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REDUCED BASIS METHODS: SUCCESS, LIMITATIONS AND
FUTURE CHALLENGES ∗

MARIO OHLBERGER † AND STEPHAN RAVE ‡

Abstract. Parametric model order reduction using reduced basis methods can be an effective
tool for obtaining quickly solvable reduced order models of parametrized partial differential equation
problems. With speedups that can reach several orders of magnitude, reduced basis methods enable
high fidelity real-time simulations of complex systems and dramatically reduce the computational
costs in many-query applications. In this contribution we analyze the methodology, mainly focussing
on the theoretical aspects of the approach. In particular we discuss what is known about the conver-
gence properties of these methods: when they succeed and when they are bound to fail. Moreover,
we highlight some recent approaches employing nonlinear approximation techniques which aim to
overcome the current limitations of reduced basis methods.
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1. Introduction. Over the last decade, reduced order modeling has become
an integral part in many numerical simulation workflows. The reduced basis (RB)
method is a popular choice for reducing the computational complexity of parametrized
partial differential equation (PDE) problems for either real-time scenarios, where the
solution of the problem needs to be known very quickly under limited resources for a
previously unknown parameter, or multi-query scenarios, where the problem has to be
solved repeatedly for many different parameters. The reduced order models obtained
from RB methods during a computationally intensive offline phase typically involve
approximation spaces of only a few hundred or even less dimensions, leading to vast
savings in computation time when these models are solved during the so-called online
phase.

In this contribution, we first introduce the parametric model order reduction prob-
lem in an abstract setting (Section 2) and then give a short but complete description
of the RB method for the prototypic problem class of linear, coercive, affinely de-
composed problems, including a proof on the (sub-)exponential convergence of the
approach (Section 3). Section 4 contains some pointers as to how the RB framework
can be extended to other problem classes. In our presentation we will mostly focus
on theoretical aspects of RB methods and largely leave out any discussion of imple-
mentational issues and application problems. For more details on these aspects and
RB methods in general, we refer to the recent monographs [29, 22], the tutorial [18],
and the references therein.

RB and related methods can only succeed for problems which can be approxi-
mated well using linear approximation spaces. As we will see in Section 5, this is
typically not the case for advection driven phenomena. It is, therefore, inevitable to
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include nonlinear approximation techniques into the RB framework to successfully
handle this type of problem. While this clearly poses a significant challenge for the
methodology, first attempts have been made towards this direction, some of which we
will discuss in Section 5.2.

2. Abstract problem formulation. We are interested in solving parametric
problems given by a solution map

Φ : P −→ V

from a compact parameter domain P ⊂ RP into some solution state space V , which
we will always assume to be a Hilbert space. In all problems we consider, Φ(µ) will
be given as the solution of some parametric partial differential equation. Moreover,
let s : V → RS be an S-dimensional output functional which assigns to a state vector
v ∈ V the S quantities of interest s(v). Note that the composition

s ◦ Φ : P −→ V −→ RS ,

which assigns to each parameter µ ∈ P the quantities of interest associated with the
corresponding solution Φ(µ), is a mapping between low-dimensional spaces. Assuming
that both Φ and s are sufficiently smooth, it is, therefore, reasonable to assume that
there exist quickly evaluable reduced order models which offer a good approximation
of s ◦ Φ.

Reduced basis methods are based on the idea of constructing state space approx-
imation spaces VN of low dimension N for the so-called solution manifold im(Φ), and
using the structure of the underlying equations defining Φ to compute an approxima-
tion ΦN (µ) ∈ VN of Φ(µ). By orthogonally projecting onto V , we can always assume
that VN ⊆ V without diminishing the approximation quality.1 We then have the
reduced approximation

s ◦ ΦN : P −→ VN −→ RS

for the parameter-output mapping s ◦ Φ.
Given this abstract setup, the following questions, which will guide us through

the reminder of this article, are immediate:
1. Do there exists good approximation spaces VN?
2. How to find a good approximation space VN?
3. How to construct a quickly evaluable reduced solution map ΦN?
4. How to control the approximation errors Φ(µ)−ΦN (µ), s(Φ(µ))−s(ΦN (µ))?

Assuming a positive answer to question 1, a multitude of answers have been given
to questions 2, 3 and 4 by now — some of which we will discuss in the following
sections — which yield more than satisfying results, both in theory and practice. In
particular, respecting the structure of the underlying equations defining Φ allows for
tight a posteriori estimates controlling the reduction error, which in turn can be used
to generate near-optimal approximation spaces VN . This is probably the greatest
advantage over a straightforward interpolation of s ◦ Φ, for which only crude error
estimates exist and, especially for P > 1, the optimal selection of the interpolation
points is unclear.

1This is not true for arbitrary Banach spaces V . E.g. consider the set of sequences in c0(N) ⊂
l∞(N) which only assume the values 0 and 1. Each such function has ‖ · ‖∞ distance 1/2 to the
sequence with constant value 1/2, but there is no finite-dimensional subspace of c0(N) with equal or
lower best-approximation error.
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Moreover, we will see that, in fact, question 1 can be answered positively for large
classes of relevant problems (Section 3.1). Section 5 will be concerned with the case
when no good linear approximation spaces VN exist.

3. An ideal world: coercive, affinely decomposed problems. In this sec-
tion we study the basic problem class of linear, coercive, affinely decomposed prob-
lems, to which the reduced basis methodology is ideally fitted. RB methods for other
problem classes can be usually seen as extensions of the ideas presented here.

We call a parametric problem linear, coercive if Φ(µ) is given as the solution uµ
of a variational problem

(3.1) aµ(uµ, v) = f(v) ∀v ∈ V,

where, for each µ ∈ P, aµ : V × V → R is a continuous bilinear form on V such that
aµ(v, v) ≥ Caµ‖v‖2 with a strictly positive constant Caµ , f ∈ V ′, and, in addition, the
output s : V → RS is a continuous linear map. Continuity and coercivity of aµ ensure
the well-posedness of (3.1). (A typical example would be, where aµ is the variational
form of an elliptic partial differential operator on an appropriate Sobolev space and
f is the L2-inner product with a given source term.)

We call the problem affinely decomposed if there are continuous mappings θq :
P → R and continuous bilinear forms aq : V × V → R (1 ≤ q ≤ Q) such that

(3.2) aµ =

Q∑
q=1

θq(µ)aq ∀µ ∈ P.

Even though this assumption seems artificial at first sight, a large array of real-world
problems admit such an affine decomposition (e.g. for diffusion equations, an affinely
decomposed diffusivity tensor gives rise to an affinely decomposed aµ). In the following
subsections we will give answers to the questions raised in Section 2 for this class of
problems.

3.1. Existence of good approximation spaces. The goal of RB methods is
to find linear approximation spaces VN for which the worst best-approximation error
for elements of im(Φ),

dVN (im(Φ)) := sup
v∈im(Φ)

inf
vN∈VN

‖v − vN‖,

is near the theoretical optimum

dN (im(Φ)) := inf
W⊆V lin. subsp.

dimW≤N

sup
v∈im(Φ)

inf
w∈W

‖v − w‖,

called the Kolmogorov N -width of im(Φ). Note that, since V is a Hilbert space,
the last infimum in both definitions can be replaced by the norm of the defect of
the orthogonal projection onto VN (resp. W ). Moreover, an optimal N -dimensional
subspace VN , for which dVN (im(Φ)) = dN (im(Φ)), always exists [28, Theorem II.2.3].
Nevertheless, the definition of the Kologorov N -width remains complex, and little is
known about the exact asymptotic behaviour of dN (im(Φ)) in general.

For affinely decomposed problems, however, the N -widths always fall subexpo-
nentially fast due to the holomorphy of the solution map Φ. While certainly known
to experts, we believe a complete proof has never appeared in the literature, so we
provide it here:
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Theorem 3.1. If aµ is affinely decomposed according to (3.2), then the Kol-
mogorov N -widths of the solution manifold of problem (3.1) satisfy

dN (im(Φ)) ≤ Ce−cN
1/Q

,

with fixed constants C, c > 0.
Proof. Let Aq : V → V ′ be the operators induced by aq, i.e. Aq(v)[w] :=

aq(v, w). By complex linearity, we extend these operators to continuous linear op-
erators AC

q : V C → (V ′)C ∼= (V C)′ between the complexification of V and its dual.

Obviously, the (bilinear) mapping Ψ : V C × CQ → (V C)′, Ψ(v, c) :=
∑Q
q=1 cqA

C
q (v)

is holomorphic in the sense that it has a continuous, complex linear Fréchet deriva-
tive. Moreover, ∂vΨ(v, c) =

∑Q
q=1 cqA

C
q is, due to the coercivity of aµ, invertible

for each c ∈ {(θ1(µ), . . . , θQ(µ) | µ ∈ P} =: P̂. Following [9], we use the complex

Banach space version of the implicit function theorem to deduce that Φ̂ : P̂ → V C,
Φ̂(θ1(µ), . . . , θQ(µ)) := Φ(µ) can be holomorphically extended to an open neighbour-

hood P̂ ⊆ O ⊆ CQ.
By compactness of P̂, there are finitely many c1, . . . , cM ∈ P̂ and radii r1, . . . , rM

such that P̂ ⊂
⋃M
m=1D(cm, rm) and

⋃M
m=1D(cm, 2rm) ⊆ O, where D(c, r) := {z ∈

CQ | |zq − cq| < r, 1 ≤ q ≤ Q}. Holomorphy implies analyticity, thus there are

for each 1 ≤ m ≤ M and each multi-index α ∈ NQ0 vectors vm,α ∈ V C such that

Φ̂(z) =
∑
α(z − cm)αvm,α, converging absolutely for each z ∈ D(cm, 2rm). It is easy

to see that, in fact, vm,α ∈ V . Moreover, we have

C := max
1≤m≤M

sup
z∈D(cm,rm)

∥∥∥∑
α

2α(z − cm)αvm,α

∥∥∥ <∞.
Note that there are (Q+K)!

Q!K! ≤ K
Q multi-indices α of length Q and maximum degree K.

LetKN := b(M−1N)1/Qc, and define VN := span{vm,α | 1 ≤ m ≤M, |α| ≤ KN} ⊆ V .

Now, for an arbitrary µ ∈ P we can approximate Φ(µ) = Φ̂(z), z ∈ D(cm, rm),
by the truncated power series ΦN (µ) :=

∑
|α|≤KN α(z − cm)αvm,α ∈ VN . We then

obtain

‖Φ(µ)− ΦN (µ)‖ ≤
∥∥∥ ∑
|α|≥KN+1

2−α · 2α(z − cm)αvm,α

∥∥∥
≤ C2−(KN+1) ≤ Ce− ln(2)M−1/QN1/Q

.

Note, that such type of estimate will degenerate for Q→∞. On the other hand,
we can replace Q by P whenever the parameter functionals θq are analytic. In fact,
we needed the affine decomposition (3.2) of aµ only to establish the analyticity of
Φ. The implicit function theorem argument from [9] can be applied to various other
problem classes, for which, therefore, the same type of result holds.

Algebraic convergence rates for infinite affine decompositions where the coeffi-
cients satisfy some summability condition are shown in [10].

3.2. Definition of ΦN . Assuming a reduced subspace VN has already been con-
structed, we determine the RB solution ΦN (µ) := uN,µ ∈ VN via Galerkin projection
of the original equation as the solution of

(3.3) aµ(uN,µ, vN ) = f(vN ) ∀vN ∈ V.
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As usual, Céa’s Lemma gives use the following quasi-optimality estimate for the model
reduction error:

(3.4) ‖Φ(µ)− ΦN (µ)‖ ≤ ‖aµ‖
Caµ

inf
vN∈VN

‖Φ(µ)− vN‖.

Note that if we pre-compute the matrices of the bilinear forms aq and the coefficients
of f and s w.r.t. to a basis of VN , computing s ◦ ΦN (µ) will require only O(QN2)
operations for system matrix assembly, O(N3) operations for the solution of the re-
duced system and O(SN) operations for the evaluation of the output during the online
phase. No operations involving the space V need to be performed.

3.3. Error control. We use a standard residual-based error estimator to bound
the model reduction error. Let the reduced residual be given by Rµ(uN,µ)[w] :=
f(w)− aµ(uN,µ, w) for w ∈ V . The well-known residual-error relation Rµ(uN,µ)[v] =
aµ(uµ − uN,µ, v) yields together with the coercivity of aµ:

(3.5) ‖Φ(µ)− ΦN (µ)‖ ≤ 1

Caµ
‖Rµ(uN,µ)‖V ′ ≤

‖aµ‖
Caµ
‖Φ(µ)− ΦN (µ)‖.

Thus, 1/Caµ · ‖Rµ(uN,µ)‖V ′ is a guaranteed upper bound for the model reduction
error with effectivity ‖aµ‖/Caµ . An upper bound for the output error is then given
by

‖s ◦ Φ(µ)− s ◦ ΦN (µ)‖ ≤ ‖s‖
Caµ
‖Rµ(uN,µ)‖V ′ .

This upper bound and the output approximation itself can be further improved using
a primal-dual approximation approach (e.g. [30]).

Note that since V ′ is a Hilbert space, we have ‖Rµ(∗)‖2 = (f − aµ(∗, ·), f −
aµ(∗, ·))V ′ . Pre-computing all appearing scalar products w.r.t. the affine decomposi-
tion of aµ and a basis of VN , this residual norm can be evaluated efficiently online
with O(Q2N2) operations. Again, no operations involving the space V are required.

For the complete evaluation of (3.5), the coercivity constant Caµ , or a lower bound
for it, must be known. In many cases, good lower bounds for the problem at hand
are known a priori. If not, the successive constraint method [23] is an well-established
approach to compute such lower bounds online for arbitrary µ ∈ P using offline pre-
computed lower bounds for Caµi for certain well-chosen µi.

3.4. Construction of VN . A natural approach for the construction of approx-
imation spaces VN for im(Φ) during the offline phase is to iteratively enlarge the
reduced space by an element of im(Φ) which maximizes the best-approximation error
for the current reduced space. Such greedy algorithms have been studied extensively in
approximation theory. While it is clear that greedy algorithms will not produce best-
approximating spaces for the solution manifold2, several quasi best-approximation
results have been derived in the literature. For their analysis in the context of RB
methods see [3, 5, 13]. In particular, the following has been shown in [13]: We call
u1, . . . , uN ∈ im(Φ) a weak greedy sequence for im(Φ) if there is a γ > 0 s.t.

sup
v∈Vn−1

‖un − v‖ ≥ γ · dVn−1
(im(Φ)), Vn := span{v1, . . . Vn}, 1 ≤ n ≤ N,

2E.g., let M := {[1 0], [0 1]} ⊂ R2. Then dV1
(M) = 1 for a V1 generated by a greedy algorithm,

whereas d1(M) = 1/
√

2.



6 M. OHLBERGER AND S. RAVE

with V0 := {0}. Now, if dN (im(Φ)) ≤ Ce−cN
α

for all N and the spaces VN have
been constructed from a weak greedy sequence with parameter γ, then dVN (im(Φ)) ≤√

2Cγ−1e−c
′Nα , where c′ = 2−1−2αc. Similar results have been obtained for algebraic

convergence of dn(im(Φ)).
A weak greedy sequence for im(Φ) can be constructed using the error estimator

(3.5) as a surrogate for the best-approximation error in VN : in each iteration, we
extend the reduced space by a Φ(µ) where µ is a maximizer of the estimated model
reduction error. Due to the effectivity estimate (3.5) and Céa’s Lemma (3.4), one
can easily see that this, indeed, yields a weak greedy sequence with parameter γ =
infµ∈P(‖aµ‖/Caµ)−2.

3.5. Implementation and the notion of truth. While everything we have
discussed so for applies to arbitrary (possibly) infinite dimensional Hilbert spaces V ,
the actual implementation of the RB method will only be possible when V is finite
dimensional. In practice, the original analytical problem, posed on some infinite
function space V , is therefore replaced by a discrete approximation that is so highly
resolved that the discretization error is negligible w.r.t. the model reduction error. In
the literature, this approximation is often referred to as the truth approximation.

Typically, computing the truth approximation for a single parameter µ will be
computationally expensive (which is why model reduction is desired). However, such
computations only need to be performed in the offline phase of the scheme and only
to compute basis vectors (and the associated reduced model) for VN . In particular,
thanks to the usage of the online-efficient error estimator (3.5) to select the next
parameter for the extension of VN , no high-dimensional operations are needed to find
this parameter. Note that the typically infinite parameter space P will still have to
be replaced by a finite training set Strain ⊆ P to make the search for this parameter
feasible. However, as the error estimator can be evaluated very quickly, very large
training sets that densely sample P are tractable. Moreover, adaptive algorithms are
available (e.g. [19]), to refine Strain only where needed.

Recently, new approaches [35, 27, 1] have appeared which provide online efficient
estimators that measure the model reduction error w.r.t. the analytical solution of the
given problem. Such approaches not only allow to certify that the reduced solution has
a guaranteed approximation quality w.r.t. the PDE model one is interested in, but also
enable adaptive methods for the on-demand refinement of the truth approximation.

4. Extensions. We have seen in the previous section that for linear, coercive,
affinely decomposed problems, the RB approach yields low-dimensional, quickly solv-
able reduced order models with (sub-)exponentially fast decaying error, which can
be rigorously bound using an efficient a posteriori error estimator. Based on these
fundamental ideas, extensions of the methodology to a wide array of problem classes
have been proposed. We can only mention a few important ideas.

4.1. Time-dependent problems. In the method of lines approach, (time-
dependent) parabolic partial differential equations are first approximated by replacing
the space differential operators of the equation by an appropriate discrete approxima-
tion, yielding an ordinary differential equation system in time, which is then solved
using standard ODE time stepping methods. The same approach can be applied in
the RB setting. Thus, we search for reduced spaces VN which approximate the solu-
tion trajectories of the given problem for each parameter µ and point in time t. I.e.
dVN (Mt

Φ), where Mt
Φ := {Φ(µ)[t] | µ ∈ P, t ∈ [0, T ]}, should be as small as possible.

Since errors propagate through time, it is easy to conceive that greedily selecting
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a Φ(µ)[t] which maximizes the model reduction error will not yield good results. A
better approach is to first select a maximum error trajectory Φ(µ∗) and then add the
first modes of a proper orthogonal decomposition (POD) of the projection error of
Φ(µ∗) onto VN to VN (POD-Greedy, [20])3. In [17] it was shown that similar to
the stationary case, the POD-Greedy algorithm yields quasi-optimal convergence
rates, e.g. in the sense that (sub-)exponential decay of the N -widths of Mt

Φ carries
over to the decay of dVN (Mt

Φ). As in the classical finite element setting, a posteriori
error estimators for the reduction error can be obtained by time integration of the
error-residual relation.

These error estimators, however, show bad long-time effectivity, in particular for
singularly perturbed or non-coercive (see below) problems. To mitigate this prob-
lems, space-time variational formulations for the reduced order model, which allow
for tighter error bounds, have been considered (e.g. [32, 34]).

4.2. Inf-sup stable problems. A crucial prerequisite for the applicability of
Galerkin projection-based model order reduction is a manageable condition of the
problem. I.e. the quotient κµ := ‖aµ‖/Caµ has to be of modest size, as it determines
the quality of the reduced solution (3.4). While κµ has no significant effect on the
asymptotic behaviour of RB methods, a too large κµ can render the RB approach
practically infeasible.

Typical examples include advection diffusion equations with small diffusivity or,
as the limit case, hyperbolic equations where coercivity is completely lost. Many of
these problems are still inf-sup stable, i.e. inf0 6=v∈V sup06=w∈V aµ(v, w)/‖v‖‖w‖ > 0.
Assuming that aµ is inf-sup stable on VN , a similar quasi-optimality result to Céa’s
Lemma (3.4) holds4. However, contrary to coercivity, inf-sup stability is not inher-
ited by arbitrary subspaces VN . Petrov-Galerkin formulations, where appropriate test
spaces for the reduced variational problem (3.3) are constructed, are a natural setting
to preserve the inf-sup stability of the reduced bilinear form. Several approaches have
by now appeared in the literature. We specifically mention [12] where, in addition,
problem adapted norms on the trial and test spaces are chosen to ensure optimal
stability of the reduced problem. In the recent work [36], stability of the reduced
problem is improved using preconditioners obtained from an online efficient interpo-
lation scheme.

4.3. Not affinely decomposed and nonlinear problems. Crucial for being
able to quickly evaluate ΦN is the affine decomposition of aµ (3.2) which allows us to
assemble the system matrix for (3.3) by linear combination of the pre-computed, non-
parametric reduced matrices of aq. For problems where such an affine decomposition
is not given, a widely adopted approach is to approximate aµ by some âµ admitting
an affine decomposition. âµ is determined using an interpolation scheme, where the
interpolation points and interpolation basis are constructed from snapshot data for the
parametric object to interpolate. Originally, this empirical interpolation method was
introduced for parametric data functions (appearing in the definition of aµ) [2], and
has since then been extended to general, possibly nonlinear, operators [21, 8, 7, 15].

5. Limits of reduced basis methods. By now, the reduced basis methodology
has matured to a point where a large body of problems admitting rapidly decaying

3I.e., one computes the truncated singular value decomposition of the linear mapping RN → V ,
n 7→ (I − PVN )Φ(µ∗)[tn], where t0, . . . , tN is some time discretization of [0, T ].

4For infinite dimensional V we additionally need to assume non-degeneracy of aµ in the second
variable.
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Kolmogorov N -widths can be handled with great success. However, many relevant
problems, in particular advection dominated problems, suffer from a very slow decay
of the N -widths, even though the structure of their solutions suggests that efficient
reduced order models should exist. In this section we will give a very simple example
which falls into this category of problems and briefly discuss first attempts that have
been made to tackle these problems by means of nonlinear approximation techniques.

5.1. The need for nonlinear approximation. A slow decay of the Kol-
mogorov N -widths can already be observed for simple linear advection problems
involving jump discontinuities:

(5.1)
∂tuµ(x, t) + µ · ∂xuµ(x, t) = 0 µ, x, t ∈ [0, 1]

uµ(x, 0) = 0, uµ(0, t) = 1.

If we choose a method of lines approach, even a single solution trajectory of (5.1)
cannot be well-approximated using linear spaces. I.e. consider M := {u1(t) | t ∈
[0, 1]} ⊂ L2([0, 1]). One readily checks that for each N ∈ N, M contains the pairwise
orthogonal functions ψN,n, 1 ≤ n ≤ N , of norm N−1/2 given by

ψN,n(x) :=

{
1 n−1

N ≤ x ≤ n
N

0 otherwise
.

Thus,

dN (M) ≥ dN
(
{ψ2N,n | 1 ≤ n ≤ 2N}

)
= (2N)−1/2 · dN

(
{(2N)1/2ψ2N,n | 1 ≤ n ≤ 2N}

)
.

Note that the latter set can be isometrically mapped to the canonical orthonormal
basis in R2N . Since, by definition, the Kolmogorov N -width is invariant under taking
the balanced convex hull, we obtain using Corollary IV.2.11 of [28]

dN (M) ≥ (2N)−1/2 · dN
(
{x ∈ R2N | ‖x‖1 ≤ 1}

)
= (2N)−1/2 ·

(
2N −N

2N

)1/2

=
1

2
N−1/2.

Note that this convergence issue is not due to the methods of line approach. Even
if we switch to a space-time formulation, treating (5.1) as a stationary equation on
[0, 1]2, will not solve the problem in the parametric case. Using the same arguments,
one easily sees that, still, dN ({uµ | µ ∈ [0, 1]}) ∼ N−1/2.

No matter what, classical RB methods or any other model reduction approach
for which ΦN maps to a linear subspace VN ⊆ V are bound to fail for this type of
problem. Only methods for which VN is a nonlinear subspace of V can be successful.

Regarding application problems where the described behaviour is observed, we
specifically mention the challenging class of kinetic transport equations, for which
first model reduction attempts are presented in [4] (this volume) and in the references
therein.

5.2. First attempts. By now, several attempts have been made to extend the
RB methodology towards nonlinear approximation. In the following, we will briefly
discuss the most important approaches we are aware of. Most of these approaches are
still in their early stages, usually only tested for selected model problems and with
little theoretical underpinning. Nevertheless, promising first steps have been taken,
and in view of the variety of the approaches, it seems likely that substantial progress
on such methods can be made in the years to follow.
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Dictionary-based approximation. An obvious generalization of linear approxima-
tion in a single space VN is to employ a dictionary D of linear reduced spaces from
which an appropriate VN ∈ D is selected depending on the parameter µ or point in
time for which the solution is to be approximated [19, 14, 25]. However, while such
approaches may increase online efficiency by allowing smaller approximation spaces,
the overall number of required basis vectors is still controlled by the Kolmogorov
N -width:

sup
µ∈P

min
VN∈D

inf
v∈V
‖Φ(µ)− v‖ ≥ dspan(

⋃
VN∈D

VN )(im(Φ)) ≥ d∑
VN∈D

dimVN (im(Φ)).

Thus, to achieve an error of ε for the approximation of (5.1), still a total amount of
ε−2 basis vectors has to be included in D. While such an approach might be feasible in
one space dimension, where all possible locations of the discontinuity can already be
obtained from one solution trajectory, offline computations in higher space dimensions
will be prohibitively expensive.

In [6], an adaptive h-refinement technique for RB spaces is presented. Starting
from a coarse reduced basis obtained from global solution snapshots, a hierarchy of
approximation spaces can be adaptively generated on-the-fly by dissecting the ba-
sis vectors w.r.t. a pre-computed hierarchy of DOF set partitions. This approach
mitigates the need for large numbers of solution snapshots while allowing arbitrarily
accurate approximation spaces, albeit at an increased computational effort online.

Shock detection. Another approach, which is geared specifically towards treating
moving discontinuities is to detect the space-time regions with shocks or low regular-
ity and use low-dimensional linear approximation spaces only outside these regions.
In [11], first an interpolation method in parameter space is used to obtain a reduced
solution. The Jacobian of the interpolant is then used to detect non-smooth space-
time regions in which then a finely resolved correction is computed.

In [31], a more elaborate shock capturing algorithm is developed to obtain an on-
line efficient approximation of the trajectory xs(t) of the discontinuity location over
time. This information is then used to transform the space-time domain into three
parts (before discontinuity appears, left and right of discontinuity) which are trans-
formed to reference domains. On these reference domains, empirical interpolation is
finally used to obtain a low-order approximation of the smooth solution components.
Since the values of the transformed solution components need only to be known at
the given space-time interpolation points, these values can be quickly computed using
the methods of characteristics.

To our knowledge, these methods have not been successfully applied in higher
space dimensions yet.

Nonlinear parametrization. A more generic approximation approach is to de-
scribe nonlinear approximation spaces VN by a nonlinear parametrization. For ad-
vection driven problems, a natural choice is to incorporate transformations of the
underlying spatial domain (shifts, rotations or more general transformations) into the
parametrization.

In [26], these transformations are assumed to be given by a Lie group G of map-
pings acting on V . The reduced solution manifold VN is then given by all vectors g.v
where g ∈ G accounts for the dynamics of the solution and v ∈ V̂N describes the (ide-
ally) stationary shape of the solution. This ansatz is then substituted into the given
differential equation, and the algebraic constraint that the evolution of v(t) should be
orthogonal to the action of the Lie algebra of G at v(t), is added to determine the
additional degrees of freedom. Given the invariance of the problem under the action
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of G, standard RB techniques for approximating v(t) ∈ V̂N yield an online efficient
reduced order approximation of the resulting frozen equation system.

In [33], a parameter space interpolation scheme is developed where uµ ∈ V is
approximated by an expression of the form

uµ,N (x) =
∑
η∈PN

lη(µ)uη(φ(µ, η)(x)),

where lη are Lagrange interpolation polynomials associated with the interpolation
points η and uη ∈ V are solutions snapshots which are transformed via a mapping
ϕ : P × P × Ω → Ω. An optimization algorithm w.r.t. a training set of solution
snapshots is used to determine φ during the offline phase.

Low-order approximations of advection dominated trajectories of the form

u(x, t) ≈ [u0(Y (x, t)) +R(Y (x, t), t)] det(∇xY (x, t))

are considered in [24]. While standard POD is used to approximate the residual
part R(x, t) of the trajectory, the transformation Y is approximated by a principal
component analysis based on the Wasserstein distances between the snapshots u(x, ti),
with modes being obtained by solving Monge-Kantorovich optimal transport problems
w.r.t. the reference mode u0(x).

Approximation based on Lax pairs. Finally, we mention a new model reduction ap-
proach based on the use of so called Lax pairs in the theory of integrable systems [16].
Given a solution trajectory u(t) of an evolution equation, the associated Schrödinger
operator with potential −χu at time t is given by Lχu(t)ϕ = −∆ϕ − χu(t)ϕ. With
λm(t), ϕm(t) denoting the m-th eigenvalue (eigenvector) of Lχu(t), there are operators
M(t) such that ∂tϕm(t) =M(t)ϕm(t). One then has

(5.2) (Lχu(t) + [Lχu(t),M(t)])ϕm(t) = ∂tλm(t)ϕm(t),

where [A,B] = AB − BA.5 Using the ϕm as a moving coordinate frame which is
truncated to the firstN eigenvectors, the authors deduce from (5.2) a reduced ordinary
differential equation system which describes the evolution of the coordinates of the
reduced approximation of u(t) w.r.t. this coordinate frame.
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