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RESIDUAL BASED ERROR ESTIMATES FOR THE SPACE-TIME
DISCONTINUOUS GALERKIN METHOD APPLIED TO

NONLINEAR HYPERBOLIC EQUATIONS

VÍT DOLEJŠÍ ∗ AND FILIP ROSKOVEC†

Abstract. We present an adaptive numerical method for solving nonlinear hyperbolic equations.
The method uses the space-time discontinuous Galerkin discretization, exploiting its high polynomial
approximation degrees with respect to both space and time coordinates. We derive an residual-
based a posteriori error estimator and propose an efficient strategy how to identify the parts of
the computational error caused by the space and time discretization, respectively, as well as the
errors arising from the linearization of the resultant algebraic system of equations. Further, an
algorithm keeping all these three components of the computational error balanced is presented. The
computational performance of the proposed method is demonstrated by numerical experiments.
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1. Introduction. Our main goal is to develop an efficient algorithm for solving
unsteady nonlinear hyperbolic systems of partial differential equations. We employ the
space discontinuous Galerkin method (DG), which is based on discontinuous piecewise
polynomial aproximation. The space DG discretization leads to a system of stiff
ordinary differential equation. We consider the time Discontinuous Galerkin method
for discretizing this system. The resulting space-time discontinuous Galerkin method
(STDG) employs discontinuous piecewise polynomial approximation with respect to
both spatial and temporal variables. The approximate solution of the given system
of partial differential equations is suffering from three types of errors:

• space error resulting from the space semi-discretization of the given system
by the DG method

• time error resulting from the time DG discretization of the system of ordinary
differential equations coming from the space DG method

• algebraic error (including rounding errors) resulting from the linearization
and subsequent solution of the nonlinear algebraic system of equations arising
from the STDG discretization.

All of these components of the total error need to be balanced in order to provide
an efficient adaptive algorithm. In [5], we derived (rather heuristic) residual error
estimators which are able to identify the space, time and algebraic errors. These
estimates are based on the approximation of the errors in a dual norm similarly as
in [6], where we dealt with steady nonlinear convection-diffusion problems. This
approach is very fast and simple to implement since neither an additional problem
is solved nor a finite element reconstruction is constructed. Based on these residual
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estimators we propose an algorithm, where the time and algebraic errors are controlled
by the space error and therefore they do not essentially contribute to the total error.
The resulting scheme enables local space and global time adaptation.

The content of this paper is the following. In Section 2 we recall the system of
nonlinear hyperbolic equations and we shortly describe the space-time discretization
and solution procedure. In Section 3 we present the residual estimators and the
resulting adaptive algorithm. Section 4 contains a few numerical illustrations of the
presented techniques.

2. Space-time DG discretization of the nonlinear hyperbolic equation.
Let Ω ⊂ Rd, d = 2, 3 be a polygonal (polyhedral for d = 3) domain and T > 0. We
set QT = Ω × (0, T ) and by ∂Ω we denote the boundary of Ω. The system of the
nonlinear hyperbolic equations can be written in the following form

∂w

∂t
+

d∑
i=1

∂f i(w)

∂xi
= 0 in QT ,(2.1)

where w = w(x, t) : QT → Rs is the unknown state vector and f i : Rs → Rs, i =
1, . . . , s represent the convective fluxes. The system (2.1) is equipped with the initial
condition w(x, 0) = w0(x), x ∈ Ω and suitable boundary conditions. We assume
that the fluxes and boundary conditions are chosen such that the problem (2.1) has
an unique solution, see [8].

2.1. Function spaces a discrete formulation of the problem. We use the
standard notation for function spaces with usual norms and semi-norms (see, e. g.,
[13], [14]):

L2(M) denotes the Lebesgue space of square integrable functions over a set M ,
Hk(M), k = 0, 1, . . . are the Sobolev spaces of functions with square integrable weak
derivatives of order k over M . The bolted symbols Hk(M), k = 0, 1, . . . denote
Sobolev spaces of vector-valued functions from M to Rs. By (·, ·)M we denote the
L2-scalar product over M .

Furthermore, L2(I;X) (H1(I;X)) denotes the Bochner space of functions square
integrable (square integrable first time derivative) over an interval I ⊂ R with values
in a Banach space X.

Let 0 = t0 < t1 < . . . < tr = T be a partition of (0, T ) generating time intervals
Im = (tm−1, tm], m = 1, . . . , r of the length |Im| = τm and τ = maxm=1,...,rτm.
Moreover, we set Iτ := {Im}rm=1. At every time level tm, m = 0, . . . , r we consider
generally different space partition Th,m consisting of a finite number of closed simplices
K with mutually disjoint interiors covering Ω. Moreover, we set Th := {Th,m}rm=1

and h := maxm=1,...,r maxK∈Th,mdiam(K). The pair {Th, Iτ} we call the space-time
partition of the domain QT .

Let m = 0, . . . , r be arbitrary but fixed number denoting an index of a time
interval. Let Th,m be the corresponding triangulation. We define the so-called broken
Sobolev spaces

H1(Th,m) := {v : Ω→ R; v|K ∈ H1(K) ∀K ∈ Th,m}, HHH1(Th,m) := [H1(Th,m)]s
(2.2)

of scalar and vector-valued functions, respectively.
Furthermore, we define the broken space-time space over {Th, Iτ} by

H1(Iτ ,HHH1(Th)) :=
{
ψψψ|K×Im ∈ H1(Im;H1(K)), K ∈ Th,m, Im ∈ Iτ

}
,(2.3)
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consisting of piecewise regular functions on space-time elements K × Im, K ∈ Th,m,
Im ∈ Iτ . These functions are in general discontinuous between every two neighbouring
elements K,K ′ ∈ Th as well as between any two consecutive time intervals Im, Im+1 ∈
Iτ .

Moreover, we define the spaces of discontinuous piecewise polynomial functions.
Even though the DG method allows using different polynomial degrees over mesh
elements, we consider here only the fixed degrees of polynomial approximation for all
K ∈ Th, for simplicity.

Let Th,m be a triangulation on the time level Im, m = 0, . . . , r. We put

Sm,h,p = {ϕ : Ω→ R; ϕ(x)|K ∈ Pp(K) ∀K ∈ Th,m}, SSSm,h,p := [Sm,h,p]
s,(2.4)

where Pp(K) denotes the space of all polynomials on K of degree ≤ p.
Furthermore, we define the spaces of functions on the space-time domain QT , for

an integer q ≥ 0 we put

P q(Iτ ) := {v : (0, T )→ Rs, v|Im ∈ [P q(Im)]s, Im ∈ Iτ},(2.5)

where P q(Im) is the space of vector-valued polynomials of order ≤ q on the interval
Im, m = 1, . . . , r.

For the purposes of the upcoming error measures we define three subspaces of
H1(Iτ ,HHH1(Th)), namely

H1(Iτ ;SSSh,p) :=

(2.6)

{
ψψψ ∈ H1(Iτ ,HHH1(Th)); ψψψ(·, t) ∈ SSSm,h,p for a.e. t ∈ Im, m = 1, . . . , r

}
,

Sτ,q(Iτ ;HHH1(Th)) :=
{
ψψψ ∈ H1(Iτ ,HHH1(Th)); ψψψ(x, ·) ∈ P q(Iτ ) for a.e. x ∈ Ω

}
,

(2.7)

Sτ,q(Iτ ;SSSh,p) :=
(2.8)

{
ψψψ ∈ H1(Iτ ,HHH1(Th)); ψψψ|K×Im ∈ [P p(K)× P q(Im)]s,K ∈ Th,m, Im ∈ Iτ

}
,

where P p(K)×P q(Im) is the space of polynomials on K × Im of the degree ≤ p with
respect to x ∈ K and the degree ≤ q with respect to t ∈ Im for K ∈ Th and Im ∈ Iτ .

All three spaces from (2.6)–(2.8) are piecewise regular on space time elements
K × Im, K ∈ Th, Im ∈ Iτ , but generally discontinuous on QT . Furthermore, we
denote the space of piecewise polynomial functions on the concrete time interval Im
by

Sτ,q(Im;SSSh,p) := {ψψψ : Ω× Im → Rs; ψψψ|K×Im ∈ [P p(K)× P q(Im)]s,K ∈ Th,m} .
(2.9)

Obviously, ψψψ|Ω×Im ∈ Sτ,q(Im;SSSh,p) for all ψψψ ∈ Sτ,q(Iτ ;SSSh,p).
Finally, we introduce the jump of ϕϕϕ ∈ H1(Iτ ,HHH1(Th)) with respect to time on

the time level tm, m = 0, . . . , r by

{{ϕϕϕ}}m := ϕϕϕ|+m −ϕϕϕ|−m, where ϕϕϕ|±m := lim
δ→0±

ϕϕϕ(tm + δ).(2.10)

We employ the discontinuous Galerkin method to discretize the system of equa-
tions (2.1). Since the specific definitions of the forms representing the DG discretiza-
tion of convective fluxes of (2.1) are not particularly relevant for the purposes of this
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article, we introduce here only notation of the resulting forms

ah,m : HHH1(Th,m)×HHH1(Th,m)→ R, m = 1, . . . , r.(2.11)

More details about this methods can be found e.g. in [8, 5].
Further, we introduce the space-time discontinuous Galerkin (STDG) discretiza-

tion of (2.1).
Definition 2.1. We say that the function whτ ∈ Sτ,q(Iτ ;SSSh,p) is the space-time

discrete solution of problem (2.1) if

Ah,m(whτ ,ψψψ) = 0 ∀ψψψ ∈ Sτ,q(Iτ ;SSSh,p), m = 1, . . . , r,(2.12) (
whτ |−0 ,ϕϕϕ

)
Ω

= (w0,ϕϕϕ)Ω ∀ϕϕϕ ∈ S0,h,p,

where

Ah,m(w,ψψψ) :=

∫
Im

{(∂tw,ψψψ)Ω + ah,m(w,ψψψ)} dt+
(
{{w}}m−1,ψψψ|+m−1

)
Ω
,(2.13)

w,ψψψ ∈ H1(Iτ ,HHH1(Th)), m = 1, . . . , r

and w0 is the prescribed initial condition.

2.2. Solution strategy. The definition of the space-time discrete solution (2.12)
represents a nonlinear algebraic system for each time level m = 1, . . . , r. In the
algebraic form the discrete problem (2.12) reads:

find ξm ∈ RNm such that F h,m(ξm) = 0, m = 1, . . . , r,(2.14)

where ξm is the vector of the coefficients of the discrete solution whτ with respect
to a basis of Sτ,q(Im;SSSh,p) and the vector-valued function F h,m (ξm) represents the
form Ah,m(wm

hτ , ·) tested by the basis functions of Sτ,q(Im;SSSh,p).
The system (2.14) is strongly nonlinear. We solve it by a damped Newton-like

iterative method, see e.g. [15, 8], where the Jacobi matrix in the Newton method is
replaced by the so-called flux matrix developed in the context of the semi-implicit DG
method in [4, 7, 9].

In order to determine the solution ξm of the system (2.14), the employed damped
Newton-like method [15] generates a sequence of approximations ξlm, l = 0, 1, . . . of

the actual numerical solution ξm. The discrete solution wm
hτ (x, t) ←→ liml→∞ ξ

(l)
m .

Practically, we have to stop the iterative algorithm for some l <∞. In the following,
we denote by w̃hτ ∈ Sτ,q(Iτ ;SSSh,p) the function corresponding to the output of finite
number of steps of the damped Newton-like iterative algorithm. We call w̃hτ the
approximate solution of problem (2.1). Obviously, due to inexact solution of (2.14),
the approximate solution w̃hτ violates the relation (2.12).

The iterative algorithm is terminated when a suitable algebraic stopping criterion

is achieved, i.e.
∥∥∥F h,m(ξlm)

∥∥∥ ≤ η, where ‖·‖ and η is a given norm and a given

tolerance, respectively.

3. Error estimates. The main goal of our efforts is to find a robust strategy
for adaptive choice of the time step, space mesh and for determining the stopping
criterion for the iterative process. To achieve such goal we need to identify the time,
space and algebraic errors. With this in mind we slightly reformulate the STDG
method (2.12).
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We define the form Ahτ (z,ψψψ) : H1(Iτ ,HHH1(Th)) × H1(Iτ ,HHH1(Th)) → R by
Ahτ (z,ψψψ) :=

∑r
m=1Ah,m(z,ψψψ), where Ah,m is given by (2.13). The consistency

of STDG scheme implies that the exact solution w of the problem (2.1) satisfies

Ahτ (w,ψψψ) = 0 ∀ψψψ ∈ H1(Iτ ,HHH1(Th)).(3.1)

Moreover, let whτ ∈ Sτ,q(Iτ ;SSSh,p) be the space-time discrete solution given by
(2.12). Then

Ahτ (whτ ,ϕϕϕhτ ) = 0 ∀ϕϕϕhτ ∈ Sτ,q(Iτ ;SSSh,p).(3.2)

In addition we define the time semi-discrete solution wτ ∈ Sτ,q(Iτ ;HHH1(Th)) (for-
mally exact in space) solving

Ahτ (wτ ,ψψψ) = 0 ∀ψψψ ∈ Sτ,q(Iτ ;HHH1(Th)).(3.3)

Similarly the space semi-discrete solution wh ∈ H1(Iτ ;SSSh,p) (formally exact in time)
solves

Ahτ (wh,ψψψ) = 0 ∀ψψψ ∈ H1(Iτ ;SSSh,p).(3.4)

Finally, we recall the approximate solution w̃hτ ∈ Sτ,q(Iτ ;SSSh,p), which violates (3.2)
due to the algebraic errors.

3.1. Dual error measures and error estimators. Similarly as in, e.g., [1, 2],
we employ an error measure in the dual norm in the following way. Let V be a linear
vector space with a norm ‖·‖V , and let a(·, ·) : V × V → R be a form linear with
respect to its second argument and let Vh be a finite dimensional subspace of V .
Moreover, let u ∈ V and uh ∈ Vh be an exact and approximate solution of a fictitious
problem defined by

a(u, ϕ) = 0 ∀ϕ ∈ V and a(uh, ϕh) = 0 ∀ϕh ∈ Vh,(3.5)

respectively. Then the error measure in the dual norm on the space V is given by

E(uh) := ‖Auh −Au‖V ′ := sup
ϕ∈V
ϕ6=0

a(uh, ϕ)− a(u, ϕ)

‖ϕ‖V
= sup

ϕ∈V
ϕ6=0

a(uh, ϕ)

‖ϕ‖V
,(3.6)

where A is the operator from V to its dual space corresponding to a(·, ·) given by
〈Au,ϕ〉 := a(u, ϕ), u, ϕ ∈ V , where 〈·, ·〉 denotes the duality between V and V ′. The
last equality in (3.6) follows from (3.5).

Leaving the concrete specification to later discussion, we denote ‖·‖X a norm de-
fined on
X := H1(Iτ ,HHH1(Th)) and its subspaces. The only computable quantity of the above
defined solutions is the approximate solution w̃hτ . Therefore, we define the error
measures in the following way using the general derivation of the error measure (3.6),
see the diagram of the computational errors in Figure 3.1.

Space-time-algebraic error, i.e. w − w̃hτ , in the dual norm of the space
H1(Iτ ,HHH1(Th))

ESTA(w̃hτ ) := sup
ψψψ∈H1(Iτ ,HHH1(Th))

ψψψ 6=0

Ahτ (w̃hτ ,ψψψ)−Ahτ (w,ψψψ)

‖ψψψ‖X
.(3.7a)
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Fig. 3.1. Types of the solutions and the errors

Time-algebraic error, i.e. wh−w̃hτ , in the dual norm of the space H1(Iτ ;SSSh,p)

ETA(w̃hτ ) := sup
ψψψ∈H1(Iτ ;SSSh,p)

ψψψ 6=0

Ahτ (w̃hτ ,ψψψ)−Ahτ (wh,ψψψ)

‖ψψψ‖X
.(3.7b)

Space-algebraic error, i.e. wτ − w̃hτ , in the dual norm of the space
Sτ,q(Iτ ;HHH1(Th))

ESA(w̃hτ ) := sup
ψψψ∈Sτ,q(Iτ ;HHH1(Th))

ψψψ 6=0

Ahτ (w̃hτ ,ψψψ)−Ahτ (wτ ,ψψψ)

‖ψψψ‖X
.(3.7c)

Algebraic error, i.e. whτ − w̃hτ , in the dual norm of the space Sτ,q(Iτ ;SSSh,p)

EA(w̃hτ ) := sup
ψψψh∈S

τ,q(Iτ ;SSSh,p)

ψψψh 6=0

Ahτ (w̃hτ ,ψψψh)−Ahτ (whτ ,ψψψh)

‖ψψψh‖X
,(3.7d)

where the subtracted members vanish in all four cases due to (3.1) - (3.4).

Unfortunately, the error measures ESTA, ETA and ESA are practically impossible
to compute, since the suprema are taken over infinite-dimensional spaces. Therefore,
we approximate these quantities by similar terms, where the spaces mentioned above
are replaced by some finite dimensional subspaces. Indeed, these have to be chosen
sufficiently large, e.g. the choice Sτ,q(Iτ ;SSSh,p) would lead to equality between all
these measures with the algebraic one.

Particularly, we employ the spaces

Sτ,q+1(Iτ ;SSSh,p), Sτ,q(Iτ ;SSSh,p+1), Sτ,q+1(Iτ ;SSSh,p+1)(3.8)

which extend the space Sτ,q(Iτ ;SSSh,p) by polynomials of one higher degree with respect
to time, space and both space-time variables, respectively. Our choice is not the only
possible one, e.g. one could enrich the space Sτ,qh,p by polynomials of even higher
degree or introduce finer meshes, but numerical experiments show that this choice is
sufficient and any further enrichment would lead to further computational costs.

Let w̃hτ be the computed approximate solution. Then based on (3.7a) – (3.7d), we
define the space-time-algebraic, time-algebraic, space-algebraic and algebraic residual
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error estimators

ηSTA(w̃hτ ) := sup
ψψψh∈S

τ,q+1(Iτ ;SSSh,p+1)

ψψψh 6=0

Ahτ (w̃hτ ,ψψψh)

‖ψψψh‖X
,(3.9a)

ηTA(w̃hτ ) := sup
ψψψh∈S

τ,q+1(Iτ ;SSSh,p)

ψψψh 6=0

Ahτ (w̃hτ ,ψψψh)

‖ψψψh‖X
,(3.9b)

ηSA(w̃hτ ) := sup
ψψψh∈S

τ,q(Iτ ;SSSh,p+1)

ψψψh 6=0

Ahτ (w̃hτ ,ψψψh)

‖ψψψh‖X
,(3.9c)

ηA(w̃hτ ) := sup
ψψψh∈S

τ,q(Iτ ;SSSh,p)

ψψψh 6=0

Ahτ (w̃hτ ,ψψψh)

‖ψψψh‖X
= EA(w̃hτ ).(3.9d)

3.2. Properties of the error estimators. Obviously, the exact solution
w ∈ H1(Iτ ,HHH1(Th)) satisfies ηSTA(w) = ηTA(w) = ηSA(w) = ηA(w) = 0 due to
the consistency of the above defined schemes. Simply from (3.9) we see that for any
w̃hτ ∈ Sτ,q(Iτ ;SSSh,p) it holds

ηA(w̃hτ ) ≤ ηTA(w̃hτ ) ≤ ηSTA(w̃hτ ), ηA(w̃hτ ) ≤ ηSA(w̃hτ ) ≤ ηSTA(w̃hτ ).(3.10)

Further, since the suprema in (3.9) are taken over subspaces of spaces in (3.7), we
get the lower bounds ηSTA(w̃hτ ) ≤ ESTA(w̃hτ ), ηTA(w̃hτ ) ≤ ETA(w̃hτ ), ηSA(w̃hτ ) ≤
ESA(w̃hτ ), ηA(w̃hτ ) = EA(w̃hτ ). However, it is an open question, whether there there
exist upper bound, i.e., E∗(·) ≤ Cη∗(·).

Let w̃hτ be the computed approximate solution. In order to simplify the notation,
we introduce a generic definition of the residual error estimators (3.9) by

η?(w̃hτ ) := sup
ψψψh∈Xh
ψψψh 6=0

Ahτ (w̃hτ ,ψψψh)

‖ψψψh‖X
, ? ∈ {STA, TA, SA,A},(3.11)

which formally represents any definition from (3.9a) – (3.9d), where Xh denotes the
corresponding functional space.

3.3. Localization of the error estimators. Since we want to use the error
estimators η?(w̃hτ ) to efficient adaptive algorithm, we need to localize these quantities.
We define the residual error estimators at time interval Im by

ηm? (w̃hτ ) := sup
0 6=ψψψh∈Xh

supp(ψψψh)⊂Ω×Im

Ahτ (w̃hτ ,ψψψh)

‖ψψψh‖X
, m = 1, . . . , r(3.12)

and the element residual error estimators by

ηm,K? (w̃hτ ) := sup
06=ψψψh∈Xh

supp(ψψψh)⊂K×Im

Ahτ (w̃hτ ,ψψψh)

‖ψψψh‖X
, K ∈ Th,m, m = 1, . . . , r,(3.13)

which represent a “restriction” of the residual error estimators on the time interval
Im and the space-time element K × Im, respectively.

We need to define the X-norm in such a way that its evaluation is cheap. We
present the following lemma, proved in [10].
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Lemma 3.1. Let (·, ·)X : X × X → R be a scalar product generating the norm
‖·‖X . Let (·, ·)X satisfy the element-orthogonality condition, i.e.

(ψψψh,ψψψ
′
h)X = 0 ∀ψψψh,ψψψ′h ∈ X(3.14)

such that supp(ψψψh) and supp(ψψψ′h) have disjoint interiors.

Then

η?(whτ )2 =

r∑
m=1

ηm? (whτ )2 =

r∑
m=1

∑
K∈Th,m

ηm,K? (whτ )2.(3.15)

If the norm ‖·‖X is generated by a scalar product satisfying (3.14) then it is sufficient

to evaluate the the element residual estimators ηm,K? , for all m = 1, . . . , r and all
K ∈ Th,m and the global error estimators can be evaluated using the equality (3.15).

For the problem (2.1) it seems natural to measure the error in the L2(0, T, L2(Ω))-
norm. The equivalence between the error and the residual (3.6) was analysed in
[18, 17]. Although, we are not able to prove such equivalence for problem (2.1), we
use X = H1(Iτ ,HHH1(Th)) and

‖u‖X :=

∫ T

0

(
‖∂tu‖2L2(Ω) + ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω)

)1/2

dt, u ∈ X.(3.16)

This choice can be partly justified for linear hyperbolic equation, where integration
by parts leads to this choice of the X-norm. This norm is clearly generated by a scalar
product satisfying the favourable orthogonal property (3.14).

3.4. Application of error estimators in the solution strategy. In the so-
lution process we control both the time and the algebraic error by the space error.
For that reason, the time and the algebraic error do not essentially contribute to the
total computational error in the proposed algorithm.

Termination of the iterative process. We stop the iterative process if the algebraic
residual error estimate at time interval Im is sufficiently small in comparison to the
space residual error estimate at time interval Im, i.e.,

ηmA (w̃
m,(l)
hτ ) ≤ cAηmSA(w̃

m,(l)
hτ ), m = 1, . . . , r,(3.17)

where 0 < cA < 1 is a suitable constant which controls the relative influence of the
nonlinear algebraic error to the space discretization. It is reasonable to set cA ∈
[10−3, 10−1].

Choice of the time step in (2.12). Again, we choose the time step τm such that
the time residual error estimator at time interval Im is controlled by the space residual
error estimator at time interval Im, i.e.,

ηmTA(w̃m
hτ ) ≤ cT ηmSA(w̃m

hτ ), m = 1, . . . , r,(3.18)

where cT > 0 is a suitable constant representing a desired ratio of the time and space
error. Therefore, at each time level m = 1, . . . , r, we evaluate estimates ηmTA(w̃m

hτ )
and ηmSA(w̃m

hτ ) and define the “optimal” time step

τopt
m := τmc̃T

(
cT η

m
SA(w̃m

hτ )

ηmTA(w̃m
hτ )

)1/(q+1)

,(3.19)

where c̃T ∈ (0, 1) is an security factor (we use the value c̃T = 0.9 in our experiments).
This technique is standard, more details can be found in [12].



RESIDUAL BASED ERROR ESTIMATES... 121

3.5. Adaptive space-time DG method. It is challenging to develop a full
space-time adaptive technique for non-stationary problems. Although the residual
error estimators described above do not give an upper error bound, we use them for
an adaptive algorithm which adapts (locally) the mesh and (globally) the size of the
time step.

Our aim is to adapt the mesh size and the time step in such a way that the
space-time-algebraic residual error estimator ηSTA is under a given tolerance ω > 0,
i.e.,

ηSTA(w̃hτ ) ≤ ω.(3.20)

In the computational process, we prescribe the tolerance for the space-time-algebraic
residual error estimates ηmSTA on the time interval Im, m = 1, . . . , r, namely

ηmSTA(w̃hτ ) ≤ ωm, ωm := ω
√
τm/T , m = 1, . . . , r,(3.21)

where ωm is the tolerance for the time level tm, m = 1, . . . , r. The condition (3.21)
implies (3.20) due to (3.15). Then we define the following space-time adaptive process:

1) let ω > 0 be a given tolerance, Th,0 the initial mesh and τ0 the initial time
step,

2) let m = 1,
3) we solve problem (2.14) by the damped Newton-like iterative method until

the stopping criterion ηmA ≤ cAηmSA is satisfied,
4) if ηmTA > cT η

m
SA we adapt the time step τm according to (3.19) and go to step

3) (repeat time step, time error is too high),
5) if ηmSTA > ωm then we adapt mesh Th,m and go to step 3) (repeat time step,

space error is too high),
6) if tm ≥ T then the computation finishes,

else we put Th,m+1 := Th,m, τm+1 := τopt
m , m := m+ 1 and go to step 3).

If condition (3.21) is violated for some m = 1, . . . , r, the mesh Th,m has to be
adapted (step 5 of the algorithm). More information about the used adaptation
techniques can be found in [10, 3].

4. Numerical experiments. In this section, we illustrate the computional per-
formance of the developed residual-based error estimation scheme in several situations.

4.1. Scalar nonlinear hyperbolic equation. Let us consider the scalar non-
linear hyperbolic equation

∂u

∂t
+

1

2

∂u2

∂x1
+

1

2

∂u2

∂x2
= g in QT = (0, 1)2 × (0, 1),(4.1)

with the function g chosen such that the exact solution has the form u(x1, x2, t) =
sin(2π(x1 + x2 − 2t)).

The purpose of this experiment is to show the same convergence orders of the
above defined error estimators and the actual computational error. If the exact solu-
tion is regular enough, based on the a priori analysis of STDG methods, e.g. [11], the
computational error satisfies

‖ehτ‖L2(0,T ;L2(Ω)) ≤ C1h
p+1 + C2τ

q+1(4.2)

where ehτ := w − w̃hτ , h denotes the size of the mesh step, τ is the size of the time
step, p and q are the polynomial approximation degrees with respect to the space and
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Fig. 4.1. Scalar equation: convergence curves with respect to space (left) and time (right) for
scalar nonlinear hyperbolic equation.

the time coordinates, respectively, and C1 > 0 and C2 > 0 are constants independent
of h and τ . We set the constant CA = 10−3 in (3.17) to suppress the algebraic errors.
We present two examples. First, we oversolve the problem with respect to the time
variables (q high and τ small) and we expect

‖eh‖L2(0,T ;L2(Ω)) ≈ ηSTA = O(hp+1), ηTA � ηSA ≈ ηSTA.(4.3)

Second, we solve the problem on a very fine mesh with high order approximation
degree p. In this case, we expect

‖eh‖L2(0,T ;L2(Ω)) ≈ ηSTA = O(hq+1), ηSA � ηTA ≈ ηSTA.(4.4)

The resulting convergence curves are showed in Figure 4.1. We can see that the
behaviour of the actual error is very similar to the error estimators in all cases.

4.2. Isentropic vortex propagation. We consider the propagation of an isen-
tropic vortex in compressible inviscid flow, analysed numerically in [16]. The compu-
tational domain is taken as [0, 10] × [0, 10], extended periodically in both directions,
and T = 10. The mean flow is ρ = 1, v = (1, 1) (diagonal flow) and p = 1. To this
mean flow we add an isentropic vortex, i.e. perturbation in v and the temperature
θ = p/ρ, but no perturbation in the entropy η = p/ργ .

This example is suitable for the demonstration of the performance of the proposed
residual error estimators since the regular exact solution is known and thus we can
simply evaluate the computational error ehτ . Then we are able to identify the influence
of the space and time discretization parameters h and τ , respectively, on the total
computational error.

We use two unstructured quasi-uniform triangular meshes with #Th = 580 and
#Th = 2484 triangles, i.e. h = 0.894 and h = 0.448, respectively. We fix the
space polynomial degree p = 3 and the time polynomial degree q = 2 and q = 1,
respectively, and we decrease the length of the time intervals τ several times. In
the first case (Figure 4.2 - left) space-time error estimator decreases only in the first
step, where ηSTA ≈ ηTA, and then it stagnates at the level 10−2, while the time
estimator continues descending even for the smaller time steps. This corresponds to
the behaviour of the actual computational error ehτ , since for the smaller values of τ
the space part of the error dominates over the time error. On the finer mesh (Figure
4.2 - left) the space error is suppressed enough and hence the ηTA ≈ ηSTA ≈ ehτ .

Finally, in Figure 4.2 we present meshes and the isolines of the pressure computed
by the fully adaptive algorithm presented in the Section 3.5 with p = 3 and q = 2. In
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#Th ‖eh‖L2(0,T ;L2(Ω)) CPU(s)

580 1.057× 10−2 8853

2484 5.368× 10−3 27954

adapt 2.953× 10−3 5045

Table 4.1
Isentropic vortex: total errors and computational time
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Fig. 4.2. Isentropic vortex: error identification

Table 4.2 we provide a comparison between the computation with fixed parameters
and the adaptive algorithm. It is apparent that the adaptive procedure significantly
fastens the computations.

t = 3.0 t = 7.0 t = 10.0

Fig. 4.3. Isentropic vortex: adaptively refined meshes

5. Conclusion. We introduced the residual based a posteriori error estimation
technique for non-stationary nonlinear hyperbolic equations. The presented method
uses the space-time discontinuous Galerkin method for discretizing the problem and
the resulting nonlinear system is solved by the damped Newton-like method. Our
scheme enables to identify the temporal, spatial and algebraic parts of the computa-
tional error, which leads to an efficient adaptive algorithm. The main drawback of
this method is the missing theoretically guaranteed link between the error estimators
used and the real size of the error. On the other hand, numerical experiments show
that this method is able to approximate the actual error very accurately in many
cases.
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