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A FOURTH-ORDER COMPACT SCHEME FOR THE
NAVIER-STOKES EQUATIONS IN IRREGULAR DOMAINS∗

DALIA FISHELOV†

Abstract. We present a high-order finite difference scheme for Navier-Stokes equations in
irregular domains. The discretization offered here contains two types of interior points. The first is
regular interior points, where all eight neighboring points of a grid point are inside the domain and
not too close to the boundary. The second is interior points where at least one of the closest eight
neighbors is outside the computational domain or too close to the boundary. In the second case we
design discrete operators which approximate spatial derivatives of the streamfunction on irregular
meshes, using discretizations of pure derivatives in the x, y and along the diagonals of the element.
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1. Introduction. In this paper we are interested in high-order discretizations
of the Navier-Stokes equations. The Navier-Stokes equations play a central role in
modeling fluid flows. Here we focus on incompressible flows. It is well-known that
this system may be represented in pure streamfunction formulation as follows (see
[3]). 

∂t∆ψ +∇⊥ψ · ∇∆ψ − ν∆2ψ = f(x, y, t), (x, y) ∈ Ω, t > 0,

ψ = ∂ψ
∂n = 0 , (x, y) ∈ ∂Ω , t > 0

ψ(x, y, 0) = ψ0(x, y), (x, y) ∈ Ω.
(1.1)

Recall that ∇⊥ψ = (−∂yψ, ∂xψ) is the velocity vector.

In this paper we extend the fourth-order scheme [2] to irregular domains. The
strategy used here is to present the biharmonic operator ∂4

x + 2∂2
x∂

2
y + ∂4

y as a com-
bination of pure fourth-order derivatives in the x, y and the diagonal directions η =
(x+ y)/

√
2, ξ = (y−x)

√
2. Then, the pure fourth-order derivatives may be approxi-

mated via a compact scheme using the values of the function and its directional deriva-
tives (see also [5], [4]). An alternative approach is to construct a two-dimensional
polynomial which collocates the values of the function and its directional derivatives
at the corners of the irregular element and then approximate the biharmonic of the
function by the biharmonic of this polynomial (see [1]).

2. Approximation of the Navier-Stokes equations on regular grids. Spa-
tial derivatives in Equation (1.1) are discretized as we describe next. The domain Ω
is embedded in a square [a, b]× [a, b]. We lay out a grid a = x0 < x1 < ... < xN = b,
and a = y0 < y1 < ... < yN = b, with ∆x = ∆y = (b − a)/N = h. To each grid
point (xi, yj) we assign approximate values of the streamfunction ψ together with its
first-order derivative ψx, ψy. These values are the unknowns to be determined by the
scheme.

∗This work was supported by the research authority of Afeka.
†Department of Exact Sciences, Afeka - Tel-Aviv Academic College of Engineering, 218 Bnei-

Efraim St., Tel-Aviv 69107, Israel (daliaf@afeka.ac.il).

135
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The fourth order discrete Laplacian ∆̃hψ and biharmonic ∆̃2
hψ operators intro-

duced in [2] are perturbations of the second order operators ∆hψ = (δ2
x + δ2

y)ψ and
∆2
hψ = (δ4

x + δ4
y + 2δ2

xδ
2
y)ψ. They are designed as follows.

∆̃hψi,j = 2δ2
xψi,j − δx(ψx)i,j + 2δ2

yψi,j − δy(ψy)i,j = (∆ψ)i,j +O(h4).(2.1)

Here, ψx, ψy are the fourth-order Hermitian approximations to ∂xψ, ∂yψ described as
1

6
(ψx)i−1,j +

2

3
(ψx)i,j +

1

6
(ψx)i+1,j = δxψi,j , 1 ≤ i, j ≤ N − 1

1

6
(ψy)i,j−1 +

2

3
(ψy)i,j +

1

6
(ψy)i,j+1 = δyψi,j , 1 ≤ i, j ≤ N − 1.

(2.2)

We use the standard central difference operators δx, δy, δ2
x, δ

2
y.

The fourth-order approximation to the biharmonic operator ∆2ψ is

∆̃2
hψi,j = δ4

xψi,j + δ4
yψi,j + 2δ2

xδ
2
yψi,j −

h2

6
(δ4
xδ

2
yψi,j + δ4

yδ
2
xψi,j),(2.3)

where δ4
x (similarly δ4

y) is the compact approximations of ∂4
x (and ∂4

y).

δ4
xψi,j =

12

h2

(
(δxψx)i,j − δ2

xψi,j
)

, δ4
xψ = ∂4

xψ −
1

720
h4∂8

xψ +O(h6).(2.4)

The Laplacian ∆ψ in (1.1) is ∆ψ = ∂2
xψ+∂2

yψ. Thus the Laplacian operator is already
written with pure second order derivatives in x and y. Its approximation on a regular
grid is given by

∆̃hψi,j = δ̃2
xψi,j + δ̃2

yψi,j ,(2.5)

where δ̃2
xψi,j = 2δ2

xψi,j − δxψx,i,j = ∂2
xψi,j +O(h4), and δ̃2

yψi,j = 2δ2
yψi,j − δyψy,i,j =

∂2
yψi,j +O(h4).

The convective term in (1.1) is C(ψ) = −∂yψ∆(∂xψ) + ∂xψ∆(∂yψ). Its fourth-
order approximation needs special care. The mixed derivative ∂x∂

2
yψ may be approx-

imated to fourth-order accuracy by ψ̃yyx using a suitable combination of lower order
approximations.

(ψ̃yyx)i,j = (δ2
yψx + δxδ

2
yψ − δxδyψy)i,j = (∂x∂

2
yψ)i,j +O(h4).(2.6)

For the pure third order derivative ∂3
xψ we note that if ψ is smooth then

(ψxxx)i,j =
3

2h2

(
10δxψ − h2δ2

x∂xψ − 10∂xψ
)
i,j

+O(h4).(2.7)

One needs to approximate ∂xψ to sixth-order accuracy in order to obtain from (2.7) a
fourth-order approximation for ∂3

xψ . Denoting this approximation by ψ̃x, we invoke
the Pade formulation having the following form.

1

3
(ψ̃x)i+1,j + (ψ̃x)i,j +

1

3
(ψ̃x)i−1,j =

14

9

ψi+1,j − ψi−1,j

2h
+

1

9

ψi+2,j − ψi−2,j

4h
.(2.8)

Carrying out the same procedure for ∂yψ, which yields the approximate value ψ̃y,
and combining with all other mixed derivatives, a fourth order approximation of the
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convective term is

C̃h(ψ) = −ψy ·
(
∆hψ̃x +

5

2

(
6
δxψ − ψ̃x

h2
− δ2

xψ̃x
)

+ δxδ
2
yψ − δxδyψ̃y

)
(2.9)

+ ψx ·
(
∆hψ̃y +

5

2

(
6
δyψ − ψ̃y

h2
− δ2

yψ̃y
)

+ δyδ
2
xψ − δyδxψ̃x

)
= C(ψ) +O(h4).

Our implicit time-stepping scheme is of the Crank-Nicholson type as follows.

(∆̃hψi,j)n+1/2−(∆̃hψi,j)n

∆t/2 = −C̃hψ(n) + ν
2 [∆̃2

hψ
n+1/2
i,j + ∆̃2

hψ
n
i,j ](2.10)

(∆̃hψi,j)n+1−(∆̃hψi,j)n

∆t = −C̃hψ(n+1/2) + ν
2 [∆̃2

hψ
n+1
i,j + ∆̃2

hψ
n
i,j ].(2.11)

3. Approximation of the Navier-Stokes equations on irregular domains.
In the previous section we described the approximation of the Navier-Stokes equations
in streamfunction formulation in rectangular domains. If the domain is not a rectan-
gular, one can either map the domain onto a rectangle or design an approximation of
the equations on a cartesian grid embedded inside the domain Ω. In case we chose
to map the domain onto a rectangle, then the differential equations take a new form,
as the derivatives of the new coordinate system are involved in the equations, which
complicates the equations. In addition, the transformation (such as a polar coordinate
system) is sometimes singular at certain points and special treatment is needed near
singular points.

In this paper we embed the domain Ω in a rectangle. Then, a uniform mesh is
laid out inside the rectangle. Some of the mesh points are outside Ω, some are inside
Ω and some may be on the boundary ∂Ω.

If a mesh point is outside the computational domain Ω (flag=-1), then an arbitrary
value, such as zero, is given to this point. Points which are outside the computational
domain do not affect the values of the function at interior or at boundary points.

If a mesh point is on the boundary of the domain ∂Ω (flag=0), then the boundary
values ψ of the function and its first-order normal derivative ∂nψ are assigned to this
point.

If a mesh point is inside the domain it may be labeled as follows.
Case 1: the point is in a center of a rectangle for which all the vertices are inside the
domain (flag=1). In this case the differential operators for this point are approximated
as in Section 2.
Case 2: the point is too close to the boundary (flag=2) then this point is not included
in the set of computational points. Thus neither the differential equations nor the
boundary conditions are imposed at this point. In our computations we have labeled
a point with flag=2 if its distance to the boundary was less then βh, where h is the
mesh size at the interior of the domain and 0 < β < 1. In practice we have picked
β = 0.2.
Case 3: the point is not too close to the boundary, but at least one of its eight
nearest neighbors is outside the computational domain or at least one of its eight
nearest neighbors is too close to the boundary (flag=3). In this case the point is the
center of an irregular element. Thus, special discretization of the differential operator
is needed.

We first have to describe how one constructs the element around such a com-
putational point. Suppose the point under consideration is (xi, yj). If, for example
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Fig. 3.1. Grid: ’+’ computational point, ’o’ eight neighbors of a computational point, ’x’ point
too close to the boundary.

Fig. 3.2. Single computational element: ’+’ computational point, ’o’ eight neighbors of a
computational point.

(xi+1, yj) is outside the domain, then we define by (xeast, yj) the point which is the
closest on the right to (xi, yj) lying on the line y = yj and intersects with the bound-
ary. We note by h1 the distance from xeast to xi, i.e., h1 = xeast−xi. Similarly in the
case where (xi−1, yj) is outside Ω, for which we define h2 = xi − xeast. In the same
fashion we treat the cases where (xi, yj+1) and (xi, yj−1) are outside the domain and
define h3 = ynorth − yj and h4 = yj − ysouth, respectively.

We also look at points along the line x − xi = y − yj . If (xi+1, yj+1) is outside
the domain Ω, then we denote by (xnorth−east, ynorth−east) the intersection of the line
x− xi = y − yj going north-east of (xi, yj) with the boundary. We denote by h5 the
distance of (xnorth−east, ynorth−east) to (xi, yj), thus (xnorth−east, ynorth−east) = (xi+
h5/
√

2, yj +h5/
√

2). Similarly (xsouth−west, ysouth−west) = (xi−h6/
√

2, yj −h6/
√

2).
We also treat the points along the line x − xi = yj − y, thus defining h7 as the
distance of the point (xnorth−west, ynorth−west) to (xi, yj) and h8 is the distance from
(xsouth−east, ysouth−east) to (xi, yj) .

Now we have to approximate ∆2ψ at (xi, yj) in case where (xi, yj) is a computa-
tional point which is in the center of an irregular element. Define a new coordinate
system η = (x+y)/

√
2, ξ = (y−x)/

√
2. This yields y = (η+ξ)/

√
2, x = (η−ξ)/

√
2.

Expressing ψηηηη and ψξξξξ in terms of ψxxxx, ψxxyy and ψyyyy, we have



ψη = 1√
2
(ψx + ψy),

ψηη = 1
2 (ψxx + 2ψxy + ψyy)

ψηηη = 1
2
√

2
(ψxxx + 3ψxxy + 3ψxyy + ψyyy),

ψηηηη = 1
4 (ψxxxx + 4ψxxxy + 6ψxxyy + 4ψxyyy + ψyyyy).

(3.1)
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

ψξ = 1√
2
(ψy − ψx),

ψξξ = 1
2 (ψxx − 2ψxy + ψyy),

ψξξξ = 1
2
√

2
(−ψxxx + 3ψxxy − 3ψxyy + ψyyy),

ψξξξξ = 1
4 (ψxxxx − 4ψxxxy + 6ψxxyy − 4ψxyyy + ψyyyy).

(3.2)

Therefore,

2(ψηηηη + ψξξξξ) = ψxxxx + 6ψxxyy + ψyyyy.(3.3)

Thus,

2ψxxyy = 2
3 (ψηηηη + ψξξξξ)− 1

3 (ψxxxx + ψyyyy).(3.4)

This yields

∆2ψ = ψxxxx + 2ψxxyy + ψyyyy

= 2
3 (ψηηηη + ψξξξξ + ψxxxx + ψyyyy).

(3.5)

Thus, the operator ∆2 can be expressed via pure fourth-order derivatives in the
directions of x, y and η, ξ.

We can therefore approximate ∆2ψ by ∆̃2
hψ, where

∆̃2
hψ = 2

3 (δ4
ηψ + δ4

ξψ + δ4
xψ + δ4

yψ).(3.6)

The discretizations of ψxxxx, ψyyyy by δ4
xψ, δ

4
yψ and those of ψηηηη, ψξξξξ by

δ4
ηψ, δ

4
ξψ, respectively, are carried out via one-dimensional approximations of pure

fourth-order derivatives.
We describe now the approximation of the convective term C(ψ) = ∇⊥ψ · ∇∆ψ.

This may be written as

C(ψ) = −(∂yψ) · (∂xxxψ + ∂xyyψ) + (∂xψ) · (∂xxyψ + ∂yyyψ).(3.7)

The pure third-order derivatives (for example ∂xxxψ) may be approximated to
fourth-order accuracy by the interpolation of a one-dimensional fifth-order polynomial
using the data of ψ and ∂xψ at the three points xi−1,j , xi,j , xi+1,j . The mixed third-
order derivatives ψxxy and ψxyy may be approximated using (3.1-3.2) by

ψxxy =
√

2
3 (ψηηη + ψξξξ)− 1

3ψyyy(3.8)

and

ψxyy =
√

2
3 (ψηηη − ψξξξ)− 1

3ψxxx.(3.9)

Inserting Equations (3.8)-(3.9) in Equation (3.7), we obtain

C(ψ) = −ψy
(2

3
ψxxx +

√
2

3
(ψηηη − ψξξξ)

)
+ ψx

(2

3
ψyyy +

√
2

3
(ψηηη + ψξξξ)

)
.(3.10)
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Note that in order to approximate ψxxx (similarly to other pure third-order deriva-
tives) to fourth-order accuracy, we need to use an interpolating polynomial of degree
five. In this case we need a sixth-order approximation to ψx (see [2]). In Section 4
we concentrate on the approximation of the biharmonic and the Laplacian operators.
We discuss the truncation error due to the various discretizations. In Section 5 we
describe the approximation of the convective term at near-boundary points.

Notice that the values of ψ,ψx and ψy on the boundary points may be computed

from the boundary conditions ψ(x, y, t) = g1(x, y, t) and ∂ψ
∂n (x, y, t) = g2(x, y, t), for

(x, y) ∈ ∂Ω. Indeed, ψ is given on the boundary. In addition, from the given ψ on the
boundary one may compute the tangential derivative of ψ. The tangential derivative
together with the given normal derivative determine ψx and ψy on the boundary
points.

4. Approximation of ∂xψ, ∂
4
xψ and ∂2

xψ on an irregular mesh. We describe
how to approximate ∂xψ, ∂4

xψ and ∂2
xψ in case the mesh is irregular.

Let (xi, yj) be a grid point where at least one of its neighbors to the right or to
the left is inside the domain or on the boundary but its distance to (xi, yj) is not h.
Define the neighbor of (xi, yj) to the right by (xeast, yj) and its neighbor to the left
by (xwest, yj). Let h1 = xeast − xi and h2 = xi − xwest.

By the requirements we set in Section 2 on a computational point, we find that
there exist positive constants, which does not depend on the mesh size, such that

C1 ≤ h1/h ≤ C2, C1 ≤ h2/h ≤ C2.(4.1)

Let Q(x) be a polynomial of degree less or equal 4.

Q(x) = a0 + a1(x− xi) + a2(x− xi)2 + a3(x− xi)3 + a4(x− xi)4.(4.2)

The interpolating data is

ψ(xwest, yj), ψ(xi, yj), ψ(xeast, yj), ψx(xwest, yj), ψx(xeast, yj).(4.3)

Then, a1 is set as an approximation to ∂xψ at (xi, yj) and is denoted by ψx,i,j . We
also set 24a4 as an approximation to ∂4

xψ at (xi, yj) and denote it by δ4
xψi,j . In a

similar manner one approximates other first and fourth-order pure derivatives with
respect to y.

We now describe in detail the approximation of ∂xψ at (xi, yj). Define



c =
4h1h

3
2−4h3

1h2+2h4
2−2h4

1

h1h2(h1+h2)3 ,

cp =
2h4

2+4h1h
3
2

h1h2(h1+h1)3 ,

cm =
2h4

1+4h2h
3
1

h1h2(h1+h2)3 ,

cxp =
h3
2h

2
1+h4

2h1

h1h2(h1+h2)3 ,

cxm =
h2
2h

3
1+h4

1h2

h1h2(h1+h2)3 .

(4.4)

Then, the approximation ψx,i,j to ∂xψi,j is given by

ψx,i,j + cxp · ψx(xeast, yj) + cxm · ψx(xwest, yj)

= cp · ψ(xeast, yj)− cm · ψ(xwest, yj)− c · ψi,j .
(4.5)
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Note that in case h1 = h2 = h then (4.5) is equivalent to (2.2). Similar representations
are valid to ∂yψ.

One can show, using Taylor expansions that the truncation error for ψx for an
irregular element is bounded as follows.

|(ψx)i,j − ∂xψ| ≤ Ch4‖ψ(5)‖L∞ .(4.6)

The derivatives along the diagonals ∂ηψ and ∂4
ηψ and ∂ξψ and ∂4

ξψ are approxi-

mated using the chain rule ψη = 1√
2
(ψx + ψy), and ψξ = 1√

2
(ψy − ψx).

For the approximation of ∂4
xψ at an irregular point we define



b = 24 (h1+h2)3

h2
1h

2
2(h1+h2)3

,

bp = 24 h2+3h1

h2
1(h1+h2)3

,

bm = 24 h1+3h2

h2
2(h1+h2)3

,

bxp = 24 h1+h2

h1(h1+h2)3 ,

bxm = 24 h1+h2

h2(h1+h2)3 .

(4.7)

Then, the approximation δ̄4
xψi,j to ∂4

xψ is given by

δ̄4
xψi,j = bxp · ψx(xeast, yj)− bxm · ψx(xwest, yj)

−(bp · ψ(xeast, yj) + bm · ψ(xwest, yj)− b · ψi,j).
(4.8)

Note that in case h1 = h2 = h then (4.8) is equivalent to (2.4). Similar representations
are valid to ∂4

yψ, and to derivatives along the diagonals ∂4
ηψ and ∂4

ξψ, given that ∂ηψ
and ∂ξψ are approximated using the chain rule.

It is possible to show, using Taylor expansions and (4.1), that if the values of ψx
are chosen as the exact values of the first-order derivative, then the truncation error
for the approximation of the ∂4

xψ for an irregular element is bounded as follows.

|δ̄4
xψi,j − ∂4

xψ| ≤ Ch‖ψ(5)‖L∞ .(4.9)

For the approximation of ∂2
xψ at an irregular point we define



d = 2
8(h2

2h
3
1+h3

2h
2
1)+h2h

4
1+h4

2h1−h5
2−h

5
1

h2
2h

2
1(h1+h2)3

,

dp = 2
h2(−h2

2+8h2
1+h2h1)

h2
1(h1+h2)3

,

dm = 2
h1(−h2

1+8h2
2+h2h1)

h2
2(h1+h2)3

,

dxp = 2
h2(2h2

1+h2h1−h2
2)

h1(h1+h2)3 ,

dxm = 2
h1(2h2

2+h2h1−h2
1)

h2(h1+h2)3 .

(4.10)
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Then, the approximation δ̄2
xψi,j to ∂2

xψ is given by

δ̄2
xψi,j = dp · ψ(xeast, yj) + dm · ψ(xwest, yj)− d · ψi,j

−(dxp · ψx(xeast, yj)− dxm · ψx(xwest, yj)).
(4.11)

Note that in case h1 = h2 = h then (4.11) is equivalent to the approximation of δ2
xψ

in (2.1). Similar representations are valid for ∂2
yψ.

One can show, using Taylor expansions and (4.1), that if the values of ψx are
chosen as the exact values of the first-order derivative, then the truncation error for
the approximation of the ∂2

xψ for an irregular element is bounded as follows.

|δ̄2
xψi,j − ∂2

xψ| ≤ Ch3‖ψ(5)‖L∞ .(4.12)

5. Approximation of convective term on an irregular mesh. In order to
approximate the convective term (3.7) (or its equivalent form (3.10)), we have to
discretize pure third-order derivatives of ψ in x, y and in ξ, η. Note that we have
already obtained fourth-order approximations to ∂xψ and ∂yψ (see (4.5)).

In [2] we have constructed a sixth-order approximation to the first-order deriva-
tive, using a sixth-order interpolating polynomial based on the interpolating values
ψi−2,j , ψi−1,j , ψi,j , ψi+1,j , ψi+1,j and ψx,i−1,j , ψx,i,j , ψx,i+1,j . Then we inserted these
values into an approximation of ∂3

xψ, based on a fifth-order polynomial. The lat-
ter interpolates the values ψi−1,j , ψx,i−1,j , ψi,j , ψx,i,j , ψi+1,j , ψx,i+1,j and the resulting
approximation was fourth-order accurate for ∂3

xψ.
We first describe the approximation to ∂3

xψ and then show how to obtain a higher-
order approximation to the first-order derivative. Let (xi, yj) be a grid point where
two of its neighbors to the right (xwest, yj) and to the left (xeast, yj) are inside the
domain or on the boundary. Define h1 = xeast − xi and h2 = xi − xwest. Define



q = 12
h3
2−4h2

2h1+4h12h2−h3
1

h3
1h

3
2

,

qp = 12
h2(h1h2−h2

2+5h2
1)

h3
1(h1+h2)3

,

qm = −12
h1(h1h2−h2

1+5h2
2)

h3
2(h1+h2)3

,

qx = 6
h2
2−4h1h2+h2

1

h2
1h

2
2

,

qxp = −6h2(2h1−h2)
h2
1(h1+h2)2

,

qxm = −6h1(2h2−h1)
h2
2(h1+h2)2

.

(5.1)

Then, the approximation δ̄3
xψi,j to ∂3

xψ is given by

δ̄3
xψi,j = q · ψi,j + qp · ψ(xeast, yj) + qm · ψ(xwest, yj)

+qx · ψx(xi, yj) + qxp · ψx(xeast, yj) + qxm · ψx(xwest, yj)).
(5.2)

Other pure third-order derivatives may be similarly discretized. Note that in case
h1 = h2 = h then (5.2) is equivalent to the approximation of δ3

xψ in Equation (3.29)
of [2].
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One may show, using Taylor expansions and (4.1), that if the values of ψx are
chosen as the exact values of the first-order derivative, then the truncation error for
the approximation of the ∂3

xψ for an irregular element is bounded as follows.

|δ̄3
xψi,j − ∂3

xψ| ≤ Ch3‖ψ(6)‖L∞ .(5.3)

Note that when we approximated to ∂3
xψ to fourth-order accuracy on a uniform

mesh we needed to to approximate ∂xψ to sixth-order accuracy, so that by using theses
values for the first-order derivative, one can obtain a fourth-order approximation to
∂3
xψ. The construct analogue of the sixth-order approximation to ψx, derived this

time for a non-uniform grid may be constructed as well.

6. Numerical accuracy of the the scheme in irregular domains. In or-
der to verify the spatial fourth order accuracy of the scheme, we performed several
numerical tests. The time-step was set to dt = Ch2.

In the Tables below we present the error, e, and the relative error, where

e2 = ‖ψcomp − ψexact‖l2 ,

e∞ = ‖ψcomp − ψexact‖l∞ .

Similarly,

(ex)2 = ‖(ψx)comp − (ψx)exact‖l2 ,

(ex)∞ = ‖(ψx)comp − (ψx)exact‖l∞ ,

Here, ψcomp,(ψx)comp and ψexact,(ψx)exact are the computed and the exact stream-
function and of ψ and its x− derivative, respectively.

6.0.1. Case 1: Navier-Stokes with exact solution ψ(x, y, t) = ex+y−t in a
unit circle. Here

f(x, y, t) = ∂t∆ψ +∇⊥ψ · ∇∆ψ −∆2ψ,(6.1)

where ψ(x, y, t) = ex+y−t.
Our aim is to recover ψ(x, y, t) from f(x, y, t). Thus, we resolve numerically

∂t∆ψ +∇⊥ψ · ∇∆ψ −∆2ψ = f(x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) = ex+y, (x, y) ∈ Ω

ψ(x, y, t) = ex+y−t, (x, y) ∈ ∂Ω

∂ψ(x,y,t)
∂n = ∂ex+y−t

∂n , (x, y) ∈ ∂Ω.

(6.2)

mesh 9× 9 Rate 17× 17 Rate 33× 33
e2 9.955E-05 4.31 5.0042E-06 4.01 2.998E-07
e∞ 1.6792E-04 4.70 6.4755E-06 3.55 5.5991E-07

(ex)2 3.0959E-04 4.40 1.4634E-05 3.80 1.0508E-06
(ex)∞ 6.6237E-04 4.09 3.8936E-05 3.11 4.5138E-06

Table 1: Compact scheme for the Navier-Stokes equation with exact solution: ψ =
ex+y−t on x2 + y2 ≤ 1. We present e and ex, the l2 errors for the streamfunction and
for ∂xψ. Here ∆t = 0.25h2 and t = 0.25.
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6.0.2. Case 2: Navier-Stokes equation with exact solution ψ(x, y, t) =
(1− x2)3(1− y2)3e−t on a unit circle. Here

f(x, y, t) = ∂t∆ψ +∇⊥ψ · ∇∆ψ −∆2ψ,(6.3)

where ψ(x, y, t) = (1−x2)3(1−y2)3e−t. Our aim is to recover ψ(x, y, t) from f(x, y, t).
Thus, we resolve numerically

∂t∆ψ +∇⊥ψ · ∇∆ψ −∆2ψ = f(x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) = (1− x2)3(1− y2)3, (x, y) ∈ Ω

ψ(x, y, t) = (1− x2)3(1− y2)3e−t, (x, y) ∈ ∂Ω

∂ψ(x,y,t)
∂n = ∂(1−x2)3(1−y2)2e−t

∂n , (x, y) ∈ ∂Ω.

(6.4)

mesh 9× 9 Rate 17× 17 Rate 33× 33
e2 1.1040E-02 4.56 4.6817E-04 4.06 2.8002E-05
e∞ 1.2010E-02 4.57 5.0701E-04 4.30 2.5781E-05

(ex)2 2.7300E-02 4.33 1.3530E-03 4.60 5.5872E-05
(ex)∞ 3.7950E-02 4.12 2.1861E-03 4.10 1.2750E-04

Table 2: Compact scheme for Navier-Stokes equation with exact solution: ψ =
(1 − x2)3(1 − y2)3e−t on x2 + y2 ≤ 1. We present e and ex, the l2 errors for the
streamfunction and for ∂xψ. Here ∆t = 0.25h2 and t = 0.25.
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