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PRECISING OF THE VERTEBRAL BODY GEOMETRY BY USING
BÉZIER CURVES∗

MÁRIA TJEŠŠOVÁ† AND MÁRIA MINÁROVÁ‡

Abstract. The biomechanical investigation of the human spine requires first of all the proper
geometry of the focused object. The paper deals with a geometrical model developing of the human
lumbar vertebral body by using Bézier curves - the tool for the curves creation of demanded shape
and properties. The background theory and algorithm for the Bézier curves and their compound
generation are introduced, the resulting geometry and the corresponding biomechanical computation
results are performed.
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1. Introduction. Nowadays, when the widespread diseases of the spine still
persist, it is important to improve bit a bit the understanding of the spine reaction
(physiological and pathological) to a load. As the lumbar spine is the most afflicted
one within the entire human spine, the special medical and biomechanical attention
is devoted to it. The research, the part of which is described in the paper, is aimed to
the lumbar spine behaviour investigation under the various types of load. The motion
segment (functional spinal unit), see Fig.1.1 - two neighbouring lumbar vertebrae and
the intervertebral disc between - is taken into the consideration. Especially, the weight
bearing part of the vertebra (vertebral body), see the Fig.1.2 and its shape influencing
the functionality of the spine is focused herein. Accordingly, as the vertebral body
and the neighbouring disc are in body to body fusion, they both match well (have the
same horizontal profile) at the location of the contact.

Figure 1.1. Functional spinal unit - motion segment of the human spine
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Figure 1.2. Anatomy of lumbar vertebra - frontal view (left) and lateral view (right) [7]

2. Morphology of the lumbar vertebra and disc. The morphology of the
particular vertebrae differs alongside the spine as the functionality of particular verte-
brae is different. (The lower position of vertebra, the greater weight bearing capacity
is expected.) Like each bone, the vertebra consists of the cortical and cancellous bone
tissue. The stiffer and harder cortical bone encloses the softer feeding cancellous bone
inside. The composition together with assigned functionality determines the morphol-
ogy of the particular vertebra.
The anterior part of the lumbar vertebra, the corpus vertebrae (vertebral body), see
Fig.1.2, is robust and compact. On the other hand, the posterior part is branched,
involving the processi and facets. The two (anterior and posterior) parts are config-
ured in a way that they form a hole between. The functionality of entire spine and
its parts determine the shape of the vertebral body and intervertebral discs, as well.
[2] The hole between the anterior (frontal) an posterior (back) parts of the vertebrae
called foramen, see Fig.1.2, that together with the foramens of all vertebrae alongside
the entire spine form the spinal canal which encloses and protects the spinal chord
inside the canal. [8]

3. Bézier curves.

3.1. Modelling of the vertebral body border by using Bézier curves.
For the sake of better accuracy of further biomechanical analysis (further intended
exploring the mechanical response to the load first of all) it is essential to arrange
as precise geometry as possible. At the same time, the geometry should match with
proportions of the particular patient anatomy (including anomalies, deformities, dis-
eases, etc.). In our case (the healthy spine is being modelled) the vertebral body
shape consists of three Bézier curves. Two of them bound the base of the vertebral
body and the third one, the lateral meridian curve, describes the lateral curvature of
the vertebra, see Fig.3.1. Herein, each horizontal sections of the vertebral body yields
the curve of the same shape as the base border curve is. Regarding the further finite
element analysis, it is worthwhile to make the horizontal sections profile at that levels
in which the intended nodes of further finite element meshing will be placed. At the
same time, the scale factor is determined by the lateral meridian curve. Therefore the
vertebra outer shape is designed by shifting and scaling both horizontal curves along
the lateral curve.

Definition 3.1. Let V0, V1, V2, ..., Vn be a sequence of points in a space E(E2, E3)
(control polygon points). Then a set of points from the space E coordinates of which
read the equation:



PRECISING OF THE VERTEBRAL BODY GEOMETRY BY USING BÉZIER CURVES 57

(3.1) bn(t) =

n∑
i=0

ViBin(t),

where

(3.2) Bin(t) = (
n
i

)ti(1− t)n−i, i = 1, 2, ..., n, t ∈ 〈0, 1〉

are named Bernstein basis polynomial is called Bézier curve of degree n. [4]

Figure 3.1. Control points and Bézier curves describing the vertebral body shape.

During the modelling of the vertebral body the following properties of the Bézier
curves are utilized:[3, 1]

A. Interpolation of the two outermost points of the control polygon:
bn(0) = V0, bn(1) = Vn, i.e. Bézier curve passes through the first and the last point
of the control polygon.

B. Convex hull:
Bézier curve bn(t) lies within the convex envelope of its control points V0, V1, ...Vn
( Bin(t) are non-negative polynomials of parameter t ∈ 〈0, 1〉 and bn(t) is convex
combination of control points Vi).

C. Symmetry:

(3.3)

n∑
i=0

ViBin(t) =

n∑
i=0

Vn−iBin(1− t)

i.e. the curve will not change due to order of control points is switched and parameter
t runs from 1 to 0 at the same time.
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D. Affinity:
Bézier curves are invariant as far as the affine transformation concerned, i.e. every
affine transformation T holds:

(3.4) T (

n∑
i=0

ViBin(t)) =

n∑
i=0

T (Vi)Bin(t)

which means that affine image of Bézier curve specified by control points V0, V1, ..., Vn
will be the same as the Bézier curve specified by the affine images of the control points
of the original control polygon.

3.2. Calculating and developing of the Bézier curves - De Casteljau’s
algorithm (CA) [4]. The curve at point t can be represented by the recurrence
relation:

(3.5) Bin(t) = (1− t)Bin−1(t) + tBi−1n−1(t).

The algorithm for n control points V0, V1, ...Vn can be sketched as follows:
Input: control points V0, V1, ...Vn and parameter t ∈< 0, 1 >

0) V 0
i (t) = Vi i = 0, 1, ..., n

1) V 1
i (t) = (1− t)V 0

i (t) + tV 0
i+1(t) i = 0, 1, ..., n− 1

...
r) V r

i (t) = (1− t)V r−1
i (t) + tV r−1

i+1 (t) r = {1, 2, ..., n} i = 0, 1, ..., n− r
...

n-1) V n−1
0 (t) = (1− t)V n−2

0 (t) + tV n−2
1 (t), V n−1

1 = (1− t)V n−2
1 (t) + tV n−2

2 (t)
n) V n

0 (t) = (1− t)V n−1
0 (t) + tV n−1

1 (t)
Output: point of the curve bn(t) = V n

0 (t)
Algorithm for calculation of a point bn(t) for fixed t ∈< 0, 1 > of the future curve

can be written as follows:
• load the points V0, V1, V2, ..., Vn, put V 0

0 = V0, V
1
0 = V1, ..., V

n
0 = Vn

• t = 0
• choose 4t
• b0 = V0
• repeat until t < 1:

� t = t+4t
� repeat for r = 1, ..., n
∗ repeat for i = 0, ..., n− r
· V r

i = (1− t)V r−1
i + tV r−1

i+1

� draw segment b0V n
0

� b0 = V n
0

Let us note that during the creation of the Bézier curve of degree n by using CA
in fixed point t ∈ 〈0, 1〉:

a) on the each side of the segment ViVi+1 of its control polygon point V 1
i (t) =

(1− t)Vi + tVi+1 is created.
b) for each r ∈ 1, 2, ..., n on each edge V r−1

i (t)V r−1
i+1 (t) the point V r

i (t) = (1 −
t)V r−1

i (t) + tV r−1
i+1 (t) is created.

This process of creation of points is called linear interpolation.

3.3. Continuity and smoothness of Bézier curves and their composi-
tions. For the inscription (to the control polygon) of the curves with more compli-
cated shape (with a larger number of control points) there is a need of utilization of



PRECISING OF THE VERTEBRAL BODY GEOMETRY BY USING BÉZIER CURVES 59

Bézier curves of a higher degree. The mentioned approach is often too cumbersome
and the better way to solve the problem conveniently is to to combine a couple of
Bézier curves in a junction of segments of the simple curvatures satisfactory fulfilling
the smooth criteria.
Let 0S be a segment of Bézier curve with m control points 0V0,

0 V1, ...,
0 Vm:

0S: 0b(t) =
∑m

i=0
0ViBim(t), t ∈ 〈0, 1〉

and we are attempting to connect the curve 0S with another curve
1S: 1b(t) =

∑n
i=0

1ViBin(t), t ∈ 〈0, 1〉
with n control points 1V0,

1 V1, ...,
1 Vn

and realize the connection ”sufficiently smoothly”.
We use two types of geometrical connection of Bézier curves of different order:

a) 0th order connection G0: 0b(1) = 1b(0)⇔ 0Vm = 1V0
b) 1st order connection G1: 1b′(0) = β10b′(0), β1 > 0 ⇔ 1V1 =0 Vm +

β1(0Vn −0 Vn−1), point 1V1 is point of the segment 0Vm−1
0Vm.

Figure 3.2. The nodes of the meshed base of the vertebra

In the case of designing the geometry of a vertebra we join the two coplanar curves
with aim of forming the base of vertebra. We use the 1st order connection G1 here.
The connection is realized within the control points 0V0 = 1V3 and 0V7 = 1V1. Then,
in 3D space we merge the lateral curve with just accomplished vertebral base by using
the 0th order connection (the lateral curve lies in the plane perpendicular to the base
plane). The connection G0 is realized in the control points 0V0 = 1V0 = 2V0.

Figure 3.3. Meshed base of the vertebra - the top view (left), frontal view of the motion segment
meshing (right)
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4. Illustration of the FEM calculation based on the geometry deve-
loped by using Bézier curves. The biomechanical computations are executed
on the geometry created by using De-Casteljau’s algorithm with combination of the
generation of the batch file for FEM modelling (the configuration of the nodes and
elements). Within the direct geometry modelling the nodes and elements are created
by scaling the border line nodes firstly (shrinking the boundary nodes inwards within
the base plane), and shifting together with scaling of the entire base nodes set along-
side the lateral governing curve afterwards, see Fig.3.2. When meshed, then material
properties are assigned, constraints and loads are applied and the solution is executed.
[5, 6] We provide some illustrative results bellow, see Fig. 4.1 - 4.3

Figure 4.1. Deflection isolines on the motion segment under the uniform distributed load (left)
and the stress isolines on the intervertebral disc (right)

The theoretical biomechanical investigation often reveals the weak places of the
focused object. On the Fig.4.1 there is such a place located around the sunken border
of the intervertebral discs with significantly higher stress values - this place neigh-
bouring with the foramen, i.e. with spinal cord. As the medical practice shows, this
is the place where the most often the disc rupture happens and resulting bulb pushes
to the spinal cord causing the pain. Right in such a kind of exploring the shape of
the biological object is essential.

Figure 4.2. Displacement values alongthe paths on the intervertebral disc
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Figure 4.3. Motion segment under the oblique load: displacement isolines (left), stress isolines
(right)

5. Conclusion. The biomechanical investigation of the human spine undoubt-
edly contributes to better understanding the behaviour of it and can help to find out
the reasons of deformities, pain and diseases; to predict problems or stipulate the ap-
propriate therapy. For the sake of more precise theoretical biomechanical treatment,
and with the aim of enabling the comparison of the theoretical results with exper-
imental data in vitro, it is essential to build up the sufficiently precise geometrical
model involving the proportions matching the individual anatomy of the particular
patient. Bézier curves approach is one of tools.
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