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A HYBRID PARALLEL NUMERICAL ALGORITHM FOR
THREE-DIMENSIONAL PHASE FIELD MODELING OF CRYSTAL

GROWTH

PAVEL STRACHOTA AND MICHAL BENEŠ∗

Abstract. We introduce a hybrid parallel numerical algorithm for solving the phase field for-
mulation of the anisotropic crystal growth during solidification. The implementation is based on the
MPI and OpenMP standards. The algorithm has undergone a number of efficiency measurements
and parallel profiling scenarios. We compare the results for several variants of the algorithm and
decide on the most efficient solution.
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1. Introduction. Numerical solution of evolutionary problems for PDE in three
dimensions requires a large amount of computational resources. Parallel implementa-
tion of the numerical solvers therefore became an ubiquitous task. In this paper, the
phase field model of crystal growth and its numerical solution described in [23, 22],
[21] is revisited. In the first part, we review the problem formulation and the used
numerical schemes. Results of the selected simulations are presented and the features
of the presented approach are summarized. In the second part, we focus on the design
of the hybrid MPI/OpenMP parallel implementation of the numerical algorithm and
its performance on modern HPC clusters of ccNUMA nodes.

2. Problem Formulation. The phase field model [3] of the anisotropic [2, 21]
Stefan problem [13] with surface tension is posed in a domain Ω ⊂ R3 and time
interval J = (0, T )

∂u

∂t
= ∆u+ L

∂p

∂t
in J × Ω,(2.1)

αξ2 ∂p

∂t
= ξ2∇ · T 0 (∇p) + f (u, p,∇p; ξ) in J × Ω,(2.2)

bc (u) = 0 on J × ∂Ω,(2.3)

T 0 (∇p) · n = 0 on J × ∂Ω,(2.4)
u|t=0 = uini, p|t=0 = pini in Ω(2.5)

with the boundary condition operator bc in (2.3) given by either bc (u) = u− u∂Ω or
bc (u) = ∇u ·n. u represents the temperature field and p the phase field implicitly de-
termining the diffuse phase interface Γ by the relation Γ (t) =

{
x ∈ R3

∣∣ p (t,x) = 1
2

}
.

The model parameters involve the melting point of the material u∗, the latent heat L,
the attachment kinetics coefficient α, positive constants a, b, β [3] and the parameter
ξ controlling the recovery of the sharp interface model [4]. The anisotropic opera-
tor T 0 (see [1, 2, 5]) is derived from the dual Finsler metric φ0 (η∗), η∗ ∈ R3 as
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T 0 (η∗) = φ0 (η∗)φ0
η (η∗) where φ0

η =
(
∂η∗1φ

0, ∂η∗2φ
0, ∂η∗3φ

0
)T
. The anisotropic sur-

face energy ψ is incorporated into the model by the choice φ0 (η∗) = |η∗|ψ
(
− η∗

|η∗|

)
[17, 10]. For the possible forms of ψ, see e.g. [16].

The problem (2.1)–(2.5) describes the evolution of a two-phase single system
where the solid region (a crystal) grows from an initial solid nucleus under supercooling
conditions.

3. Numerical Solution. The spatial discretization is based on the cell centered
finite volume method on a structured rectangular mesh T [9], using fourth order
multipoint (MPFA) or second order central difference (CDFA) flux approximation
schemes (for details see [24, 23]). In general, the resulting semidiscrete scheme is in
the form

m (K)
duhK
dt

(t) =
∑
σ∈EK

FK,σ (t, uK) + Lm (K)
dphK
dt

(t) , ∀K ∈ T(3.1)

αξ2m (K)
dphK
dt

(t) = ξ2
∑
σ∈EK

T 0
K,σ (t, pK) +m (K) f

(
uhK , p

h
K ,∇hphK ; ξ

)
(3.2)

where EK is the set of all faces of the finite volume K ∈ T , m and m̃ are 3D and 2D
measures in R3, respectively,

FK,σ (t, uK) = m̃ (σ)∇huhσ (t) · nK,σ, T 0
K,σ (t, pK) = m̃ (σ)T 0

(
∇hphσ (t)

)
· nK,σ

are the numerical fluxes across the face σ ∈ EK ,

∇hphK (t) =
(
δh1 p

h
K (t) , δh2 p

h
K (t) , δh3 p

h
K (t)

)T
approximates ∇p (t,xK) at the point xK ∈ K, and

∇huhσ (t) =
(
δh1u

h
σ (t) , δ

h
2u

h
σ (t) , δ

h
3u

h
σ (t)

)T
, ∇hphσ (t) =

(
δh1 p

h
σ (t) , δ

h
2 p

h
σ (t) , δ

h
3 p

h
σ (t)

)T
approximate ∇u (t,yσ), ∇p (t,yσ) at the point yσ ∈ σ and nK,σ is the unit normal
to σ pointing out of K.

The integration in time is performed by the explicit 4th order Runge-Kutta-
Merson (RKM) solver [6] with automatic adjustment of time step τ in agreement
with the stability condition τ < ch2, c > 0, h = maxK∈T diam K.

The numerical schemes have been verified in a number of ways. For the isotropic
case φ0 (η∗) = |η∗|, the experimental order of convergence has been measured [23] in a
specific situation [19] when the analytical solution is known. In the anisotropic cases,
a number of studies have been performed, providing visual evidence of convergence
with both flux approximation variants and testifying to the advantages of the MPFA
scheme [21, 23]. In addition, many simulations have been carried out to study the
capabilities of the phase field model. Some sample results are presented in Figure 3.1.
Another important simulation in Figure 3.2 confirms the long term transformation of
the crystal into the equilibrium Wulff shape [10] whose visualization is also provided.
Such a simulation requires a very large amount of time to complete even with a parallel
algorithm.

4. Hybrid Parallel Implementation. The numerical algorithm implemented
in C/C++ as the InterTrack software package uses the MPI standard [14] for work
sharing among multiple processes running in a distributed memory environment. Each
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Figure 3.1. Sample results of crystal growth simulations. For detailed explanation of simula-
tion settings, see [21].

process can optionally further employ the OpenMP [8] technology for multithreaded
parallel execution on SMP (Symmetric MultiProcessing) and ccNUMA (Cache Co-
herent Non-Uniform Memory Architecture, [20]) systems. As MPI is also routinely
used to run more processes on a single multicore compute node, it is possible to use
both technologies in a number of combinations on the same system.

Implementation of the Method of Lines. Separate treatment of the spatial
and temporal discretization described in Section 3 is known as the method of lines
[18]. The semidiscrete scheme (3.1)–(3.2) is effectively a system of ordinary differential
equations which can be solved by any suitable method. Following this idea, the RKM
solver is implemented as a separate and completely general solver of an ODE system

(4.1)
dx

dt
= f (t,x) .



26 P. STRACHOTA AND M.BENEŠ

t = 0.5 t = 1.5 t = 3.0

t = 7.0 t = 40.0 t = 80.0

t = 160.0 t = 240.0 Wulff shape

Figure 3.2. Asymptotic convergence to the Wulff shape under thermal insulation conditions,
6-fold anisotropy. Parallel computation on four HP xw9400 compute nodes, each equipped by two
dual core AMD Opteron 2216 @ 2.4 GHz processors. Mesh size 1443 cells, total computation time
316 hours.

However, the components of the vector x are allowed to be scattered into many
chunks located in one contiguous memory area. Each chunk itself is a 1D array. This
design is suitable for the method of lines where the spatial discretization uses ghost
(auxiliary) cells to implement boundary conditions. These cells represent ”holes” in
the contiguous array that are not part of the solution vector x. The whole finite
volume scheme has to be contained in the right hand side f which is called by the
RKM solver.

MPI Parallelization. Work sharing among individual processes (MPI ranks)
is achieved by 1D domain decomposition along the z axis. Each rank solves the
problem on its own sub-domain. However, on the boundaries, solution data from the
neighboring subdomains are needed in each evaluation of f to calculate the numerical
fluxes FK,σ and T 0

K,σ. The ghost cells that surround the subdomain from all sides are
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used with advantage both for halo exchange with the neighbors and for implementing
the boundary conditions. As a result, the numerical scheme has the same form for all
cells and can be written in the code at a single location. The structure of the right
hand side f can be summarized in the following steps:

1. Prepare the boundary conditions by setting the appropriate ghost cells to the
correct values.

2. Use nonblocking point to point (P2P) MPI communication to receive the halo
data from the neighbors into the appropriate ghost cells.

3. Evaluate the finite volume scheme for all cells in the subdomain in three
nested loops over the directions z, y, x (in this order).

MPI collective communication is also used in the RKM solver to adjust the time step
in all ranks correctly (see Figure 4.1). All I/O operations are performed by a single
(master) rank.

OpenMP Parallelization. Multithreaded execution is performed in OpenMP
within a parallel region created by the directive #pragma omp parallel. To minimize
the overhead of frequent creation and destruction of threads, the parallel region should
be as large as possible. In InterTrack, the parallel region encompasses the main loop
of the RKM solver (again, see Figure 4.1) . Inside this loop, work sharing is achieved
by parallelizing the suitable for loops by #pragma omp for. This is used directly
in the solver for preparing the arrays which are passed as the x argument to the
right hand side f . The right hand side is called by all threads and is required to
implement work sharing on its own by using (orphaned) OpenMP constructs inside
its body. After the evaluation of the Ki coefficients in the Runge-Kutta method, an
error estimate is calculated by using the maximum norm of a given expression (Figure
4.1; for the design of adaptive time step RK solvers, see e.g. [7]). The maximum has
to be collected from all threads and all MPI ranks by a reduction operation. This
is implemented natively in MPI and OpenMP Version 3.0 or higher. For OpenMP
Versions <3.0, a critical section is used instead.

5. Parallel Computation Performance. In this section, we discuss a num-
ber of parallel runs in different configurations and assess the relative parallelization
efficiency of the run 2 with respect to a reference run 1

Erel =
t1
t2
· p1

p2
· 100%

where t1, t2 are computation times in two different parallelization settings and p1, p2

are the respective numbers of cores used.

MPI Parallelization Efficiency. The first presented test in Figure 5.1 shows
parallel efficiency of a pure MPI-parallelized computation on a single compute node.
The performance is very good and even superlinear speedup [11] can be observed.
Fluctuations in efficiency with increasing number of cores p may partly be accounted
to load imbalance when the mesh resolution is not divisible by p. However, the results
of profiling Intertrack on a larger number of cores indicate that there are possibilities for
improvement (Figure 5.2). On 64 cores and 4 nodes, the point to point communication
overhead is still small compared to the time spent in collective MPI calls where no
significant amounts of data are transferred. As collective operations represent an
implicit barrier, this observation again implies load imbalance. Apart from the chosen
mesh size, it can also be caused by several other factors such as extra boundary
conditions evaluation in the first and last subdomain and dependence of computation
duration on the input values.
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Parallel preparation of the argument of the right hand

side. 2 nested loops over:

1. the array of chunks (#pragma omp for in variant B)

2. the array of chunk elements

(#pragma omp for in variant A)

Parallel call of the right hand side:

The function f is called by all

threads and uses orphaned

OpenMP directives to facilitate

work sharing among the threads.

Three stage calculation of the maximum:

1. Calculation of the maximum in each thread

2. #pragma omp reduction(max: )

3. MPI_Reduction(..., MPI_MAX, ...)

Parallel update of the solution (2 nested loops).

Coordinated decision in all MPI ranks.

t current time level xτ numerical solution of (4.1)
T final time xτini initial condition for the numerical solution xτ
τ time step vi i-th component of any vector v.
τini initial time step

Figure 4.1. Hybrid parallel OpenMP/MPI Runge-Kutta-Merson solver.
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Figure 5.1. Parallel efficiency of an MPI computation on different numbers of cores on a
single ccNUMA node with two 12-core AMD Opteron 6172 @ 2.1 GHz, 12×512 KB L3 cache,
CentOS 5.5 Linux, Intel C/C++ compiler 10.0, LAM MPI 7.1.4.
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Figure 5.2. Allinea performance reports for InterTrack on the ANSELM cluster. Each node
equipped by two 8-core Intel XEON Sandy Bridge E5-2665 @ 2.4GHz, 20 MB L3 cache.

Hybrid Parallelization Efficiency. Hybrid parallelization theoretically im-
proves load balancing. Using larger subdomains may diminish the relative differences
in computation time. In addition, using an appropriate scheduling strategy for loop
parallelization (e.g. dynamic instead of static [15]) can help. Surprisingly, the results
in Figures 5.4 and 5.5 show that the performance of the hybrid algorithm actually
goes down with increasing number of threads and decreasing number of MPI ranks.
It seems to be generally worse than the performance of pure MPI parallelization on a
single node. However, a deeper analysis reveals the following problems:

• In the numerical scheme, there is a natural need to share some variables
between several functions. The original code used static variables, but the
OpenMP–parallelized version requires these variables to be private for each
thread. A straightforward solution is to declare them as threadprivate, but
the overhead associated with their use is excessive (smaller bars in Figure
5.4). A much better solution is to use a structure of automatic (local) private
variables and pass a pointer to this structure to any function that works with
these variables (larger bars in Figure 5.4).

• When using MPI only, the communication overhead may be compensated by
the use of separate address spaces which implicitly rules out cacheline con-
flicts and frequent inefficient memory accesses into a different NUMA domain
(provided that the processes are bound to cores or sockets). This is why MPI
parallelization is usually very efficient even on a single node. With OpenMP,
on the other hand, one needs to be careful. The first implementation of the
RKM solver (variant A) parallelizes the for loop over the chunk elements
(which could possibly help if the number of chunks were very small). In con-
trast to that, the code in the right hand side f parallelizes the outermost
(or optionally the second outermost) loop and accesses the chunk elements
sequentially. The result is a cross pattern of memory use (Figure 5.3, left)
leading to inevitable accesses across NUMA domains and poor cache utiliza-
tion.

With the above in mind, we also tested variant B of the RKM solver parallelizing the
loop over the array of chunks (Figure 5.3, right). The resulting efficiency measurement
is in Figure 5.6 which proves that now pure MPI, pure OpenMP, and any possible
combination thereof perform equally well.

All computations were executed with the OMP_PROC_BIND environment variable set
to TRUE, binding the OpenMP threads to CPU cores. MPI process binding capabilities
were not used.
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Figure 5.3. Schematic of mesh partitioning and thread correspondence in variants A and B
of the hybrid parallel OpenMP/MPI RKM solver.
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Figure 5.4. Relative parallel efficiency of hybrid OpenMP/MPI computations on a single
ccNUMA node with two 6-core AMD Opteron 2427 @ 2.2GHz, 6×512 KB L2 cache, CentOS 5.5
Linux, Intel C/C++ compiler 10.0, LAM MPI 7.1.4. Reference value 100% is for pure MPI run.
Mesh size 1203 cells, RKM solver variant A. Two series with a different technique of variable
sharing between functions: 1) private automatic variables and pointer passing (larger bars), 2)
static threadprivate variables (smaller bars).

Transfer Layer Comparison. In Figure 5.7, the relative efficiency of multi-
node computation is evaluated for different communication interconnects. In particu-
lar, gigabit Ethernet and 40Gbit Infiniband are compared. For more than two nodes,
Infiniband allows slightly better performance, but the difference is not very significant.
That is in accordance to the profiling results in Figure 5.2 where the communication
only accounts for a small fraction of time.

6. Conclusion. We have developed and tested a hybrid parallel algorithm for
numerical simulation of crystal growth. The algorithm exhibits satisfactory scaling up
to approximately 100 cores with pure MPI, which is sufficient for our current purposes.
Based on the efficiency measurements, the additional OpenMP parallelization has
been tuned to provide very good performance on many-core systems. If needed, hybrid
parallelization can possibly significantly extend the scaling on clusters of ccNUMA
nodes as it reduces the problem of inefficient 1D domain decomposition into very thin
slices. In addition, the generic parallel RKM solver can easily be carried over to other
problems.
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Figure 5.5. Relative parallel efficiency of hybrid OpenMP/MPI computations on a single
ccNUMA node with two 6-core AMD Opteron 2427 @ 2.2GHz, 6×512 KB L2 cache. Reference
value 100% is for pure MPI run. Mesh size 2403 cells, RKM solver variant A.
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Figure 5.6. Relative parallel efficiency of hybrid OpenMP/MPI computations on a single
ccNUMA node with two 6-core AMD Opteron 2427 @ 2.2 GHz, 6×512 KB cache, CentOS 5.5
Linux, Intel C/C++ compiler 10.0, LAM MPI 7.1.4. Reference value 100% is for pure MPI run.
Mesh size 1203 cells, RKM solver variant B.
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