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IMEX FINITE VOLUME EVOLUTION GALERKIN SCHEME FOR
THREE-DIMENSIONAL WEAKLY COMPRESSIBLE FLOWS.∗

GEORGIJ BISPEN , MÁRIA LUKÁČOVÁ-MEDVIĎOVÁ , AND LEONID YELASH†

Abstract. In this paper we will derive an implicit-explicit (IMEX) finite volume evolution
Galerkin scheme for three-dimensional Euler equations. We will in particular concentrate a singular
limit of weakly compressible flows when the Mach number is about O(10−2)−O(10−6). In order to
efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing
the acoustic and gravitational waves and a non-stiff nonlinear part that models nonlinear advection
effects. We use stiffly accurate second order IMEX scheme for time discretization to approximate
stiff linear operator implicitly and the non-stiff nonlinear operator explicitly. Furthermore in order to
take multdimensional effects of flow propagation into account we apply three-dimensional evolution
Galerkin operator.
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1. Introduction. This paper presents new implicit-explicit (IMEX) finite vol-
ume schemes for three-dimensional weakly compressible flows. In the case of weakly
compressible flows the magnitude of flow velocity u is much slower than the sound
speed c, which results in the so-called low Mach number flows. Here the Mach num-

ber is a reference number defined as M = |u|
c . Such low Mach number flows arise in

many applications, such as meteorology, combustion or astrophysics. We refer also
to theoretical works on singular limits of compressible flows, cf. [12, 6]. Development
of efficient and stable numerical schemes for weakly compressible flows is a challeng-
ing task. In the literature we can find already several studies on this topic. In [1]
Bijl and Wesseling have developed a scheme suitable to compute large range of Mach
numbers which is based on the finite difference MAC-type scheme for incompressible
Euler equations. This approach has been further generalized in [11] and a conser-
vative scheme using the pressure-correction and staggered grid approach (as in the
case of the MAC scheme) has been derived and analysed. Another approach, where a
numerical scheme for incompressible flows, the so-called SIMPLE method, has been
extended to weakly compressible flows has been developed by Munz, Roller, Klein
and Geratz in [17]. In this work the formal asymptotic analysis with respect to small
Mach number has been used to gain insight into the limit behavior of the compressible
flow equations as the Mach number vanishes. Consequently, multiple pressure vari-
ables are introduced into the numerical framework, which allowed accurate capturing
of various physical phenomena on very different length scales, see also [20] for further
developments. Recently, there has been an interesting approach to approximate all
Mach numbers flows derived by Feistauer et al. [7, 8], that is based on the higher
order discontinuous Galerkin method.

On the other hand, there are techniques that generalize numerical schemes devel-
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oped for compressible flows in order to obtain accurate and stable methods for weakly
compressible flows, see, e.g., [13, 10, 5]. Inspired by these works, in our recent work
[19] we have split the flux into the stiff/non-stiff parts and applied implicit/explicit
time discretization, that yields a nonlinear elliptic equation for the pressure updates.
This acts similarly to a classical incompressible projection on the system. Unfor-
tunately the Jacobian of the stiff flux function degenerated in the limit as the Mach
number approaches zero and a suitable stabilization was needed. Thus, it implied that
the spatial and the temporal grid sizes, ∆x and ∆t had to be reduced simultaneously
as M → 0. Consequently, the resulting scheme has been only weakly asymptotic
preserving. The concept of the so-called asymptotic preserving schemes has been
introduced by Jin et al., see [10] and the references therein; a numerical scheme is
called asymptotic preserving if it is uniformly consistent as a singular limit parame-
ter, e.g. the Mach number approaches its limit. In particular the scheme reduces to a
consistent approximation of the limit equation.

The aim of this paper is to present a new IMEX FV scheme based on the evolution
Galerkin (EG) operator in order to approximate multidimensional wave propagation.
The EG operator can be considered to be a multidimensional Riemann solver. We
refer a reader to our previous works on the finite volume evolution Galerkin methods
for the shallow water equations [3] or two-dimensional Euler equations of gas dynamics
[16, 15, 14]. As an interesting by-product we will also propose a new IMEX FV scheme
that is asymptotic preserving and uniformly accurate as M → 0.

2. Euler equations. Motion of three-dimensional inviscid compressible flows is
governed by the Euler equations. They express the basic conservation laws: conser-
vation of mass, momentum and energy. In atmospheric applications it is often more
suitable to express the energy equation in terms of potential temperature. We note
that for smooth flows both are equivalent. Let p̄, ρ̄, ū(= 0), θ̄, ρθ express the pressure,
density, velocity, potential temperature and energy for a background state, which is
the hydrostatic equilibrium, i.e.

(2.1) ∂z p̄ = −ρ̄g,

We will assume that θ̄ = const. Furthermore let ρ′, p′,u′, θ′, (ρθ)′ stand for the corre-
sponding perturbations of the background states. Thus, we have ρ = ρ̄+ρ′, p = p̄+p′,
θ = θ̄ + θ′, and (ρθ) = ρθ + ρ̄θ′ + ρ′θ̄ + ρ′θ′ ≡ ρθ + (ρθ)′. Since with the background
state ū = 0, the velocity u = ū+u′ (u ∈ R3) becomes u ≡ u′, we will omit the prime
symbol hereinafter.

In order to avoid numerical instabilities due to the multiscale behaviour of the
Euler equations in the case of low Mach number limit the numerical simulations are
typically realized for the perturbations, which satisfy the following equations

∂tρ
′ +∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u + p′ Id) = −ρ′ge3 ≡ −ρ′g

 0
0
1


∂t(ρθ)

′ +∇ · (ρθu) = 0.

Denoting T temperature, the potential temperature can be obtained from the equation
of adiabatic process in an ideal gas

θ = T

(
p0

p

)R/cp
, R = cp − cv is the specific gas constant.
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In order to close the system we determine pressure from the state equation p =

p0

(
Rρθ
p0

)γ
, where γ = cp/cv is the adiabatic constant and p0 = 105Pa the reference

pressure. Let us denote by c =
√
γp/ρ the sound speed, by L the reference length

in the vertical direction, by ε ≡ M = |u|
c the Mach number and by Fr = |u|√

gL
the

Froude number. Rescaling the Euler equation and assuming that γM2 = Fr2 the
Euler equations read

∂tρ
′ +∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u +
1

ε2
p′ Id) = − 1

ε2
ρ′e3

∂t(ρθ)
′ +∇ · (ρθu) = 0.(2.2)

3. Numerical scheme. In order to take into account multiscale behaviour of
the solution and to derive an asymptotically stable and accurate scheme, we propose
the following splitting of the Euler equations into a linear L and nonlinear N part,
respectively, see also [16] and the references therein. To this end let us rewrite (2.2) in
the following compact form. Let w = (ρ′, ρu, ρθ′)T , F = (ρu, ρu⊗u+ 1

ε2 p
′ Id, ρθu)T ,

S = (0,− 1
ε2 ρ
′e3, 0)T , then (2.2) can be equivalently written as

∂w

∂t
= −∇ · F(w) + S(w) ≡ L(w) +N (w).(3.1)

We would like to point out that the choice of the linear and nonlinear operators,
L and N , respectively, is crucial. Indeed we choose L to model linear acoustic
and gravitational waves, whereas the operator N describes resulting nonlinear ad-
vective/convective effects. Analogously as in [16] we set

(3.2) L(w) ≡ −∇ · FL(w) + S(w) := −


∇ · (ρu)
1
ε2 ∂p

′/∂x1
1
ε2 ∂p

′/∂x2
1
ε2 ∂p

′/∂x3 + 1
ε2 ρ
′

∇ · (θρu)


with the linearized pressure p′ =

cpp

cvρθ
(ρθ)′ and

(3.3) N ≡ −∇ · FN (w) := −∇ ·

 0
ρu⊗ u
θ′ρu

 .

It is worthwhile to point out that the linear subsystem

(3.4)
∂w

∂t
= L(w)

is stiff having the eigenvalues λ1 = − c̄ε , λ2 = λ3 = λ4 = 0, λ5 = c̄
ε , c̄ =

√
γp̄/ρ̄. On the

other hand the nonlinear subsystem is non-stiff and its eigenvalues are λ1 = 0, λ2 =
λ3 = λ4 = u · n, λ5 = 2u · n, where n ∈ R3 is an arbitrary unit vector.

Consequently, we will discretize the Euler equations by the IMEX scheme in time
and approximate the linear stiff system at a new time level tn+1 and the nonlinear at
the old time level tn. This yields the first order IMEX scheme. In order to increase
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the accuracy the second order IMEX schemes can be applied, see, e.g., [3, 4, 16]. In
our recent papers [3, 4] we have studied several second order IMEX schemes with
respect to their asymptotic preserving properties. Here we confine ourselves with the
second order BDF scheme

wn+1 = α0w
n + α1w

n−1

βL(wn+1) + β0N (wn) + β1N (wn−1),

α0 = 4
3 ; α1 = − 1

3 ; β = 2
3∆t; β0 = 4

3∆t; β1 = − 2
3∆t.

Spatial discretization is realized by the finite volume scheme. In particular having
a regular rectangular grid we approximate the corresponding divergence operators by
applying the numerical flux functions in order to approximate fluxes along the cell
interfaces. Let us denote the finite difference in the x1 direction at the mesh cell
Ωi,j,m ≡ [xi−∆x1/2, xi+∆x1/2]×[yj−∆x2/2, yj+∆x2/2]×[zm−∆x3/2, zm+∆x3/2]
by δx1

fi,j,m ≡ fi+1/2,j,m − fi−1/2,j,m; an analogous notation holds in the x2 and x3

direction. The finite volume discretization of the operators L and N yields

L(w`) = −
3∑
k=1

1

∆xk
δxk
F∗L(w`

i,j,m) + S(w`
i,j,m), ` = n+ 1

N (w`) = −
3∑
k=1

1

∆xk
δxk
F∗N (w`

i,j,m), ` = n, n− 1.

For the numerical fluxes on cell interfaces, i.e. δxk
F∗L(w`) and δxk

F∗N (w`), we apply
the multidimensional evolution Galerkin operator in the case of linear subsystem and
the Rusanov numerical flux for the nonlinear subsystem. For example, the Rusanov
flux applied in the x1-direction gives

(3.5) F∗N (w`
i+1/2,j,m) =

1

2

(
FN (w`

i+1,j,m) + FN (w`
i,j,m)− λ(w`

i+1,j,m −w`
i,j,m)

)
with λ denoting the maximum wave speed given by the eigenvalues of (3.3). In the
next section we will derive the multidimensional evolution operator EG that predicts
the solution on cell interfaces, consequently the multidimensional numerical flux is
defined as
(3.6)

F∗L(w`
i+1/2,j,m) =

1

∆x2∆x3

∫ yj+∆x2/2

yj−∆x2/2

∫ zm+∆x3/2

zm−∆x3/2

FL
(
EG(w`)

) ∣∣∣
x1=xi+1/2

dz dy.

The second order methods are obtained via MUSCL-type approach using a linear
reconstruction in space, we refer a reader to, e.g., [3, 4] for further details. In [4] we
have analysed asymptotic preserving properties of the above IMEX FV schemes. In
particular, we have shown that the second order IMEX scheme using the BDF scheme
in time, the central difference numerical flux for the linear part and the Rusanov
numerical flux for the nonlinear one, is asymptotically accurate and stable. For the
later any stable numerical flux, e.g. upwind or central fluxes can be chosen, as well.

4. Evolution operator for the linear acoustic subsystem in three space
dimensions. In this section we will describe multidimensional evolution operator
based on the theory of bicharacteristics for the linear subsytem (3.4). In order to
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derive the exact evolution operator we write the linear system (3.4) in a quasilinear
form

wt +

3∑
i=1

Aiwxi = Q,(4.1)

with the locally frozen Jacobians

Ai =

 0 eTi 0

0 0 (c̄a)2

θ̄aε2
ei

0 θ̄aeTi 0

(4.2)

where c̄a, θ̄a denote local averages and the source term

Q = −

 0
1
ε2 (ρ′ − (ρθ)′ γ−1

θ̄
)e3

ρu3θ̄x3

 .(4.3)

Let us remark that the source Q contains additional terms due to the product rule
applied to c̄2/ε2θ̄ and θ̄.

The system (4.1) is diagonally hyperbolic, i.e. the matrix pencil P (n) =
∑
iAini

is diagonalizable for any unit vector n ∈ R3, |n| = 1. The corresponding matrices
with right and left eigenvectors read

R =

 ε
c̄a 0 0 1 ε

c̄a

−n t1 t2 0 n
θ̄aε
c̄a 0 0 0 θ̄aε

c̄a

 , R−1 =

 0 0 0 1 0
−n

2 t1 t2 0 n
2

c̄a

2θ̄aε
0 0 − 1

θ̄a
c̄a

2θ̄aε

T ,(4.4)

where n, t1, t2 is an orthonormal basis of R3. In particular let n = n(φ, ω), φ ∈
[0, 2π), ω ∈ [−π, π] be given in spherical coordinates, then we choose t1 = dn/dφ,
t2 = dn/dω up to multiplicative constants.

n =

 cos(φ) sin(ω)
sin(φ) sin(ω)

cos(ω)

 , t1 =

 − sin(φ)
cos(φ)

0

 , t2 =

 cos(φ) cos(ω)
sin(φ) cos(ω)
− sin(ω)

(4.5)

Multiplying (4.1) by R−1 from the left we obtain the system in quasi-diagonal
form

vt +

3∑
i=1

Divxi = R−1Q−
3∑
i=1

(Bi −Di)vxi =: S, v = R−1w,(4.6)

where v is the characteristic variable, Bi = R−1AiR and Di is the diagonal matrix
with the diagonal entries of Bi.

v =


1
2

[
c̄a

εθ̄a
(ρθ)′ − ρu · n

]
ρu · t1

ρu · t2

ρ′ − (ρθ)′

θ̄a
1
2

[
c̄a

εθ̄a
(ρθ)′ + ρu · n

]

 , Bi =
c̄a

ε


−ni t1i t2i 0 0
t1i 0 0 0 t1i
t2i 0 0 0 t2i
0 0 0 0 0
0 t1i t2i 0 ni

(4.7)
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Let us point out that the five families of bicharacteristic curves, x1, ...,x5, of the
system (4.1) are given by the ODEs

dxij
dt

= (Di)jj , i = 1, ..., 5, j = 1, ..., 3.(4.8)

For given initial data xi(tn+1) = xP and arbitrary fixed φ ∈ [0, 2π), ω ∈ [−π, π] we
have

x1(t;ω, φ) = xP + (tn+1 − t)c̄an(φ, ω)/ε, x2(t;φ, ω) = ... = x4(t;φ, ω) = xP ,(4.9)

x5(t;φ, ω) = xP − (tn+1 − t)c̄an(φ, ω)/ε.

Let us consider the quasi-diagonal equation (4.6) along the bicharacteristic curves.
Let ṽ = (v1(x1, t), ..., v5(x5, t)), an analogous notation is used for ṽxi

, ṽt, Q̃. Realizing
that the left-hand side of (4.6) is dṽ/dt we have

w(xP , t
n+1) = Rv(xP , t

n+1) = Rṽ(tn) +

tn+1∫
tn

RS̃ dt,(4.10)

where only one bicharacteristic curve for each equation is taking explicitly into ac-
count, namely the one determined by the normal vector n(φ, ω). We average along
all φ ∈ [0, 2π), ω ∈ [−π, π] in order to take all infinitely many directions of infor-
mation propagation into account. Hence, we obtain the genuine multidimensional
representation

w(xP , t
n+1) =

1

4π

2π∫
0

π∫
−π

Rṽ(tn) +

tn+1∫
tn

RS̃ dt

 sin(ω) dω dφ.(4.11)

Let us point out that the integrals along the curve x5 can be rewritten as integrals
along x1, since x5(t;φ, ω + π) = x1(t;φ, ω). Thus, we can simplify the representation
(4.11). Further, the remaining bicharacteristics x2,x3,x4 are equal and do not depend
on n, i.e. on φ and ω. Integrating the continuity and momentum equations in (4.11)
along the second bicharacteristic x2, we obtain that the appearing integrals along the
second bicharacteristic can be written in terms of (ρu)(xP , t

n+1), (ρu)(xP , t
n). After
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some calculations, cf. [2, 3], we obtain the following integral representation

ρ′(xP , t
n+1) =

(
ρ′ − (ρθ)′

θ̄a

)
(xP , t

n) +
(ρθ)′

θ̄a
(xP , t

n+1) +

tn+1∫
tn

ρu3θ̄x3

θ̄a
(xP , t) dt

(4.12a)

ρui(xP , t
n+1) = −3c̄a

4π

2π∫
0

π∫
0

[
(ρθ)′

θ̄aε
− ρu · n(φ, ω)

c̄a

]
(xn, tn)ni(φ, ω) sin(ω) dω dφ

(4.12b)

− 3c̄a

4πε

tn+1∫
tn

2π∫
0

π∫
0

f(x, t, φ, ω)ni(φ, ω) sin(ω) dω dφ dt

(ρθ)′(xP , t
n+1) =

θ̄a

4π

2π∫
0

π∫
0

[
(ρθ)′

θ̄a
− ερu · n(φ, ω)

c̄a

]
(xn, tn) sin(ω) dω dφ

(4.12c)

+
θ̄a

4π

tn+1∫
tn

2π∫
0

π∫
0

f(x, t, φ, ω) sin(ω) dω dφ dt

with xn = x1(tn;φ, ω) and

f(x, t, φ, ω) = −
2∑
j=1

tj · ∇(ρu · tj) +
cos(ω)

c̄aε

(
ρ′ − (γ − 1)

(ρθ)′

θ̄

)
− ρu3θ̄x3

θ̄a
.(4.12d)

Due to its implicit nature we are not able to evaluate the evolution operator (4.12)
analytically. To this end we derive an approximate evolution operator by applying the
rectangle for time integration over the mantle of the so-called bicharacteristic cone,
cf. [14]. Moreover we use the integration by parts1 in order to rewrite the sum in
(4.12d) without the derivatives of ρu. Hence, we obtain the following approximate

1This special integration by parts is referred to as the beautiful or useful lemma in [14].
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evolution operator (for the sake of simplicity for smooth data)

ρ′(xP , t
n+1) = ρ′(xP , t

n)− (ρθ)′

θ̄a
(xP , t

n) +
(ρθ)′

θ̄a
(xP , t

n+1) + ∆t
ρu3θ̄x3

θ̄a
(xP , t

n)

(4.13a)

ρui(xP , t
n+1) = −3c̄a

4π

2π∫
0

π∫
0

[
(ρθ)′

θ̄aε
+

ρui
c̄ani(φ, ω)

]
(xn, tn)ni(φ, ω) sin(ω) dω dφ

(4.13b)

+
3

π

2π∫
0

π∫
0

ρu · n(φ, ω)(xn, tn)ni(φ, ω) sin(ω) dω dφ(4.13c)

−∆t
3c̄a

4πε

2π∫
0

π∫
0

h(x, t, φ, ω)ni(φ, ω) sin(ω) dω dφ

(ρθ)′(xP , t
n+1) =

θ̄a

4π

2π∫
0

π∫
0

[
(ρθ)′

θ̄a
− 3ε

ρu · n(φ, ω)

c̄a

]
(xn, tn) sin(ω) dω dφ

(4.13d)

+ ∆t
θ̄a

4π

2π∫
0

π∫
0

h(x, t, φ, ω) sin(ω) dω dφ

with xn = x1(tn;φ, ω) and

h(x, t, φ, ω) =
cos(ω)

c̄aε

(
ρ′ − (γ − 1)

(ρθ)′

θ̄

)
− ρu3θ̄x3

θ̄a
.(4.13e)

The approximate evolution operator (4.13) is an explicit operator used in time-
explicit schemes. In order to obtain the local evolution operator cf. [21, 3, 4, 2]
we follow [21], i.e. we consider the limit ∆t → 0. This can be done rigorously,
cf. [4]. However, we want to motivate here that the function f in (4.12) is bounded.
Therefore, the time integrals in (4.12) vanish in the limit ∆t→ 0, since tn+1 = tn+∆t.
Consequently, we obtain the local evolution operator

ρ′(xP , t
n) = ρ′(xP , t

n)− (ρθ)′

θ̄a
(xP , t

n) +
(ρθ)′

θ̄a
(xP , t

n)(4.14a)

ρui(xP , t
n) = −3c̄a

4π

2π∫
0

π∫
0

[
(ρθ)′

θ̄aε
− ρu · n(φ, ω)

c̄a

]
(xn, tn)ni(φ, ω) sin(ω) dω dφ

(4.14b)

(ρθ)′(xP , t
n+1) =

θ̄a

4π

2π∫
0

π∫
0

[
(ρθ)′

θ̄a
− ερu · n(φ, ω)

c̄a

]
(xn, tn) sin(ω) dω dφ

(4.14c)

with xn = x1(tn;φ, ω) and ρ′(xP , t
n) − (ρθ)′

θ̄a
(xP , t

n) are obtained by local averaging
of ρ′ and (ρθ)′ at xP and time tn.
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Fig. 1. Excess potential temperature θ′ at times t = 0, 500 and 1000s for a rising smooth
thermal bubble obtained by the new IMEX finite volume evolution Galerkin schemes. The real-world
domain is (1km)3 (only a half of the computational domain is shown in the x-direction to visualise
the interior temperature profiles of the air bubble). Mesh resolution is 643 cells; the spatial resolution
1000m/64 = 15.625m. Colors correspond to values of the potential temperature θ′ in range 0− 0.1K
and the background color (θ′ = 0) has been removed.

5. Numerical experiment. Using newly developed scheme we conduct a nu-
merical experiment for free convection of a smooth warm air bubble. This test case
was first presented by Giraldo and Restelli in [9], see also [18]. We confine ourselves
to this test case since it has been computed in [16] using a discontinuous evolution
Galerkin scheme which is based on the evolution operator approach, too.

The perturbation of the potential temperature of an air bubble is given by

(5.1) θ′ =

{
0 for r > rc

(θ′c/2) [1 + cos (πr/rc)] for r ≤ rc,

where θ′c = 0.5 K is the maximal initial amplitude of the perturbation, rc = 250m
is the bubble radius, and r the distance to the center of the bubble (xc, yc, zc). The
computation domain is a cube (1km)3 and the air bubble is placed at xc = 500m,
yc = 500m, zc = 350m.

In Figure 1 we present the time evolution of the warm air bubble for t = 0, 500 and
1000s. At time t = 0 the bubble is resting and spherically shaped, at time t = 500s the
top of the bubble has just reached the top of the simulation box (z = 1000m) and the
bubble has deformed to a characteristic symmetric mushroom-like shape due to the
shear friction with the surrounding air at the warm/cold air interface. After t = 500s
the upper part of the air bubble is pressed against the top of the simulation box due
to the inertial forces of the advective motion of warm air masses which then slide
down along the vertical boundaries of the simulation box, as shown in Figure 1 for
time t = 1000s. In our simulations we use the no-flux boundary conditions. The mesh
resolution in this experiment is 643 cells that corresponds to the spatial resolution of
1000m/64 = 15.625m in one dimension.

In order to calculate approximation errors and the order of convergence of the new
scheme we needed a reference solution wref to compare with a solution wn obtained
on a mesh with the resolution degree n. An analytical solution for our test experiment
is not available but we wish to analyse the convergence of our scheme for a possibly
finest mesh. For a desired mesh resolution at least 1024 cells per dimension, a truly
3d-simulation requires a huge amount of computer power to process 109 cells. Hence
we have decided to generated a set of solutions for up to 1024 cells per dimension
in quasi-two dimensional simulations and pickup that one with the finest mesh as a
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Fig. 2. Excess potential temperature θ′ at times t = 0, 500 and 1000s for a rising smooth thermal
bubble in quasi-two dimensional simulations obtained by the new IMEX finite volume evolution
Galerkin schemes. Mesh resolution 512× 1× 512 cells; the spatial resolution 1000m/512 ≈ 1.953m.
The real-world domain is 1000m × 1.953m × 1000m .

reference solution. The quasi-two dimensional means that simulations are performed
in a 3d-box in which the y-direction consists of only one layer of cells whereas the x-
and the z-directions consist of 2n cells each. Respectively, the lengths of the box sides
were also adjusted to keep the elementary cells cubic shaped. The snapshots of such
quasi-2d simulations for 512× 1× 512 cells at times t = 0, 500 and 1000s are shown
in Figure 2. They have been obtained with the same FVEG3D code which we use to
generate the 3d results shown in Figure 1.

In Table 1 the experimental order of convergence EOC(n) = log2
‖wn−wref‖
‖wn+1−wref‖

and the corresponding approximation errors ‖wn −wref‖ in L1-norms are shown for
numerical solutions on a mesh with resolution degree n. One can see that at time
t = 150s the dominant approximation error is determined by ρu3, the momentum
component in the z-direction, in which the advective motion is being developed due
to the buoyancy forces. This variable in the Euler equations determines also the total
approximation error and the order of convergence of the whole model (cf. the second
and the third columns of Table 1 calculated for the sum of L1-norms of all variables to
those for individual variables). Our numerical experiments clearly demonstrate that
the EOC converges to the second order. In this experiment a singular parameter ε was
approximately 10−2. In our forthcoming paper [4] we present analysis of asymptotic
preserving properties of newly developed IMEX FV schemes for the Euler equations,
see also [2].
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finite volume methods for low Froude number shallow water flows, Comm. Comput. Phys.,
16 (2014), pp. 307–347.
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