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ON THE UNIFORM STABILITY OF THE SPACE-TIME
DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY

PROBLEMS IN TIME-DEPENDENT DOMAINS

MONIKA BALÁZSOVÁ ∗ AND MILOSLAV FEISTAUER†

Abstract. In this paper we investigate the stability of the space-time discontinuous Galerkin
method (STDGM) for the solution of nonstationary, linear convection-diffusion-reaction problem
in time-dependent domains formulated with the aid of the arbitrary Lagrangian-Eulerian (ALE)
method. The stability is uniform with respect to the diffusion coefficient. The ALE method replaces
the classical partial time derivative with the so called ALE-derivative and an additional convective
term. In the second part of the paper we discretize our problem using the space-time discontinuous
Galerkin method. In the formulation of the numerical scheme we use the nonsymmetric, symmetric
and incomplete versions of the space discretization of diffusion terms and interior and boundary
penalty. The space discretization uses piecewise polynomial approximations of degree p ≥ 1, in time
we use only piecewise linear discretization. Finally in the third part of the paper we present our
results concerning the uniform unconditional stability of the method.
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1. Formulation of the continuous problem. We consider an initial-boundary
value nonstationary, linear convection-diffusion-reaction problem in a time-dependent
bounded, polygonal domain Ωt ⊂ R2:

Find a function u = u(x, t) with x ∈ Ωt, t ∈ (0, T ) such that

∂u

∂t
+ v · ∇u− ε4u+ cu = g in Ωt, t ∈ (0, T ),(1.1)

u = uD on ∂Ωt, t ∈ (0, T ),(1.2)

u(x, 0) = u0(x), x ∈ Ω0.(1.3)

We assume that v = (v1, v2), c, g, uD, u
0 are given functions and ε > 0 is a

given constant. Moreover let QT = {(x, t); t ∈ (0, T ), x ∈ Ωt}, and let us assume,
that there exist constants cv, cc > 0, such that

v ∈ C([0, T ]; W 1,∞(Ωt)), |∇v| ≤ cv, |v| ≤ cv in QT ,

c ∈ C([0, T ], L∞(Ωt)), |c(x, t)| ≤ cc in QT .

Problem (1.1)–(1.3) will be reformulated using the so called arbitrary Lagrangian-
Eulerian (ALE) method (see, e.g., [7]). It is based on a regular one-to-one ALE
mapping of the reference domain Ω0 onto the current configuration Ωt:

At : Ω0 → Ωt,

X ∈ Ω0 → x = x(X, t) = At(X) ∈ Ωt, t ∈ [0, T ].
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We assume that At ∈ C1([0, T ];W 1,∞(Ωt)), i.e. the mapping At belongs to the
Bochner space of continuously differentiable functions in [0, T ] with values in the
Sobolev space W 1,∞(Ωt). We define the ALE velocity by

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0,

z(x, t) = z̃(A−1
t (x), t), t ∈ [0, T ], x ∈ Ωt.

Let |z(x, t)|, |div z(x, t)| ≤ cz for x ∈ Ωt, t ∈ (0, T ). Further, we define the ALE
derivative Dtf = Df/Dt of a function f = f(x, t) for x ∈ Ωt and t ∈ [0, T ] as

Dtf(x, t) =
D

Dt
f(x, t) =

∂f̃

∂t
(X, t),

where f̃(X, t) = f(At(X), t), X ∈ Ω0, and x = At(X) ∈ Ωt. The use of the chain
rule yields the relation

Df

Dt
=
∂f

∂t
+ z · ∇f,(1.4)

which allows us to reformulate problem (1.1)–(1.3) in the ALE form:
Find u = u(x, t) with x ∈ Ωt, t ∈ (0, T ) such that

Dtu+ (v − z) · ∇u− ε4u+ cu = g in Ωt, t ∈ (0, T ),(1.5)

u = uD on ∂Ωt,(1.6)

u(x, 0) = u0(x), x ∈ Ω0.(1.7)

In what follows, we shall use the notation w = v − z for the ALE transport
velocity.

In the case, when problem (1.1)–(1.3) is considered in a domain Ω independent
of time, the space-time discontinuous Galerkin discretization was used and error es-
timates were derived in [6]. These results were generalized to the case of nonlinear
convection and diffusion (cf. [4]). The paper [2] is devoted to the proof of uncondi-
tional stability of the space-time discontinuous Galerkin method (STDGM) applied
to the nonlinear convection-diffusion problem in a fixed domain. The solution of
initial-boundary value problems in time-dependent domains plays an important role,
particularly in fluid-structure interaction. In [3], the stability of the time discontin-
uous Galerkin semi-discretization of problem (1.5)–(1.7) was analyzed. The work [1]
deals with the stability of the complete space-time discontinuous Galerkin method for
the nonlinear convection-diffusion problem in time-dependent domains. The stability
was proved in the discrete L∞(L2)-norm and the DG-H1-norm, which is bounded by
a constant multiplied by an expression containing norms of data. Because of the non-
linearity of the problem, the constant in the stability estimate blows up exponentially
in dependence on the 1/β0, where β0 is the lower bound of the diffusion coefficient.
Here we are concerned with the investigation of the uniform stability independent of
the arbitrarily small diffusion coefficient ε > 0 of the complete STDGM applied to
problem (1.5)–(1.7) in a time-dependent domain.

2. Derivation of the discrete problem. In the time interval [0, T ] we con-
struct a partition formed by time instants 0 = t0 < t1 < . . . < tM = T and
set Im = (tm−1, tm) and τm = tm − tm−1 for m = 1, . . . ,M . Further we set
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τ = maxm=1,··· ,M τm. For a function ϕ defined in
⋃M
m=1 Im we denote one-sided limits

at tm as ϕ±m = ϕ(tm±) = limt→tm± ϕ(t) and the jump as {ϕ}m = ϕ(tm+)− ϕ(tm−).
For any t ∈ [0, T ] we denote by Th,t a partition of the closure Ωt into a finite

number of closed triangles with mutually disjoint interiors. We set hK = diam(K)
and denote by ρK the radius of the largest circle inscribed into K ∈ Th,t.

The boundary of the domain will be divided into to parts: ∂Ωt = ∂Ω−t ∪ ∂Ω+
t :

w(x, t) · n(x) < 0 on ∂Ω−t ,∀t ∈ [0, T ] (inflow boundary)

w(x, t) · n(x) ≥ 0 on ∂Ω+
t ,∀t ∈ [0, T ] (outflow boundary),

where n denotes the unit outer normal to ∂Ω. Similarly for each K ∈ Th,t we set

∂K− (t) = {x ∈ ∂K; w (x, t) · n (x) < 0} ,
∂K+ (t) = {x ∈ ∂K; w (x, t) · n (x) ≥ 0} .

Here n denotes the unit outer normal to ∂K.
By Fh,t we denote the system of all faces of all elements K ∈ Th,t. It consists of the

set of all inner faces FIh,t and the set of all boundary faces FBh,t: Fh,t = FIh,t∪FBh,t. Each

Γ ∈ Fh,t will be associated with a unit normal vector nΓ. By K
(L)
Γ and K

(R)
Γ ∈ Th,t

we denote the elements adjacent to the face Γ ∈ Fh,t. We shall use the convention

that nΓ is the outer normal to ∂K
(L)
Γ . Over a triangulation Th,t, for each positive

integer k, we define the broken Sobolev space

Hk(Ωt, Th,t) = {ϕ;ϕ|K ∈ Hk(K) ∀K ∈ Th,t}.

If ϕ ∈ H1(Ωt, Th,t) and Γ ∈ Fh,t, then ϕ|(L)
Γ , ϕ|(R)

Γ will denote the traces of ϕ on

Γ from the side of elements K
(L)
Γ ,K

(R)
Γ adjacent to Γ. For Γ ∈ FIh,t we set

〈ϕ〉Γ =
1

2

(
ϕ|(L)

Γ + ϕ|(R)
Γ

)
, [ϕ]Γ = ϕ|(L)

Γ − ϕ|(R)
Γ ,

h(Γ) =
h
K

(L)
Γ

+ h
K

(R)
Γ

2
for Γ ∈ FIh,t, h(Γ) = h

K
(L)
Γ

for Γ ∈ FBh,t.

If u, ϕ ∈ H2(Ωt, Th,t), θ ∈ R and cW > 0, we introduce the following forms (let
us note that in integrals over faces we omit the subscript Γ).
Diffusion form:

ah(u, ϕ, t) =
∑

K∈Th,t

∫
K

∇u · ∇ϕdx(2.1)

−
∑

Γ∈FI
h,t

∫
Γ

(〈∇u〉 · n [ϕ] + θ 〈∇ϕ〉 · n [u]) dS

−
∑

K∈Th,t

∫
∂K−∩∂Ωt

(∇u · nϕ+ θ∇ϕ · nu) dS,

Interior and boundary penalty:

Jh(u, ϕ, t) = cW
∑

Γ∈FI
h,t

h(Γ)−1

∫
Γ

[u] [ϕ] dS(2.2)

+cW
∑

K∈Th,t

h(Γ)−1

∫
∂K−∩∂Ωt

uϕdS,(2.3)
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Complete diffusion form:

Ah(u, ϕ, t) = εah(u, ϕ, t) + ε Jh(u, ϕ, t),(2.4)

Reaction form:

ch(u, ϕ, t) =
∑

K∈Th,t

∫
K

cuϕ dx.(2.5)

We consider θ = 1, θ = 0 and θ = −1 and get the symmetric (SIPG), incom-
plete (IIPG) and nonsymmetric (NIPG) variants of the approximation of the diffusion
terms, respectively.

It is important to discretize the expression
∫
K

(w · ∇u)ϕdx in a suitable way.
Applying Green’s theorem, we get

∫
K

(w · ∇u)ϕdx =−
∫
K

u∇ · (ϕw) dx+

∫
∂K

(w · n)uϕdS

(2.6)

=−
∫
K

u∇ · (ϕw) dx+

∫
∂K−

(w · n)uϕdS +

∫
∂K+

(w · n)uϕdS.

Then we approximate the expression
∫
K

(w · ∇u)ϕdx in the form∫
K

(w · ∇u)ϕdx ≈ −
∫
K

u∇ · (ϕw) dx+
∑

Γ⊂∂K

∫
Γ

H(u
(L)
Γ , u

(R)
Γ ,nΓ)ϕdS,(2.7)

where H is the numerical flux defined with the aid of upwinding:

H(u1, u2,n) =

{
w · n u1, if w · n < 0,
w · n u2, if w · n ≥ 0,

(2.8)

and H(u1, u2,n) = w ·nuD on ∂K−∩∂Ωt (this numerical flux is Lipschitz continuous
in u1, u2, consistent and conservative (see [5], Section 3.3.). We use the notation
[u] = u − u−, where by u− we denote the value of u from outside of the element K
on ∂K−. Then substituting (2.8) into (2.7) we get the relation∫

K

(w · ∇u)ϕdx(2.9)

= −
∫
K

u∇ · (ϕw) dx+

∫
∂K−

(w · n)u−ϕdS +

∫
∂K+

(w · n)uϕdS

= −
∫
K

u∇ · (ϕw) dx+

∫
∂K

(w · n)uϕdS −
∫

∂K+∪∂K−

(w · n)uϕdS

+

∫
∂K−

(w · n)u−ϕdS +

∫
∂K+

(w · n)uϕdS.

Applying the Green theorem to the first term on the right-hand side of (2.9), we find
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that ∫
K

(w · ∇u)ϕdx(2.10)

=

∫
K

(w · ∇u)ϕdx+

∫
∂K−

(w · n)
(
u− − u

)
ϕdS

=

∫
K

(w · ∇u)ϕdx−
∫

∂K−\∂Ωt

(w · n) [u]ϕdS −
∫

∂K−∩∂Ωt

(w · n) (u− uD)ϕdS.

On the basis of this relation, we define the convection form

bh(u, ϕ, t) =
∑

K∈Th,t

∫
K

w · ∇uϕdx(2.11)

−
∑

K∈Th,t

∫
∂K−∩∂Ωt

(w · n)uϕdS −
∑

K∈Th,t

∫
∂K−\∂Ωt

(w · n)[u]ϕdS.

and the right-hand side form

lh(ϕ, t) =
∑

K∈Th,t

∫
K

gϕ dx+ ε cW
∑

Γ∈FB
h,t

h(Γ)−1

∫
Γ

uD ϕdS(2.12)

−
∑

K∈Th,t

∫
∂K−∩∂Ωt

θ∇ϕ · nuD dS −
∑

K∈Th,t

∫
∂K−∩∂Ωt

(w · n)uDϕdS.

Further, we set

(ϕ,ψ)ω =

∫
ω

ϕψ dx, ‖ϕ‖ω =

(∫
ω

|ϕ|2 dx
)1/2

,

‖η‖w,σ =
∥∥∥√|w · n| η∥∥∥

L2(σ)
,

where ω ⊂ R2, σ is either a subset of ∂Ω or ∂K and n denotes the corresponding
outer unit normal to ∂Ω or ∂K, provided the integrals make sense.

Let p, q ≥ 1 be integers. For any m = 1, . . . ,M and t ∈ [0, T ] we define the
finite-dimensional spaces

Sph,t =
{
ϕ ∈ L2(Ωt); ϕ|K ∈ P p(K), K ∈ Th,t, t ∈ [0, T ]

}
,

Sp,qh,τ =
{
ϕ ∈ L2(QT ); ϕ = ϕ(x, t), for each X ∈ Ω0

the function ϕ(At(X), t) is a polynomial

of degree ≤ q in t, ϕ(·, t) ∈ Sph,t for every t ∈ Im, m = 1, . . . ,M
}
.

Definition 2.1. We say that function U is an approximate solution of problem
(1.5)–(1.7), if U ∈ Sp,qh,τ and∫

Im

(
(DtU,ϕ)Ωt

+Ah(U,ϕ, t) + bh(U,ϕ, t) + ch(U,ϕ, t)
)
dt(2.13)

+({U}m−1, ϕ
+
m−1)Ωtm−1

=

∫
Im

lh(ϕ, t) dt ∀ϕ ∈ Sp,qh,τ , m = 1, . . . ,M,

U−0 ∈ S
p
h,0, (U−0 − u0, vh) = 0 ∀vh ∈ Sph,0.(2.14)
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The discrete problem is constructed in such a way that it is consistent, which means
that the exact solution u ∈ H2(Ω) satisfies identity (2.13), when U is replaced by u.

3. Investigation of the stability. Our goal is to prove the uniform stability
represented by an estimate of the approximate solution in suitable norms by data
with constants independent of h, τ and the diffusion coefficient ε. Since this analysis
is rather complicated, it is possible to give here only a brief description of results and
of their proofs.

In our further considerations for each t ∈ [0, T ] we introduce a system of conform-
ing triangulations {Th,t}h∈(0,h0), where h0 > 0. We assume that it is shape regular
and locally quasiuniform. This means that there exist positive constants cR and cQ,
independent of K,Γ, t and h such that for all t ∈ [0, T ] it holds

hK
ρK
≤ cR for all K ∈ Th,t,(3.1)

h
K

(L)
Γ

≤ cQhK(R)
Γ

, h
K

(R)
Γ

≤ cQhK(L)
Γ

for all Γ ∈ FIh,t.(3.2)

Under these assumptions, the multiplicative trace inequality and the inverse inequality
hold. Moreover, we assume that

Th,t = {Kt = At(K0);K0 ∈ Th,0}.

This assumption is usually satisfied in practical computations, when the ALE mapping
At is a continuous, piecewise affine mapping in Ω0 for each t ∈ [0, T ].

In the space H1(Ω, Th,t) we define the norm

‖ϕ‖DG,t =

 ∑
K∈Th,t

|ϕ|2H1(K) + Jh(ϕ,ϕ, t)

1/2

.

Moreover, over ∂Ω we define the norm

‖uD‖DGB,t =

cW ∑
K∈Th,t

h−1(Γ)

∫
∂K−∩∂Ωt

|uD|2 dS

1/2

.

If we use ϕ := U as a test function in (2.13), we get the basic identity∫
Im

(
(DtU,U)Ωt

+Ah(U,U, t) + bh(U,U, t) + ch(U,U, t)
)
dt(3.3)

+({U}m−1, U
+
m−1)Ωtm−1

=

∫
Im

lh(U, t) dt.

Let us denote

(3.4) σ(U) =
1

2

∑
K∈Th

(
‖U‖2w,∂K∩∂Ω + ‖[U ]‖2w,∂K−\∂Ω

)
.

For a sufficiently large constant cW , whose lower bound is determined by the constants
from the multiplicative trace inequality, inverse inequality and local quasiuniformity
of the meshes, we can prove the coercivity of the diffusion and penalty terms:∫

Im

Ah(U,U, t) dt ≥ ε

2

∫
Im

‖U‖2DG,t dt.(3.5)
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Furthermore, for every k1 > 0 the following inequalities for the convective term,
reaction term and for the right-hand side form hold:∫

Im

bh(U,U, t) dt =

∫
Im

(
σ(U)− 1

2

∫
Ωt

U2∇ ·w dx

)
dt,(3.6) ∫

Im

|ch(U,U, t)| dt ≤ cc
∫
Im

‖U‖2Ωt
dt,(3.7) ∫

Im

|lh(U, t)| dt ≤ 1

2

∫
Im

(
‖g‖2Ωt

+ ‖U‖2Ωt

)
dt(3.8)

+εk1

∫
Im

‖uD‖2DGB,t dt+
ε

k1

∫
Im

‖U‖2DG,t dt.

The proof of (3.7) follows immediately from the definition of the form ch and the proof
of (3.8) is a consequence of the definition of the form lh and the Young inequality.
However, the proof of (3.6) is rather complicated and technical and will be contained
in a paper in progress.

In what follows, we are concerned with the derivation of inequalities based on
estimating the expression

∫
Im

(DtU,U)Ωt
dt. By a simple manipulation we find that∫

Im

(DtU,U)Ωt
dt+

(
{U}m−1, U

+
m−1

)
(3.9)

≥ 1

2

(
‖U−m‖2Ωtm

− ‖U−m−1‖2Ωtm−1
+ ‖{U}m−1‖2Ωtm−1

)
−1

2

∫
Im

(U2,∇ · z)Ωt
dt,

and ∫
Im

(DtU,U)Ωt
dt+ ({U}m−1, U

+
m−1)Ωtm−1

(3.10)

≥ 1

2
(‖U−m‖2Ωtm

+
1

2
‖U+

m−1‖2Ωtm−1
)− (U−m−1, U

+
m−1)Ωtm−1

−1

2

∫
Im

(U2,∇ · z)Ωt
dt.

Taking into account that σ(U) ≥ 0 and w = v−z and putting k1 = 4, from (3.3)
and (3.5)–(3.9), we get the relation

‖U−m‖2Ωtm
− ‖U−m−1‖2Ωtm−1

−
∫
Im

(U2,∇ · v)Ωt
dt(3.11)

+

∫
Im

(2c− 1, U2)Ωt
+
ε

2

∫
Im

‖U‖2DG,t dt

≤ c1
∫
Im

(
‖g‖2Ωt

+ ‖uD‖2DGB,t
)
dt

with a constant c1 independent of data, h, τ and ε. First, let us assume that

(3.12) 2c(x, t)−∇ · v(x, t) ≥ 1, x ∈ Ωt, t ∈ (0, T ).
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Then the summation of (3.11) over m = 1, . . . , k ≤M yields the estimate

‖U−k ‖Ωtk
+
ε

2

k∑
m=1

∫
Im

‖U‖2DG,t dt(3.13)

≤ ‖U−0 ‖2Ω0
+ c1

k∑
m−1

∫
Im

(
‖g‖2Ωt

+ ‖uD‖2DGB,t
)
dt,

which proves the stability.

If condition (3.12) is not valid, then the stability analysis is more complicated.
In this case, instead of (3.11) we get the inequality

‖U−m‖2Ωtm
− ‖U−m−1‖2Ωtm−1

+
ε

2

∫
Im

‖U‖2DG,t dt(3.14)

≤ c1
k∑

m−1

∫
Im

(
‖g‖2Ωt

+ ‖uD‖2DGB,t
)
dt+ c2

∫
Im

‖U‖2Ωt
dt,

where the constants c1 and c2 are independent of h, τ, ε and of the data g, uD.

It is necessary to estimate the term
∫
Im
‖U‖2Ωt

dt. It is rather technical and the
proof has been carried out for q = 1, i.e., for piecewise linear time discretization.
Then similarly as in [1] it is possible to show that there exist constants L1 and M1

such that

‖Um−1‖2Ωtm−1
+ ‖Um‖2Ωtm

≥ L1

τm

∫
Im

‖U‖2Ωt
dt,(3.15)

‖U+
m−1‖2Ωtm−1

≤ M1

τm

∫
Im

‖U‖2Ωt
dt.

This allows us to prove that there exists a constant c∗ > 0 depending on c2 and L1

such that

(3.16)

∫
Im

‖U‖2Ωt
dt ≤ 2c1

L1
τm

∫
Im

(
‖g‖2Ωt

+ ‖uD‖2DGB,t
)
dt+

8M1

L2
1

τm‖U−m−1‖2Ωtm−1

holds, if 0 < τm ≤ c∗.
Now, by virtue of (3.14) and (3.16), the summation over m = 1, . . . , k ≤M and

the application of the discrete Gronwall lemma we get the following result.

Theorem 3.1. Let q = 1 and 0 < τm ≤ c∗. Then there exists a constant c3 > 0
independent of h, τ, ε such that

‖U−m‖2Ωtm
+

m∑
j=1

‖{Uj−1}‖2Ωtj−1
+
ε

2

m∑
j=1

∫
Ij

‖U‖2DG,j dt(3.17)

≤ c3

‖U−0 ‖2Ωt0
+ c1

(
1 +

2c2c
∗

L1

) m∑
j=1

∫
Ij

(
‖g‖2Ωtj

+ ‖uD‖2DGB,t
)
dt

 ,

m = 1, . . . ,M, h ∈ (0, h0).
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