,

Hm
(
0, T,X

)
:=
{
v ∈ L2

(
[0, T ];X

)
: v(j) ∈ L2

(
[0, T ];X

)
, 1 ≤ j ≤ m

}
,

where the derivatives v(j) are considered in the sense of distribution on (0, T ). In
the following we use the short notation Y (X) := Y (0, T ;X). The norm in the above
defined spaces are given as follows

‖v‖C(X) = sup
t∈[0,T ]

‖v(t)‖X , ‖v‖2L2(X) =
∫ T

0

‖v‖2X dt, ‖v‖2Hm(X) =
∫ T

0

m∑
j=0

‖v(j)‖2X dt.

Let V := [H1
0 (Ω)]d and Q := L2

0(Ω). A variational form of (2.1) reads as follows:

Find (u, p) : [0, T ]→ V ×Q such that

(u′, v) + a(u, v) + b(p, v)− b(q, u) = (f, v) a.e. in (0, T ) ∀(v, q) ∈ V ×Q
u(0) = u0 a.e. in Ω (2.2)

where the bilinear forms are defined as follows

a(u, v) = ν(∇u,∇v) + (b · ∇u, v) + σ(u, v), b(p, v) = −(p,∇ · v).

In what follows, we shall denote by f ′, f ′′, and f (k) the first, second, and kth order
time derivative of f , respectively.

3. Space discretization. We are given a family Th of shape-regular decompo-
sitions of Ω into d-simplices, quadrilaterals or hexhedra. The diameter of a cell K
is denoted by hK . Let Vh ⊂ V be a finite element space of continuous, piecewise
polynomial function over Th. The pressure is described using a finite element space
Qh ⊂ Q of continuous or discontinuous functions with respect to Th. We will consider
inf-sup stable pair (Vh, Qh) throughout this paper.

Assumption A1. The pair (Vh, Qh) fulfills the discrete inf-sup condition, i.e., there
exists a positive constant β0 such that

inf
qh∈Qh

sup
vh∈Vh

(vh,divvh)
|vh|1‖qh‖0

≥ β0 > 0

uniformly in h.
The semi-discrete formulation of (2.2) reads:

Find (uh, ph) : [0, T ]→ Vh ×Qh such that for uh(0) = uh,0

(u′h, vh) + a(uh, ph) + b(ph, vh)− b(qh, uh) = (f, vh) a.e. in (0, T ) (3.1)

for all (vh, qh) ∈ Vh ×Qh, where u0
h ∈ Vh is a suitable approximation of u0.

In general, problem (3.1) lacks stability for ν � 1 due to dominating convection.
To overcome this difficulty, we consider the stabilization by local projection and in-
troduce some additional notations. Let Dh(K) be a finite dimensional space on the
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cell K ∈ Th and πK : L2(K)→ Dh(K) the associated local L2-projection into Dh(K).
The global projection space is defined by

Dh :=
⊕
K∈Th

Dh(K).

Note that functions in these spaces are allowed to be discontinuous with respect to Th.
The mapping πh : L2(Ω) → L2(Ω) defined by (πhv)|K := πK(v|K) for all K ∈ Th is
the L2-projection into the projection space Dh. The fluctuation operator κh is given
by κh := id− πh where id : L2(Ω)→ (Ω) is the identity mapping.

The stabilizing term Sh is then defined as

Sh(uh, vh) :=
∑
K∈Th

µK(κh(∇uh), κh(∇vh))K .

Here, (·, ·)K denotes the inner product in L2(K), and µK the user chosen non-negative
constant. The stabilization term Sh gives additional control over the fluctuation of
gradients. Note that one can replace the gradient ∇wh by the derivative in the
streamline direction b · ∇wh or (even better [22], [23]) by bK · ∇wh where bK is a
piecewise approximation of b but one have to add the divergence term (∇ · uh,∇ · vh)
into Sh, see [13]. We define the stabilized bilinear form ah

ah(u, v) = a(u, v) + Sh(u, v)

and introduce the mesh dependent norm on the product space Vh ×Qh∣∣∣∣∣∣(v, q)∣∣∣∣∣∣ :=
(
ν
∣∣v∣∣2

1
+ σ

∥∥v∥∥2

0
+
∥∥q∥∥2

0
+ Sh(v, v)

)1/2

. (3.2)

Now, the stabilized semi-discrete scheme reads:

Find (uh, ph) : [0, T ]→ Vh ×Qh such that for uh(0) = u0,h

(u′h, vh) + ah(uh, vh) + b(ph, vh)− b(qh, uh) = (f, vh) a.e. in (0, T ) (3.3)

for all (vh, qh) ∈ Vh ×Qh.
Stability and convergence properties of the local projection stabilization method

(3.3) are based on the following assumptions:
Assumption A2. There are interpolation operators jh : V ∩ H2(Ω)d → Vh and

ih : Q ∩H2(Ω)→ Qh fulfilling the orthogonality property

(w − jhw, qh) = 0 ∀qh ∈ Dh, ∀w ∈ H1(Ω)

and the approximation property∥∥w − jhw∥∥0,K
+ hK

∣∣w − jhw∣∣1,K ≤ ChlK∥∥w∥∥l,ω(K)

for all w ∈ H l
(
ω(K)d

)
, 2 ≤ l ≤ r + 1, ∀K ∈ Th and∥∥q − ihq∥∥0,K

+ hK
∣∣q − ihq∣∣1,K ≤ ChlK∥∥q∥∥l,ω(K)

for all q ∈ H l
(
ω(K)

)
, 2 ≤ l ≤ r, ∀K ∈ Th, where ω(K) denotes a certain local

neighborhood of K.
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Assumption A3. Let the fluctuation operator satisfy the following approximation
property ∥∥κhq∥∥0,K

≤ ChlK
∣∣q∣∣

l,K

∀K ∈ Th, ∀q ∈ H l(K), 0 ≤ l ≤ r.
For the stationary problem associated with (2.1) we have, see [13]
Theorem 3.1. Suppose that the spaces Vh, Qh satisfy A1, A2. Let (u, p) be

the solution of (2.2) and (U,P ) the solution of (3.3). Let the user chosen parameter
satisfy µK ∼ 1. Assume that u ∈ V ∩Hr+1(Ω)d and p ∈ Hr(Ω). Then, there exists
a positive constant C independent of ν, h and τ such that the error estimate∣∣∣∣∣∣(u− uh, p− ph)

∣∣∣∣∣∣ ≤ Chr(∥∥u∥∥
r+1

+
∥∥p∥∥

r

)
(3.4)

holds true.

4. Time discretization. We discretize the problem (3.3) in time using the
continuous Galerkin-Petrov (cGP) and discontinuous Galerkin (dG) methods. For
this we decompose the time interval J into N sub-intervals Jn := (tn−1, tn], where
n = 1, . . . , N 0 < t1 < · · · < tN−1 = T , τn = tn − tn−1 and τ = max1≤n≤N τn.
In the following, the set of the time intervals Mτ will be called the time-mesh. For
a non-negative integer k, the fully discrete time-continuous and time-discontinuous
velocity spaces are defined as follows

Xc
k :=

{
u ∈ C(J ;Vh) : u|Jn

∈ Pk(Jn, Vh)
}
, Xdc

k :=
{
u ∈ L2(J ;Vh) : u|Jn

∈ Pk(Jn, Vh)
}
.

Similarly, the fully discrete time-continuous and time-discontinuous Y dc
k pressure

spaces are defined by

Y c
k :=

{
q ∈ C(J ;Qh) : q|Jn

∈ Pk(Jn, Qh)
}
, Y dc

k :=
{
q ∈ L2(J ;Qh) : q|Jn

∈ Pk(Jn, Qh)
}

where

Pk(Jn,Wh) :=
{
u : Jn →Wh : u(t) =

k∑
i=0

U iti, ∀t ∈ Jn, U i ∈Wh,∀i
}

The functions in spaces Xdc
k and Y dc

k are allowed to be discontinuous at the nodes tn.
For the discrete functions, we define the left-sided and right-sided values u−n and u+

n

and the jumps [u]n as

u−n := lim
t→tn−0

u(t), u+
n := lim

t→tn+0
u(t), [u]n = u+

n − u−n .

4.1. Continuous Galerkin-Petrov method. In this method, we use the space
Xc
k for velocity and Y c

k for pressure as the fully discrete solution spaces and Xdc
k and

Y dc
k as the discrete test spaces. The fully discrete cGP(k) method is defined as follows:

Find (U,P ) ∈ Xc
k × Y c

k such that U(0) = uh,0 and∫ T

0

{
(U ′, vh,τ ) + ah(U, vh,τ ) + b(P, vh,τ )− b(qh,τ , U)

}
dt =

∫ T

0

(f, vh,τ )dt (4.1)
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for all (vh,τ , qh,τ ) ∈ Xdc
k × Y dc

k . Since the discrete test spaces are discontinuous,
problem (4.1) can be solved by a time-marching process where on each time interval
Jn local problems in space have to be solved.

We introduce the mesh dependent norm associated with the cGP method as

‖(v, p)‖cGP =

(∫ T

0

{
‖v′‖20 + |||(v, p)|||2

}
dt

)1/2

The following theorem gives the a priori estimates for the velocity and pressure, which
are obtained by using the similar idea as in [18] for the fully discrete scheme (4.1)
obtained by continuous Galerkin-Petrov time stepping scheme.

Theorem 4.1. Suppose that the spaces Vh, Qh satisfy A1, A2 and µK ∼ 1.
Let (u, p) be the solution of (2.2) and (U,P ) the solution of (4.1). Assume that
u ∈ Hk+1(J ;H1

0 (Ω)d) ∩ H1(J ;Hr+1(Ω)d), p ∈ Hk+1(J ;H1
0 (Ω)) ∩ C(J ;Hr(Ω)) and

u0 ∈ H1
0 (Ω)d ∩Hr+1(Ω)d. Then, there exists a positive constant C independent of ν,

h and τ such that the error estimate

‖(u− U, p− P )‖cGP ≤ C(τk + hr)

holds true.

4.2. Discontinuous Galerkin method. In this subsection we discretize the
semi-discrete problem (3.3) with respect to time by the discontinuous Galerkin time
stepping scheme. Here the discrete solution spaces for velocity and pressure are the
same as the test spaces, namely Xdc

k and Y dc
k . The fully discrete problem is defined

as follows:

Find (U,P ) ∈ Xdc
k × Y dc

k such that
N∑
n=1

∫
Jn

{
(U ′, vh,τ ) + ah(U, vh,τ )− b(P, vh,τ ) + b(qh,τ , U)

}
dt

+
N−1∑
n=1

(
[U ]n, v+

n

)
+
(
U+

0 , v
+
0

)
= (u0, v

+
0 ) +

∫ T

0

(
f, vh,τ

)
dt(4.2)

for all (vh,τ , qh,τ ) ∈ Xdc
k × Y dc

k .
Due to the discontinuity in time of the discrete test space, a time marching process

can be used to solve (4.2). We consider the following mesh-dependent norm associated
with the dG time discretization method

∥∥(v, p)
∥∥

dG
:=

(
N∑
n=1

∫
Jn

∣∣∣∣∣∣(v, p)∣∣∣∣∣∣2dt+
1
2

∥∥v+
0

∥∥2

0
+

1
2

N−1∑
n=1

∥∥[v]n
∥∥2

0
+

1
2

∥∥v−N∥∥2

0

)1/2

.

The following theorem provides the a priori error estimates for the fully discrete
problem (4.2) obtained by discontinuous Galerkin time stepping scheme [26].

Theorem 4.2. Suppose that the spaces Vh, Qh satisfy A1, A2 and µK ∼ 1.
Let (u, p) be the solution of (2.2) and (U,P ) the solution of (4.2). Assume that
u ∈ Hk+1(J ;H1

0 (Ω)d) ∩ H1(J ;Hr+1(Ω)d), p ∈ Hk+1(J ;H1
0 (Ω)) ∩ C(J ;Hr(Ω)) and

u0 ∈ H1
0 (Ω)d ∩Hr+1(Ω)d. Then, there exists a positive constant C independent of ν,

h and τ such that the error estimate∥∥(u− U, p− P )
∥∥

dG
≤ C

(
τk+1/2 + hr

)
holds true.
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5. Numerical experiments for the Oseen equations. Numerical results for
two-dimensional transient Oseen equations are presented in this section. The main ob-
jective here is to examine the accuracy of the two different time discretization schemes:
continuous Galerkin-Petrov and discontinuous Galerkin time stepping methods. For
space discretization, the one-level local projection stabilization method is used. All
numerical calculations were performed with the finite element package MooNMD [24].

Mapped finite element spaces were used in the numerical computations where on
the reference cell K̂ the enriched spaces are given by

Qbubble
r (K̂) = Qr(K̂) + span

{
b̂xr−1
i , i = 1, 2

}
.

Here b̂ denote the biquadratic bubble on the reference square. The triple
(Vh, Qh,Dh) = (Qbubble

3 , P disc
3 , P disc

3 ) fulfills the assumptions A2 and A3. The sta-
bilization parameters µK have been chosen as

µK = µ0 ∀K ∈ Th

where µ0 denotes a constant which will be given latter.
We consider the problem (2.1) in two-dimensional domain Ω = (0, 1)2 with non-

homogeneous boundary conditions. The right-hand side f and boundary and initial
conditions are chosen in order to ensure that the exact solution of (2.1) is given by

u1(t, x, y) = cos(πx) sin(πy) exp(−2π2t)
u2(t, x, y) = sin(πx) cos(πy) exp(−2π2t)

p(t, x, y) = −1
4

(
cos(2πx) + cos(2πy)

)
exp(−4π2t)

This example is taken from [25]. We set b = u, σ = 1, T = 1 in (2.1). The simulations
were performed with ν = 10−10, i.e., in the convection-dominated regime. Uniform
quadrilateral grids were used with the coarsest grid (level 0) consisting of a single
quadrilateral.

In order to illustrate the convergence rate in time, we have chosen the inf-sup
stable finite element pair (Vh, Qh,Dh) = (Qbubble

3 , P disc
3 , P disc

3 ) on a relatively fine
mesh consisting of 1024 cells (level 6). The coefficient in the stabilization parameter
is set to µ0 = 0.1.

We apply the time discretization schemes cGP(k) and dG(k) with an equidistant
time step size τ = T/N . In the following, we evaluate the results of our calculations
by considering the following norms

‖eu‖ :=

(∫ T

0

‖eu‖2Vh
dt

)1/2

, ‖ep‖ :=

(∫ T

0

‖ep‖2Qh
dt

)1/2

,

‖eu‖∞ := max
1≤n≤N

‖eu(tn)‖Vh
, ‖ep‖∞ := max

1≤n≤N
‖ep(tn)‖Qh

.

The behavior of the integral based norms of velocity ‖eu‖ := ‖u(t) − U‖ and
pressure ‖ep‖ := ‖p(t) − P‖ for the time discretization schemes cGP(k) and dG(k),
k ∈ {1, 2}, over the whole time interval J = [0, 1] can be seen in Tables 5.1 and
5.2, respectively. The errors and convergence orders for the cGP-norm ‖(·, ·)‖cGP and
dG-norm ‖(·, ·)‖dG are listed in Table 5.3. We see that the predicted orders in the
integral based norms are confirmed, see Theorems 4.1 and 4.2.
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Table 5.1
Errors and convergence orders in the integral based norms of the velocity and pressure.

cGP(1) cGP(2)
τ ‖eu‖ order ‖ep‖ order ‖eu‖ order ‖ep‖ order

1/10 5.893-2 8.345-2 4.210-3 1.412-2
1/20 1.571-2 1.91 2.395-2 1.80 5.936-4 2.83 2.385-3 2.57
1/40 3.993-3 1.98 6.178-3 1.96 7.683-5 2.95 3.465-4 2.78
1/80 1.002-3 1.99 1.551-3 1.99 9.691-6 2.99 4.667-5 2.89
1/160 2.508-4 2.00 3.881-4 2.00 1.214-6 3.00 6.056-6 2.95
1/320 6.272-5 2.00 9.701-5 2.00 1.518-7 3.00 7.715-7 2.97
1/640 1.568-5 2.00 2.425-5 2.00 1.899-8 3.00 9.777-8 2.98
theoret. order: 2 2 3 3

Table 5.2
Errors and convergence orders in the integral based norms of the velocity and pressure.

dG(1) dG(2)
τ ‖eu‖ order ‖ep‖ order ‖eu‖ order ‖ep‖ order

1/10 2.110-2 5.416-2 3.243-3 1.000-2
1/20 6.111-3 1.79 1.663-2 1.70 4.849-4 2.74 1.603-3 2.64
1/40 1.612-3 1.92 4.474-3 1.89 6.416-5 2.92 2.195-4 2.87
1/80 4.109-4 1.97 1.147-3 1.96 8.165-6 2.94 2.824-5 2.96
1/160 1.036-4 1.99 2.894-4 1.99 1.027-6 2.99 3.561-6 2.99
1/320 2.598-5 2.00 7.261-5 2.00 1.287-7 3.00 4.466-7 3.00
1/640 6.505-6 2.00 1.818-5 2.00
theoret. order: 2 2 3 3

Table 5.3
Errors and convergence orders for cGP-norm (Theorem 4.1) and dG-norm (Theorem 4.2).

cGP(1) cGP(2) dG(1) dG(2)
τ ‖(eu, ep)‖ order ‖(eu, ep)‖ order ‖(eu, ep)‖ order ‖(eu, ep)‖ order

1/10 1.102 2.641-1 1.528-1 2.926-2
1/20 6.082-1 0.86 7.628-2 1.79 5.877-2 1.39 5.762-3 2.35
1/40 3.132-1 0.96 1.987-2 1.94 2.092-2 1.49 1.032-3 2.48
1/80 1.578-1 0.99 5.022-3 1.99 7.339-3 1.51 1.811-4 2.51
1/160 7.906-2 1.00 1.259-3 2.00 2.577-3 1.51 3.179-5 2.51
1/320 3.955-2 1.00 3.149-4 2.00 9.071-4 1.51 5.596-6 2.51
1/640 1.978-2 1.00 7.875-5 2.00 3.200-4 1.50

theoret. order: 1 2 1.5 2.5

The errors and convergence orders for velocity and pressure in the discrete time
points are presented in Tables 5.4 and 5.5. Comparing the absolute values of the
error norms in Tables 5.4 and 5.5, we see that the super-convergence of order 2k for
cGP(k)-method and of 2k + 1 for dG(k)-method are achieved. In [16], it was shown
numerically that the cGP(k)-method is super-convergent of order 2k for transient
Stokes problem, in [14, 15] for the heat equation and in [18] for Burgers equations.
For dG(k)-method, it was proved in [26] that the dG-method is super-convergence of
order 2k + 1 in the discrete time points for an abstract symmetric model problems
like heat equations and in [16] for transient Stokes problem.

In the following, we consider how the results depend on the stabilization parame-
ters µ0. We consider the calculations which were carried out for cGP(1), cGP(2) and
dG(1)-methods and the finite element triple (Vh, Qh,Dh) = (Qbubble

2 , P disc
1 , P disc

1 ).
The computations were carried out on level 3 (consisting of 266 degrees of freedom
for pressure and both components of velocity), level 4 (978 degrees of freedom), level
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Table 5.4
Errors and convergence orders in the discrete time points for the velocity and pressure.

cGP(1) cGP(2)
τ ‖eu‖∞ order ‖ep‖∞ order ‖eu‖∞ order ‖ep‖∞ order

1/10 3.233-2 1.650-4 4.881-4 9.740-6
1/20 8.200-3 1.98 4.729-5 1.80 3.777-5 3.69 7.324-7 3.73
1/40 2.050-3 2.00 1.188-5 1.99 2.457-6 3.94 5.310-8 3.79
1/80 5.124-4 2.00 2.916-6 2.00 1.543-7 3.99 1.882-9 4.82
1/160 1.281-4 2.00 7.234-7 2.00 9.653-9 4.00 3.99-10 2.34
1/320 3.202-5 2.00 1.805-7 2.00 6.086-10 3.99
1/640 8.005-6 2.00 4.510-8 2.00 1.092-10 2.49
theoret. order: 2 2 4 4

Table 5.5
Errors and convergence orders in the discrete time points for the velocity and pressure.

dG(1) dG(2)
τ ‖eu‖∞ order ‖ep‖∞ order ‖eu‖∞ order ‖ep‖∞ order

1/10 2.793-3 4.055-5 1.604-4 2.257-6
1/20 4.220-4 2.73 4.493-6 3.17 9.337-6 4.10 2.396-7 3.24
1/40 5.629-5 2.91 4.865-7 3.21 3.469-7 4.75 9.150-9 4.71
1/80 7.213-6 2.96 6.320-8 2.95 1.071-8 5.02 2.9743-10 4.94
1/160 9.094-7 2.99 8.483-9 2.90 3.266-10 5.04 9.195-12 5.02
1/320 1.140-7 3.00 1.106-9 2.94
1/640 1.427-8 3.00 1.408-10 2.97
theoret. order: 3 3 5 5

5 (3, 746 degrees of freedom), and level 6 (14, 658 degrees of freedom) and the time
step length is set to be τ = 1/160. Since the stabilization parameter should be chosen
proportional to hK , we have performed the calculations with µK = µ0hK where the
constant varies from 10−6 to 104.

The graphs in Fig. 5.1 show the computed results on different levels for cGP(1)-
method, in Fig. 5.2 for cGP(2)-method and in Fig. 5.3 for dG(1)-method. The graphs
in Figs.5.1-5.3 indicate that the velocity error is much sensitive with respect to the
stabilization parameter µ0. If the stabilization parameter tends to zero in these cal-
culations, then the errors in the integrated L2-norm of velocity increase while the
errors in the integrated triple and pressure norm remains bounded. Similarly if the
stabilization parameter tends to infinity, then the errors in all integrated norms also
increases. Note that the L2-norm of pressure is also included in the triple norm. The
behavior of the integrated pressure norm on level 5 and 6 for cGP(1) and dG(1)-
methods is due to the influence of the error in time. Furthermore, for each norm the
dependence of the error on the parameter µ0 is very similar on different refinement
levels. A suitable value for µ0 lies in the range between 0.01 and 0.1.
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